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Free energy signatures related to the measurement of an emergent force ð�10�9NÞ due to the

exciton condensate (EC) in Double Quantum Wells are predicted and experiments are proposed

to measure the effects. The EC-force is attractive and reminiscent of the Casimir force between

two perfect metallic plates, but also distinctively different from it by its driving mechanism and

dependence on the parameters of the condensate. The proposed experiments are based on a

recent experimental work on a driven micromechanical oscillator. Conclusive observations

of EC in recent experiments also provide a strong promise for the observation of the EC-force.
VC 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4873377]

In the late 1940s, Casimir predicted an unusual force

between two neutral metallic plates held in vacuum.1 The

Casimir Force (CF) is attractive between the two ideally infi-

nite metallic plates and the Casimir pressure is given by

Pc ¼ F c=A ¼ �p2�hc=ð240D4Þ where A is the area of the

plates and D is the separation between them. For typical val-

ues A ’ 1 lm2 and D ’ 100 Å; F c ’ �1:3� 10�7 N. The

early measurements of CF were done between a metal plate

and a metal sphere.2 Twelve years ago perfect agreement

with the theory was achieved for the original two plate

geometry.3,4

Vacuum is the lowest energy (ground) state of the elec-

tromagnetic radiation with zero field strength and nonzero

fluctuations. The electromagnetic field is defined by the exci-

tations of the electromagnetic modes above the vacuum. This

perception will be useful here where the vacuum is the

ground state of a many body interacting excitonic system in

the condensed state. The vacuum of the free electromagnetic

radiation is smoothly connected with its excitation spectrum

and can be reached perturbatively by changing the number of

excited modes and other physical parameters. Same thing is

also true for the binary liquid mixtures in the critical regime.

A force similar to the universal CF, i.e., the Critical Casimir

Force (CCF) has been predicted5 and measured6 in these sys-

tems. On the other hand, in many body interacting systems,

there are also nonperturbative ground states that can have a fi-

nite energy gap in the excitation spectrum. The existence of

the finite gap, away from the critical point where the gap van-

ishes, can prevent small fluctuations at zero temperature.

Close to the critical point however, there are predictions of

the CCF in Bose-Einstein condensates (BEC),7 but this has

not been experimentally verified yet. On the other hand, the

Casimir-Polder-like force between a BEC and a semiconduc-

tor plane was measured.8 In condensed systems with a finite

energy gap away from the critical point at sufficiently small

temperatures, one may therefore expect that Casimir like

effects are strongly suppressed and may not be observed.

The starting point to generalize Casimir’s concept here

is the dependence of the free energy on the system’s bounda-

ries which may be realized in two different ways. One is the

Dirichlet or von-Neumann type boundary conditions affect-

ing the critical fluctuations of the order parameter leading to

the Casimir-like phenomena discussed above. The second is

the strength of the order parameter, and hence the energy

gap itself, depending on system’s size through the pairing

interaction. Here, we concentrate on the latter taking the

example of a low temperature condensate of which the pair-

ing strength depends on the physical size, i.e., the spatially

indirect Coulomb coupling between electrons and holes con-

fined to two separate quantum wells (the Double Quantum

Well (DQW) geometry) as given by vehðrÞ ¼ �e2=
ð4pe

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ D2
p

Þ where r¼ (re� rh), re and rh are the

electron-hole (eh) coordinates, D is the separation between

the quantum wells, and e is the dielectric constant. There are

two effects of veh(r). If D is on the order of an exciton Bohr

radius aB (about 100 Å for GaAs based materials), the first

effect is the formation of Wannier Mott excitons. Below a

certain critical temperature Tc, the second effect comes into

play. In sufficiently low exciton densities nx, when excitons

act like independent bosons, they are expected to

Bose-Einstein condense9 with an energy gap depending on

the strength of the Coulomb coupling. As nx increases, the

excitons start spatially overlapping, with a higher Fermi

energy scale than the pairing interaction, moving into a BCS

like condensed ground state. This work is focused on the sec-

ond effect of the Coulomb interaction.

