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Decentralised rate-based flow controller design in multi-bottleneck data-communication networks is considered.
An H1 problem is formulated to find decentralised controllers which can be implemented locally at the
bottleneck nodes. A suboptimal solution to this problem is found and the implementation of the decentralised
controllers is presented. The controllers are robust to time-varying uncertain multiple time-delays in different
channels. They also satisfy tracking and weighted fairness requirements. Lower bounds on the actual stability
margins are derived and their relation to the design parameters is analysed. A number of simulations are also
included to illustrate the time-domain performance of the proposed controllers.
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1. Introduction

A modern communication network is expected to

provide fast transmission with minimum loss. While

guaranteeing the users such reliability, the resources of

the network, such as buffers, bandwidth, etc., should

be used efficiently. This resource management problem

can be solved by controlling the traffic on the network;

that is, using flow and congestion control mechanisms.
Congestion may cause long queueing delays and

cell losses. It may be avoided by preventing the users

from transmitting at rates faster than the rates allowed

by the network. The congestion control mechanisms

that use the rate at which the user should transmit as

the feedback information are called rate-based

(Bonomi and Fendick 1995) and the ones that use

the window size, which is the number of packets that

must be sent in a round trip time, as the feedback

information are called window-based (Floyd 1994;

Kung and Morris 1995; Kunniyur and Srikant 2000).

Although window-based control is widely used for

end to end congestion control in TCP/IP networks,

rate-based control is preferred for edge to edge

control in newer generation networks (Mascolo 2000;

Laberteaux, Rohrs and Antsaklis 2002).
When the controller design for flow or

congestion control mechanisms is considered, the

main difficulty is that there exist relatively large

transmission and propagation delays in high-speed

networks (delay-bandwidth product is large). It

should also be considered that these time-delays are

usually uncertain and time-varying. Since there is

usually more than one source connected to a bottleneck

node, these time-delays are multiple. In the literature,

there are many papers dealing with flow and congestion

control in communication networks and many

approaches to the flow controller design problem have

been presented. In Altman, Bas� ar and Srikant (1997),

flow is controlled by the users and for the case of a team

situation, a suboptimal control policy has been derived.

In BenMohamed and Meerkov (1993), a congestion

control algorithm is presented for single bottleneck

networks and both adaptive and robust controllers are

designed and some simulation results are given. The

control algorithm in that work has been extended to the

multiple bottleneck case in BenMohamed andMeerkov

(1997). Other rate-based controller design approaches

have been proposed in Ohsaki, Murata, Suzuki, Ikeda

and Miyahara (1995a,b), Mascolo and Cavendish

(1996), Floyd, Handley, Padhye and Widmer (2000),

Mascolo (2000), Laberteaux, et al. (2002), Cavendish,

Gerla and Mascolo (2004), among others.
In all the congestion controller design methods

mentioned above, however, it is either assumed
that there is no time-delay or that the time-delays

are time-invariant. Time-varying uncertainties in

the time-delays have explicitly been considered in
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Quet et al. (2002) and, using H1 control methods, a
rate-based flow controller, robust to uncertain time-
varying multiple time-delays in different channels, has
been designed. However, in that work, only the single-
bottleneck case has been considered. The multi-bottle-
neck case was considered in Biberović, _Iftar and Özbay
(2001), where it was shown that decentralised flow
controllers can be designed to solve the same problem
in this case. The controller derivation, however, was
not given in Biberović et al. (2001). The derivation of
the controllers, for this case, has been shown and their
implementation has been presented in Munyas, Yelbas� i
and _Iftar (2003). Robustness of these controllers has
been analysed in Munyas and _Iftar (2005a). In
Biberović et al. (2001), Munyas et al. (2003) and
Munyas and _Iftar (2005a) it was assumed that each
bottleneck node acts as a virtual source for the next
bottleneck node on the path of a connection. The case
when only the data sending rates of the actual sources
are controlled was later considered in Munyas and
_Iftar (2005b).