In an exciton condensate (EC), two different types of

pairings10 are allowed between an electron in an s-like and a

hole in a p-like orbital. The bright pairs have opposite eh

spins forming bright singlets and bright triplets, whereas the

dark triplet has parallel eh spins. The bright states can couple

to the radiation field through the recombination and pair cre-

ation due to their odd total angular momenta, whereas the

dark states do not. However, in reality, the dark and the

bright states are mixed.10–12 Two dark states can turn into

two bright ones by exchanging their electrons or holes within

their proper quantum wells (the Pauli exchange).13

Therefore, there is always a weak bright component in the

ground state by which the photoluminescence experiments

can be made. Until recently, these experiments have been

inconclusive in probing the EC due to the weakness of the

bright contribution.14 Recently, a clear evidence was estab-

lished15 by the observation of the interference fringes due to

the condensate’s macroscopic wavefunction.
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The condensation free energy (CFE) does not differenti-

ate between the dark and the bright components and hence,

offers a promising path in providing additional support to the

photoluminescence measurements.15 In these systems, the

CFE depends on the layer separation D through the conden-

sate’s order parameter. For smaller D, the attractive coupling

is stronger and the CFE is lower, pointing at an attractive

force between the electron and hole rich quantum wells. This

force, which we may coin as the EC-force, is driven by the

Coulomb interaction but is only present due to the conden-

sate. We address here three fundamental questions: (1) Can

we understand the analytic dependence of the EC-force on

the physical parameters?, (2) Is the EC-force measurable

under realistic conditions and current experimental accu-

racy?, and (3) If so, how can we measure it?

The microscopic Hamiltonian is our starting point given

in the eh basis ðêk"êk# ĥ
†

�k" ĥ
†

�k#Þ at a fixed momentum

k¼ (kx, ky) by

HD ¼
X

k

(
�kr0

�D
†

k

�Dk ��kr0

 !
þ �ð�Þk r0 � r0

)
; (1)

where r0 is the 2� 2 unit matrix, �Dk is the 2� 2 matrix

describing the self-consistent and spin dependent order

parameter Drr0 ðkÞ with r; r0 ¼ f"; #g as the spin indices,

�k ¼ ðnðeÞk þ nðhÞk Þ=2 and �
ð�Þ
k ¼ ðnðeÞk � nðhÞk Þ=2 are the single

particle energies in terms of the electron and hole single par-

ticle energies nðeÞk ¼ �h2k2=ð2meÞ � le and nðhÞk ¼ �h2k2=
ð2mhÞ � lh parameterized by the electron and the hole band

masses me, mh, and the respective chemical potentials le, lh.

We assume that me¼mh,
16 whereas allow, for now, an

imbalance between their concentrations. We have then,

�
ð�Þ
k ¼ �l� where l�¼ (le� lh)/2.

The order parameter in Eq. (1) is given by

Drr0 ðkÞ ¼ �
1

2A

X
k0

Vehðk� k0Þhê†
k0rĥ

†

�k0r0 i; (2)

where A is the sample area and VehðqÞ ¼ �e�q De2=ð2eqÞ is

the Fourier transform of veh(r) with q ¼ jk� k0j as the

eh exchange momentum. The pairing strength is hê†
krĥ

†

�kr0 i
¼ Drr0 ðkÞ=ð2EkÞ½fþðkÞ � f�ðkÞ� and f�ðkÞ ¼ 1=ð1þ ebk�;kÞ
is the Fermi-Dirac factor with b ¼ 1=kBT, with T as the

temperature. The energy bands of Eq. (1) are time reversal

degenerate,10,12 with � ¼ ðþ;�Þ denoting the doubly degen-

erate upper and the lower excitonic branches. Here,

k�;k¼ �ð�Þk þ �Ek are the eigenenergies, Ek ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2

k þ D2
k

q
and

Dk ¼ ðjD""j2 þ jD"#j2Þ1=2
.