In the present work, for the problem considered in
Biberović et al. (2001) and Munyas et al. (2003),
a parametrisation of the controllers to be implemented
at the bottleneck nodes is given. Besides robustness,
weighted fairness and tracking are also considered as
design objectives. The design and implementation of
the proposed controllers are demonstrated. Robustness
of the controllers is also analysed using stability
margins and a number of simulations are presented
to show the time-domain performance of the proposed
controllers in certain realistic cases. The actual
contribution of the present work is in extending the
results of Quet et al. (2002) to the multi-bottleneck
case. To the authors’ best knowledge, except for
Biberović et al. (2001), Munyas et al. (2003) and
Munyas and _Iftar (2005a,b), this is the first work which
considers design of flow controllers which are robust to
time-varying uncertainties in time-delays in the case of
multiple bottleneck nodes.

Besides data-communication networks, the mathe-
matical model considered in the present work appears
in many other engineering applications, such as
material transport systems (e.g. oil or gas pipelines,
where simplified models of flow are used) and
manufacturing systems, where continuous flow of
parts to be processed can be seen as data flow.
In this sense, the contribution of the present work is
not restricted to data-communication networks.
In fact, decentralised flow controller design approach
presented here may be extended to any interconnected
multivariable integrating system with time-delays,
which may be uncertain and time-varying.

The organisation of this paper is as follows: in x 2,
we consider the mathematical model of the

multi-bottleneck system and the design problem of
decentralised flow controllers; an H1 optimisation
problem is considered in x 3, where the resulting
decentralised controllers and their implementation are
also presented; in x 4, the problem of fairly allocating
the steady-state bandwidth to the users is considered
and weighted fairness coefficients are obtained.
The lower bounds for the actual stability margins for
the uncertainties in the multiple time-delays and for the
rate of change of the time-delays are derived in x 5 and
their relation to the design parameters is analysed; x 6
contains a number of simulations that present the time-
domain performance of the controllers; concluding
remarks are made in the last section.

2. Problem statement

2.1 Network model

In this work, as in Biberović et al. (2001), we consider a
network which consists of n bottleneck nodes and ni
sources directly (in the sense that there are no other
bottlenecks on the path from that source to that
bottleneck; there may however exist other nodes which
are not bottlenecked) feeding the ith bottleneck node.
Note that, if any physical source sends data to more
than one bottleneck node, this source may be
considered as a different source for each bottleneck
node for the purpose of controller design. We also
assume that, besides the sources, each bottleneck can
also send data through other bottlenecks; i.e., each
bottleneck is also a ‘virtual source’ for the next
bottleneck on its path. Each bottleneck calculates not
only the sending rates of its sources, but also the
sending rates of the other bottlenecks which directly
feed itself. Figure 1 shows the network for the case
when there are two bottleneck nodes.

In a data-communication network, data packets
are handled individually, and hence, data flow consists
of discrete entities. For the purpose of controller
design, however, we will use a continuous flow model.
Such a model is often used by many researchers (e.g.,
see Chapters 5 and 6 of Srikant (2004) and references
therein) and is usually named as a fluid-flow model.
While running simulations in x 6, however, we will use
a more realistic discrete model and show that a
controller based on a fluid-flow model can also work
well when the actual flow is discrete.

The dynamics of the queue length at the ith
bottleneck node in our fluid-flow model are
described as

_qi tð Þ ¼
Xni
j¼1

rbi, j tð Þ þ
Xn

k¼1, k 6¼i

�bk, i tð Þ � ci tð Þ �
Xn

k¼1, k 6¼i

�si,k tð Þ,

ð1Þ
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where

qi (t) is the queue length at the ith bottleneck
node at time t (i¼ 1, 2, . . . , n),

rbi, jðtÞ is the rate of data received at the ith
bottleneck node from the jth source of the
ith bottleneck node at time t (i¼ 1, 2, . . . , n,
j¼ 1, 2, . . . , ni),

�bk, iðtÞ is the rate of data received at the ith
bottleneck node at time t from the

kth bottleneck node (i¼ 1, 2, . . . , n,

k¼ 1, 2, . . . , n, i 6¼ k),

ci (t) is the outgoing flow rate, except for the

flow going to the other bottleneck nodes, of

the ith bottleneck node at time t

(i¼ 1, 2, . . . , n), and

�si, kðtÞ is the rate of data sent from the ith to the kth

bottleneck node at time t (i¼ 1, 2, . . . , n,

k¼ 1, 2, . . . , n, i 6¼ k).

Figure 1. Network model for the two bottleneck node case.
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The round-trip delay at time t for the flow from the jth

source of the ith bottleneck node to the ith bottleneck
node is given as

�i, jðtÞ ¼ �
b
i, jðtÞ þ �

f
i, jðtÞ ¼ hri, j þ �

r
i, jðtÞ,

where hri, j is the time-invariant nominal part and �ri, jðtÞ
is the time-varying uncertain part. Similarly, the
round-trip delay at time t for the flow from the ith to

the kth bottleneck node is given as

�i, kðtÞ ¼ �
b
i, kðtÞ þ �

f
i, kðtÞ ¼ h�i, k þ �

�
i, kðtÞ,

where h�i, k is the time-invariant nominal part and ��i, kðtÞ
is the time-varying uncertain part. In these terms,

�bi, jðtÞ :¼ hrbi, j þ �
rb
i, jðtÞ represents the backward

time-delay from the control-
ler implemented at the ith
bottleneck node to the jth

source of the ith bottleneck
node (the time-delay which
occurs between the time a

command signal for a rate is
issued and the actual time
this rate is set) where hrbi, j is
the nominal time-invariant

known backward delay and
�rbi, jðtÞ is the time-varying
backward time-delay

uncertainty,
�fi, jðtÞ :¼ hrfi, j þ �

rf
i, jðtÞ represents the forward time-

delay from the jth source of
the ith bottleneck node to the
ith bottleneck node (the time-

delay which is required
for the data to reach the
bottleneck node) where hrfi, j
is the nominal time-invariant

known forward delay and
�rfi, jðtÞ is the time-varying for-
ward time-delay uncertainty,

�bi, kðtÞ :¼ h�bi, k þ �
�b
i, kðtÞ represents the backward

time-delay from the control-

ler at the kth bottleneck node
to the ith bottleneck node
where h�bi, k is the nominal

time-invariant known back-
ward delay and ��bi, kðtÞ is the
time-varying backward time-
delay uncertainty,

�fi, kðtÞ :¼ h�fi, k þ �
�f
i, kðtÞ represents the forward time-

delay from the ith bottleneck
node to the kth bottleneck
node where h�fi, k is the nom-
inal time-invariant known

forward delay and ��fi, kðtÞ is

the time-varying forward

time-delay uncertainty.

To determine rbi, jðtÞ in (1), the total amount of data

received at the ith bottleneck node from its jth source is

written as follows (Quet et al. 2002):

Z t

0

rbi, j �ð Þd� ¼

R t��f
i, j

tð Þ

0 rsi, j ’ð Þd’, t� �fi, j tð Þ � 0

0, t� �fi, j tð Þ5 0,

8<
:

ð2Þ

where

rsi, jðtÞ is the rate of data sent from the jth source

of the ith bottleneck node at time t

(i¼ 1, 2, . . . , n, j¼ 1, 2, . . . , ni).

Similarly, to determine �bk, iðtÞ in (1), the total amount

of data received at the ith bottleneck node from the kth

bottleneck node is written as,

Z t

0

�bk, i �ð Þd� ¼

R t��f
k, i

tð Þ

0 �sk, i ’ð Þd’, t� �fk, i tð Þ � 0

0, t� �fk, i tð Þ5 0:

8<
:

ð3Þ

Since there is a time-varying backward time-delay,

�bk, iðtÞ, between the ith and the kth bottleneck nodes,

we have �sk, iðtÞ ¼ �k, iðt� �
b
k, iðtÞÞ, where

�k,i(t) is the flow rate command at time t for the

flow from the kth to the ith bottleneck node

(i¼ 1, 2, . . . , n, k¼ 1, 2, . . . , n, i 6¼ k), which

must be computed (by the controller to be

designed) at the ith bottleneck node.