Equation (2), together with the self energies, constraints

on the particle number conservation and the coupling of the

bright states to the radiation field, have been numerically

solved in Ref. 12 with an observation that the radiation field

strongly suppresses the bright contribution, i.e., jD"#j �
jD""j which implies that the condensate is dominated by the

dark states, i.e., Dk ’ jD""ðkÞj ¼ jD##ðkÞj.
The second observation was the presence of a sharp phase

boundary determined by nx, n�, and D between the condensed

phase and the incoherent excitonic liquid determined by

DkðT; nx; n�;DÞ ¼ 0. At T¼ 0, the numerical solution of Dk

resembles the shape of an inverted parabola (Fig. (3) in Ref. 12)

as a function of Dc�D near D ’ Dc where Dc is the critical

layer separation for fixed nx and n�. Our first goal here is to

understand this behavior analytically and calculate the CFE

from which an analytic expression is obtained for the EC-force.

The CFE is given by DX ¼ XD � X0 � 0. Here, XD and

X0 are the total free energies in the condensed and the

uncondensed phases, respectively. In an EC, we observe two

types of dependence on D. The first is the critical thermal

fluctuations of the condensate near Tc. This term is sup-

pressed if T � Tc. The second dependence on D arises from

Dk which is essential for the results in this work. On the

other hand, the electron and hole self energies are driven by

D-independent interactions.

The EC-force is given by

FEC ¼ �
X

k

dDX
dDk

@Dk

@D
; (3)

where XD, up to a Dk independent constant, is

XD ¼
X
�;k

�f�ðkÞ
D2

k

ð2EkÞ
� @

@b
lnð1� f�ðkÞÞ

( )
: (4)

Equation (4) reduces, at T¼ 0 and �
ð�Þ
k ¼ 0, to the standard

expression XD ¼ �
P

kfD
2
k=ð2EkÞ þ Ekg.

In the light of the previous discussions and at T¼ 0,

Eq. (2) reduces to a single gap equation12

Dk ¼ �
pe2

e

ð
dq

ð2pÞ2
e�q D

q
Gkþq; (5)

where Gk ¼ Dk Fk=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�k � lxÞ2 þ D2

k

q
and

lim
k!0

Fk ¼
1 for D2

0 þ l2
x < l2

�
�1 for D2

0 þ l2
x > l2

�
:

(
(6)

The first case in Eq. (6) is allowed when there is a high eh

imbalance, indicated by a sufficiently large l�. In this case,

no non-zero solution of Eq. (5) exists, which is consistent

with Ref. 12. If l� is weak or zero, a nonzero solution is

allowed by the lower case in Eq. (6). Considering l�¼ 0 the

particle number conservation becomes

nx ¼
1

A

X
k

1� �k

Ek

� �
; (7)

which determines lx. An exact solution of Eqs. (5) and (7) is

not possible due to the presence of the momentum dependent

interaction Veh(q). Our motivation here is to resort to a

proper approximation which can be done near the phase

boundary. We also show below that this solution reproduces

the basic results of Ref. 12.

The exponential term e�qD in Eq. (5) hints for a proper

approximation implying that the leading contribution comes

from q� 1=D. Expanding Gkþq up to second order in q near

q¼ 0, we have Gkþq ’ Gk þrkGk:qþ G
00
kq2=2. Here, G

00
k is
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the second derivative of Gk þq at q¼ 0. In both expansions,

the first order terms in momentum are absent due to the angu-

lar symmetry. Using these in Eq. (5), we have a self consis-

tency condition for D0 ¼ Dkjk¼0 and D
00

0 ¼ D
00

kjk¼0 given by

D0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2

0 � l2
x

q
; D

00

0 ¼ �
D0

lx

�h2

m
; E0 ¼

e2

2eD
; (8)

yielding Dk ¼ �D0�k=lx. The quasiparticle eigenenergies

can then be simply expressed as Ek ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2