Similarly, since there is a time-varying backward time-

delay, �bi, jðtÞ, between the ith bottleneck node and its jth

source, rsi, jðtÞ ¼ ri, jðt� �
b
i, jðtÞÞ, where

ri,j(t) is the flow rate command at time t for the

flow from the jth source of the ith bottle-

neck node to the ith bottleneck node

(i¼ 1, 2, . . . , n, j¼ 1, 2, . . . , ni), which must

be computed (by the controller to be

designed) at the ith bottleneck node.

Taking the derivatives of both sides of (2) and (3), the

data receiving rates at the ith bottleneck node from its

jth source, rbi, jðtÞ, and from the kth bottleneck node,

�bk, iðtÞ, can be found as

rbi, jðtÞ ¼
ð1� _�rfi, jðtÞÞri, jðt� �i, jðtÞÞ, t� �fi, jðtÞ � 0

0, t� �fi, jðtÞ5 0,

(

ð4Þ
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and

�bk, iðtÞ ¼
ð1� _��fk, iðtÞÞ�k, iðt� �k, iðtÞÞ, t� �fk, iðtÞ � 0

0, t� �fk, iðtÞ5 0:

(

ð5Þ

It is assumed that the uncertainties satisfy the

following:

�ri, jðtÞ
��� ���5 �rþi, j ,

_�ri, jðtÞ
��� ���5�ri, j,

_�rfi, jðtÞ
��� ���5�rfi, j, ð6Þ

�pi, kðtÞ
��� ���5 ��þi, k , ��bi, kðtÞ

��� ���5 ��bþi, k , _��i, kðtÞ
��� ���5��i, k,

_��fi, kðtÞ
��� ���5��fi, k,

_��bi, kðtÞ
��� ���5��bi, k,

ð7Þ

for all t, for some known bounds �rþi, j 4 0, 05
�rfi, j 5�ri, j 5 1, 05 ��bþi, k 5 ��þi, k , 05��fi, k,�

�b
i, k 5 ��i, k 5 1

(i¼ 1, 2, . . . , n, j¼ 1, 2, . . . , ni, k¼ 1, 2, . . . , n, k 6¼ i). It

should be noted that, in a real application, there also

exist some hard constraints, such as non-negativity

constraints and upper bounds on the queue lengths and

on the data rates. In this work, for the purpose of

controller design, we will assume that these hard

constraints are always satisfied. We will, however,

consider such constraints in x 6, while running

simulations.

Remark 1: Besides the existence of mutiple bottle-

neck nodes (and hence multiple queues), the main

difference between the model used here and in Quet

et al. (2002) is the existence of flows between the

bottleneck nodes (i.e. the terms �bk, i and �si, k in (1)).

These flows cause a coupling between the bottleneck

nodes and must be explicitly considered in controller

design as done in x 3.

Remark 2: As mentioned in the introduction, the

present model can also be used in other flow control

problems, where flow can simply be modelled by,

possibly time-varying and uncertain, time-delays. For

example, in a gas transport system (where detailed

modelling, e.g., using Navier-Stokes equations, is not

found necessary, due to say almost constant pressure

in a pipe) the two bottleneck nodes in Figure 1 can

be considered as storage tanks. Forward delay lines

would represent pipelines of different lengths; back-

ward delays would indicate the communication delay

between a local controller (implemented at the site of

each storage tank) and the actuators (compressors

implemented at the start of each pipeline feeding that

storage tank) which adjust the flow rates. The

sources, on the other hand, could be the supply

reservoirs.

2.2 Control problem

The problem is to design decentralised controllers to be

implemented at each bottleneck node, to regulate the

queue length qi (t) at that node by determining the data

sending rates of the sources and the other bottleneck

nodes to that node. The desired queue length, qd,i, at

the ith bottleneck node is chosen to be some positive

value (typically half of the buffer size) so that the

outgoing link is not under-utilised.
As shown in Appendix A, the overall control

system can be represented as in Figure 2. In this figure,

K is the controller to be designed, Po is the nominal

plant, W21 and W22 are the weighting matrices, and

�o
LTV is an arbitrary linear time-varying system which

represents the uncertainties. Exact expressions for

Po(s), W21(s), and W22(s) are given in Appendix A.

The structure of �o
LTV is also given in Appendix A, and

it is shown that the L2-induced norm of �o
LTV, k�

o
LTVk,

is less than 1.
By using the small gain theorem (Zhou, Doyle

and Glover 1995), the closed-loop system shown in

Figure 2 is robustly stable for all k�o
LTVk5 1 if K

stabilises Po and

W22K Iþ PoKð Þ
�1W21

�� ��
1
� 1 ð8Þ

is satisfied, where k�k1 denotes the H1 norm and I

denotes the identity matrix. Using the fact that

WT
22W22 ¼ P̂TP̂ ¼ I (see Appendix A for W22 and P̂),

W22K Iþ PoKð Þ
�1W21

�� ��
1
¼ P̂K Iþ PoKð Þ

�1W21

��� ���
1

ð9Þ

is obtained. On the other hand, using the definition of

W21 (see Appendix A), (9) can be bounded above by

P̂K Iþ PoKð Þ
�1W21

��� ���
1
� �P̂K Iþ PoKð Þ

�1
��� ���

1
,

Figure 2. Overall control system.
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where �ðsÞ :¼ ð1=sÞ�1 þ �2, with �1 :¼maxi (�i,1) and

�2 :¼maxi (�i,2), where

�i, 1 :¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXni
j¼1

eri, j,1

� �2
þ2

Xn
k¼1, k6¼i

e�k, i,1

� �2
þ2

Xn
k¼1, k6¼i

e�bi,k,1

� �2vuut ,

ð10Þ

�i, 2 :¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXni
j¼1

eri, j,2

� �2
þ2

Xn
k¼1, k6¼i

e�k, i,2

� �2
þ2

Xn
k¼1, k6¼i

e�bi,k,2

� �2vuut ,

ð11Þ

where eri, j, l, e
�
k, i, l, and e�bi, k, l (l¼ 1, 2) are parameters that

depend on the bounds given in (6)–(7) and are

defined in Appendix A. Thus, conservatively, (8) is

satisfied if

�P̂K Iþ PoKð Þ
�1

��� ���
1
� 1: ð12Þ

Next, as in Quet et al. (2002), to guarantee tracking

(limt!1 qi(t)¼ qd,i) and good transient response, we

formulate the problem

minimise W1 Iþ PoKð Þ
�1

�� ��
1

ð13Þ

over all controllers K stabilising Po, where

W1ðsÞ :¼ ð1=s
2Þ.

Remark 3: Note that, Figure 2 resembles to

Figure 2 in Quet et al. (2002). However, besides

the fact that both Po and K are multi-input multi-

output in the present case (Po is single-output and K

is single-input in Quet et al. (2002)), the structures of

�o
LTV and W21 are different. Furthermore, a new

block, W22, is needed from u to z in the present case.

These differences make the controller design more

involved compared to Quet et al. (2002), as will be

seen in the next section.

3. The H
1

optimisation problem and controller

design

Combining the robust stability, (12), and nominal

performance, (13), conditions, we define the following

two-block H1 optimisation problem:

inf
K stabilising Po

W1 Iþ PoKð Þ
�1

�P̂K Iþ PoKð Þ
�1

" #�����
�����
1

¼: 	opt: ð14Þ

To find a solution to this problem, in Appendix B,

following some transformations we decompose the

problem into a number of subproblems, each of

which involves a single delay. Then, using the

results of Quet et al. (2002), and some transformations

(see Appendix B), we obtain the following suboptimal

controller to solve the optimisation problem (14):

K ¼
K̂rffiffiffi
2
p

K̂�

" #
, ð15Þ

where

K̂r ¼

Kr
11

..

.
0

Kr
1n1

. .
.

Kr
n1

0 ..
.

Kr
nnn

2
666666666666666664

3
777777777777777775

and

ffiffiffi
2
p

K̂� ¼

K�21

..

.
0

K�n1

. .
.

K�1n

0 ..
.