k þ D2
k

q
¼ E0j�kj=lx. Equation (8) is an indication that the model can

reproduce the sharp phase boundary with the critical layer

separation D¼Dc given by Dc ¼ e2=ð2elxÞ where, using the

parabolic approximation in Eq. (7)

lx ¼ �
E0

2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E0

2

� �2

þ E0nx

C

s
; (9)

with C ¼ mx=ð2p�h2Þ being the two-dimensional density of

states with mx as the exciton reduced mass. Eqs. (8) and (9)

can be used to find DX in Eq. (4). Expansion of Eq. (8) near

D¼Dc yields the sharp phase boundary as

D0 ’ a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� D

Dc

r
with a ¼

ffiffiffi
4

3

r
E0 ; (10)

which is valid for D � Dc. The DX given by Eq. (4) can be

found similarly using Eqs. (8) and (9) as

DX ¼ � C
E0

lx l2
x þ

3

2
D2

0

� �
� l3

0

� �
; D � Dc ; (11)

where l0 ¼ nx=2C is the chemical potential lx evaluated at

the phase boundary D0¼ 0. Using Eqs. (9) and (10), Eq. (11)

can be represented at the phase boundary as

DX ¼ �3Cl2
0 1� D

Dc

� �
; D ’ Dc; (12)

predicting a linear dependence with respect to D (DX ¼ 0

for Dc < D). A comparison between Ref. 12 in the vicinity

of the phase boundary and Eqs. (10) and (12) are shown

in Fig. 1. The accuracy of the parabolic approximation in

capturing the main features of the numerical calculations in

Ref. 12 is quite remarkable. Encouraged by this, now we

proceed to the main result of our work, i.e., finding the

EC-force. Using Eq. (12) in Eq. (3) we find that

FEC

A
’ � 3

4

n2
x

CDc
; D ’ Dc (13)

with FEC ¼ 0 for Dc < D. The Eq. (8) yields Dc as

aB

Dc
¼ 2el0aB

e2
¼ nxa2

B

2
: (14)

For a sample size of A ’ 103lm2 and a typical concentra-

tion of nx ’ 3� 1011 cm�2, the EC-force is FEC ’ 10�9 N

which is quite measurable within experimentally available pre-

cision. However, there is always the static Coulomb force

present independently from the condensate. One can compare

FEC in the condensed phase with the Coulomb force FC

between the quantum wells. Using Eq. (13) and FC ¼ e2

n2
xA=e we have

FEC

FC
¼

3aB=ð8DcÞ for Dc > D;

0 for Dc < D:

(
(15)

Considering D ’ 100 Å and nx ’ 3� 1011 cm�2, the two

different regimes in Eq. (15) can be controlled by varying nx.

Note that FC / n2
x , whereas FEC / n3

x .

Here, we propose experiments for the measurement of

FEC. Due to the dielectric between the quantum wells, the

direct measurement is more challenging than measuring the CF

between two metal plates in vacuum. Recently, Yamaguchi,

Okamoto, Ishihara, and Hirayama have detected17 the motion

of a micromechanical oscillator with an amplitude on the order

of 50 nm. Upon this work, we use the EC-force as the driver of

the micromechanical oscillator as shown in Fig. 2.

In order to measure FEC one has to subtract the FC as

well as the external electric (E)-field.18 For this, we use a

FIG. 1. Comparison of Ref. 12 with Eqs. (10) and (12) as D is varied near

Dc. The main figure depicts D0=EH and the inset is DX=EH , where EH ¼
e2=ð4peaBÞ and aB ¼ �h24pe=ðe2mxÞ. (The numerical solution includes the

self energies as well as their realistically different masses.)

FIG. 2. The proposed mechanical resonator for the EC-force measurement via

an interferometer and a DD laser. Here, (a) is the general set-up with physical

dimensions, and (b) magnified view of the cross section with two DQWs.
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two DQW geometry and that FC ¼ e2n2
xA=ð2eÞ as well as

the external force F ext ¼ eEext are independent of D.19

Specifically, two DQWs with slightly unequal layer separa-

tions Du 6¼ Dd are grown on either side of the neutral plane

of the cantilever in Fig. 2. The Du, Dd, and nx are arranged

such that one DQW is driven into the condensed phase, i.e.,

Dd=Dc ¼ 1� d, whereas the other is not, i.e., Du=Dc ¼ 1

þ d, where 0 < d� 1. The DQWs are driven by the same

pump laser and are subject to the same external E-field.

Using slightly different well widths, the exciton lifetime

hence the equilibrium populations in both wells can be made

comparable.20 In this geometry, the FC as well as F ext in

both DQWs are also comparable, whereas, the lower DQW

has a nonzero FEC creating a net bending stress on the canti-

lever and driving the cantilever’s motion as shown below.

Although static measurements can be performed with ac-

ceptable accuracy, the measurement of the periodically driven

oscillations of the cantilever is more promising. A typical can-

tilever oscillator17 can be driven with a power consumption

P ¼ mef f X
3
0Dz2

rms=Q ’ 2� 10�15J=s, where Dzrms is the rms

vibrational amplitude, mef f ’ 10�10 kg is the effective mass of

the cantilever, X0=ð2pÞ ’ 20 kHz is the resonance frequency,

and Q ’ 2:5� 105 is the quality factor of the resonator. In

Fig. 2(a), geometry at resonance, and for nx¼ 3� 1011 cm�2,

this leads to Dzrms ’ 50 nm. Oscillations within these ampli-

tude and frequency ranges have been measured in Ref. 17.

The deflection angle DH can then be measured using a

deflection-detection (DD) laser and an optical interferometer.

We can estimate it21 as DH ’ LxLyFEC=ð12EIÞ, where E is

the Young’s modulus and I ’ LyW3=3 is the second area

moment. Using E ’ 80 GPa for GaAs and FEC ’ 10�9 N for

nx¼ 3� 1011 cm�2, we find that22 DH ’ 3� 10�4rad.

The created electrons and holes reach thermal equilib-

rium with the lattice within a few ns. A typical driving pulse

in mechanical resonance with the cantilever is 10–20 kHz

which is much shorter than the lattice thermalization time

and much longer than the exciton lifetime avoiding the heat-

ing effects. The resulting resonant amplitude, with the qual-

ity factor Q ’ 2:5� 105 as in Ref. 17, turns out to be about

50 nm as given above.

One should also be aware of another secondary effect,

i.e., the photon force exerted by the DD-laser in Fig. 2. If a

mW range, 600 nm wavelength is used for the DD-laser, a

simple calculation shows that about 10�11 N photon force

would be exerted on the cantilever at normal incidence

which can be reduced by another 102 times using a wide

angle of incidence. The oscillations of the cantilever are

however unaffected by this constant force.

In conclusion, the EC created in a DQW, gives rise to a

force that is not known yet in other condensed matter sys-

tems. Its existence is supported by the recent conclusive

observations of EC.15 The EC-force, naturally reminds the

Casimir effect due to the vacuum fluctuations of the electro-

magnetic radiation, but its origin is Coulombic although it

conceptually differs from the Coulomb force. In the Casimir

effect, the driving mechanism is the dependence of the pho-

ton density of states on the boundary conditions, whereas in

the EC, it is the specific exponential dependence of the

Coulomb coupling on the layer separation D. As a result, the

EC-force depends on the properties of the condensate. In

particular, the 1/D dependence in Eq. (13) is in contrast with

the 1/D4 dependence of the CF.

Finally, we hope that this work can stimulate research in

a broader conceptual perspective where a force due to a

quantum condensate can be investigated.

The authors are grateful to K.-J. Friedland (Paul-Drude

Institute) and A. Dâna (UNAM, Bilkent University), and

Nai-Chang Yeh (Caltech) for useful discussions.
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