K�
ðn�1Þn

2
666666666666666664

3
777777777777777775

,

where

Kr
i, j ¼

Cr
i, j

1þCr
i, jP

r
i, j

�
1�

Xni
k¼1


ri,k
Cr

i,kP
r
i,k

1þCr
i,kP

r
i,k

�
Xn

k¼1,k 6¼i


�k, i
C�k, iP

�
k, i

1þC�k, iP
�
k, i

�
Xn

k¼1,k 6¼i


�bi,k
C�bi,kP

�b
i,k

1þC�bi,kP
�b
i,k

��1
,

ð16Þ

K�j, i ¼

ffiffiffi
2
p

C�j, i
1þC�j, iP

�
j, i

�
1�

Xni
k¼1


ri,k
Cr

i,kP
r
i,k

1þCr
i,kP

r
i,k

�
Xn

k¼1,k 6¼i


�k, i
C�k, iP

�
k, i

1þC�k, iP
�
k, i

�
Xn

k¼1,k 6¼i


�bi,k
C�bi,kP

�b
i,k

1þC�bi,kP
�b
i,k

��1
:

ð17Þ

Here, Pr
i, kðsÞ :¼ ð1=


r
i, ksÞe

�hr
i, k
s, P�k, iðsÞ :¼ ð

ffiffiffi
2
p
=
�k, isÞe

�h�
k, i
s,

and P�bi, kðsÞ :¼ ð
ffiffiffi
2
p
=
�bi, ksÞe

�h�b
i, k
s is the nominal plant for

the subproblem with delay hri, k, h
�
k, i, and h�bi, k, respec-

tively. Furthermore, C�i, k, is the optimal controller for

the subproblem with the nominal plant P�i, k, where

superscript . represents r, �, or �b, and is given by (42).
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The design parameters 
�i, ks are positive numbers

satisfying

Xni
l¼1


ri, l þ
Xn

l¼1, l 6¼i


�l, i þ
Xn

l¼1, l6¼i


�bi, l ¼ 1 ð18Þ

for all i¼ 1, . . . , n. In the next section, we will show

that these parameters can be used in allocating the

steady-state bandwidth to the users fairly.
As seen from (15), the part of the controller for the

ith bottleneck node gets feedback only from qi to

regulate the queue length qi by determining the flow

rates ri,j, j¼ 1, . . . , ni, and �k,i, k¼ 1, . . . , n, k 6¼ i.

Therefore, the controller is composed of n decentra-

lised controllers:

Ki ¼
K̂r

iffiffiffi
2
p

K̂�i

" #
¼

Kr
i1

..

.

Kr
ini

K�1i

..

.

K�
ði�1Þi

K�
ðiþ1Þi

..

.

K�ni

2
6666666666666666666664

3
7777777777777777777775

, ð19Þ

each of which can be implemented at the correspond-

ing bottleneck node as shown in Figure 3. This

controller stabilises the nominal plant and makes the

H
1 norm of the matrix in (14) less than some ~	 (an

upper bound that can be found from the 	’s of the

subproblems). Thus, as long as the hard constraints are

satisfied, the controller stabilises the actual plant for all

variations of the time-delays satisfying j�ri, jðtÞj5
ð�rþi, j = ~	Þ, j _�ri, jðtÞj5 ð�

r
i, j= ~	Þ, j _�rfi, jðtÞj5 ð�

rf
i, j= ~	Þ, j��j, iðtÞj5 ð�

�þ
j, i = ~	Þ,

j��bi, jðtÞj5 ð�
�bþ
i, j = ~	Þ, j _��j, iðtÞj5 ð�

�
j, i= ~	Þ, j _��bi, jðtÞj5 ð�

�b
i, j= ~	Þ,

and j _��fj, iðtÞj5 ð�
�f
j, i= ~	Þ . A more detailed analysis of

stability margins in terms of the design parameters is

given in x 5.

4. Weighted fairness

To maximise the network utilisation while satisfying

the traffic contracts of the users, the bandwidth should

be allocated to the users fairly. It may, however, be

desired to assign different priorities to different sources

and other bottleneck nodes which send data to a

bottleneck node in the network. This can be done by

allocating the available bandwidth of any particular

bottleneck node to the users according to different

weights at the steady-state. To see what these weights

are, let us express the rate feedback signals as

uðsÞ ¼ KðsÞeðsÞ, ð20Þ

where u(s) is the Laplace transform of u(t), which is
given in (31) (with some abuse of notation, we will

use the same symbol for a time signal and its
Laplace transform), eðsÞ ¼ ½ e1ðsÞ � � � enðsÞ �

T is the
Laplace transform of e(t) :¼ qd� q(t), and qd :¼

½ qd, 1 � � � qd, n �
T is the vector of the desired queue

lengths, which are assumed to be constant. Using the
structure of the controller, given in (15), from (20) we

obtain

ri, jðsÞ ¼ Kr
i, jðsÞeiðsÞ, j ¼ 1, . . . , ni, ð21Þ

and

�k, iðsÞ ¼ K�k, iðsÞeiðsÞ, k ¼ 1, . . . , n, k 6¼ i, ð22Þ

for i¼ 1, . . . , n. Using the queue length dynamics given

in (1), the tracking error is obtained as follows:

eiðsÞ ¼ �
1

s

Xni
j¼1

rbi, jðsÞ þ
Xn

k¼1, k 6¼i

�bk, iðsÞ

 !

þ
1

s
qd, i þ ciðsÞ þ

Xn
k¼1, k6¼i

�si, kðsÞ

 !
: ð23Þ

It is known that rbi, jðtÞ and �
b
k, iðtÞ are respectively given

by (4) and (5). For the nominal plant, we have

�ri, jðtÞ ¼ �
rf
i, jðtÞ ¼ �

�
k, iðtÞ ¼ �

�f
k, iðtÞ ¼ 0. Hence, rbi, jðtÞ ¼

ri, jðt� hri, jÞ and �bk, iðtÞ ¼ �k, iðt� h�k, iÞ. Taking the
Laplace transform of these expressions and substitut-

ing (21) and (22) into (23) lead to

eiðsÞ ¼ sþ
Xni
j¼1

e�h
r
i, jsKr

i, jðsÞ þ
Xn

k¼1, k 6¼i

e�h
�
k, i
sK�k, iðsÞ

 !�1

�

	
qd, i þ ciðsÞ þ

Xn
k¼1, k 6¼i

e�h
�b
i, k
s�i, kðsÞ



:

Therefore, using this expression, together with (16),

(17), and (42), in (21) and (22), the steady-state values
of the rate feedback signals, limt!1 ri,j (t) and

limt!1�k,i (t), can be found as

lim
s!0

sri, jðsÞ ¼

ri, j
�
i

ci,1 þ
Xn

l¼1, l6¼i

�1i, l

 !
ð24Þ

and

lim
s!0

s�k, iðsÞ ¼

�k, i
�
i

ci,1 þ
Xn

l¼1, l6¼i

�1i, l

 !
ð25Þ

respectively. Here, �
i :¼
Pni

j¼1 

r
i, j þ

Pn
k¼1, k6¼i 


�
k, i,

ci,1 :¼ limt!1 ci(t)¼ lims!0 sci(s), and �1i, l :¼ limt!1

�i, lðtÞ ¼ lims!0 s�i, lðsÞ. In this way, the available
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bandwidth at the ith bottleneck node can be allocated

to the users by using the design parameters 
ri, js and


�k, is. Therefore, as in the single bottleneck case

Quet, et al. (2002), these parameters can be regarded

as fairness weights.
The steady-state values of the rate feedback signals

can also be obtained in terms of ci,1s alone, as shown

in Appendix C.

5. Stability margins

For the closed-loop system shown in Figure 2 to be

robustly stable for all k�o
LTVk5 1,K should stabilise Po

and (8) should be satisfied. Let �W :¼ diagð�1, . . . , �nÞ,
where �iðsÞ :¼ ð1=sÞ�i, 1 þ �i, 2 with �i,1 and �i,2 are as

given in (10) and (11), respectively, for all i¼ 1, . . . , n.

Then, using WT
22W22 ¼ P̂TP̂ ¼ I and W21W

	
21 ¼

�W �W	,

it can be shown that (8) and

P̂K Iþ PoKð Þ
�1 �W

��� ���
1
� 1 ð26Þ

are equivalent. Thus, if the following inequalities are

satisfied, robust stability of the system is guaranteed

(see Munyas and _Iftar (2005a), for details):

Xni
j¼1

er,acti, j, 1

� �2
þ

Xn
k¼1,k6¼i

e�,actk, i, 1

� �2
þ

Xn
k¼1,k6¼i

e�b,acti,k, 1

� �2( )

�
1

~	i
2

Xni
j¼1

eri, j, 1

� �2
þ

Xn
k¼1,k6¼i

e�k, i, 1

� �2
þ

Xn
k¼1,k6¼i

e�bi,k, 1

� �2( )

ð27Þ

Figure 3. Implementation of the controller Ki.
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and

Xni
j¼1

er,acti, j, 2

� �2
þ

Xn
k¼1,k6¼i

e�,actk, i,2

� �2
þ

Xn
k¼1,k6¼i

e�b,acti,k, 2

� �2( )

�
1

~	i
2

Xni
j¼1

eri, j, 2

� �2
þ

Xn
k¼1,k6¼i

e�k, i,2

� �2
þ

Xn
k¼1,k6¼i

e�bi,k,2

� �2( )

ð28Þ

for i¼ 1, . . . , n, where ~	i is as given in (40). Here, the

actual stability margin for e�i, k, l is denoted by e�, acti, k, l ,

where the superscript . represents r, �, or �b. It is seen
that the lower bounds for the actual stability margins

for each bottleneck node can be calculated indepen-

dently from the other bottleneck nodes. Since the

number of sources and the number of other bottleneck

nodes connected to a bottleneck node may be greater

than 1, the inequalities in (27) and (28) lead to infinitely

many solutions for the lower bounds and any one of

the solutions will provide robust stability of the system.
To observe the effects of the uncertainty bounds

used in the controller design, the lower bounds on the

actual stability margins satisfying (27) and (28) are

depicted for a number of example cases. To do this,

first, the following terms are defined:

er, acti, l :¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXni
j¼1

er, acti, j, l

� �2vuut , e�, acti, l :¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
k¼1, k 6¼i

e�, actk, i, l

� �2vuut ,

e�b, acti, l :¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
k¼1, k 6¼i

e�b, acti, k, l

� �2vuut ,

where i¼ 1, . . . , n and l¼ 1, 2. Here, er, acti, 1 gives a

measure for the actual stability margin relating to the

rate of change of �ri, jðtÞ, e
�, act
i, 1 gives a measure for the

actual stability margin relating to the rate of change of

��k, iðtÞ, and e�b, acti, 1 gives a measure for the actual

stability margin relating to the rate of change of

��bi, kðtÞ, j¼ 1, . . . , ni, k¼ 1, . . . , n, k 6¼ i. Similarly, er, acti, 2 ,

e�, acti, 2 , and e�b, acti, 2 give a measure for the actual stability

margin relating to the magnitude of the respective

variables. Thus, to observe the effect of the

uncertainty bounds on the actual stability margins,

e�, acti, l s are calculated and depicted for a number of

example cases.
Due to space limitations only one example case is

included here. Further cases may be found in Munyas

and _Iftar (2004, 2005a). Here, the network shown in

Figure 4, which has three bottleneck nodes (N1,N2,

and N3) with n1¼ 2, n2¼ 3, and n3¼ 4, is considered.

The nominal time-delays and design parameters

used are given in Tables 1 and 2, respectively (since

hrfi, j ¼ hri, j � hrbi, j and h�fi, j ¼ h�i, j � h�bi, j , h
rf
i, j and h�fi, j are not

shown in Table 1). In the calculation of the actual

stability margins, only two parameters for each
bottleneck node are changed because it is easy to
visualise the effects of the bounds in 3D-plots. For the
1st bottleneck node, �r1, 1 and �rþ1, 1 are changed from
0.001 to 0.999 and from 0.001 to 3.5, respectively; for
the 2nd bottleneck node, ��1, 2 and ��þ1, 2 are changed
from 0.001 to 0.999 and from 0.001 to 4, respectively;
and for the 3rd bottleneck node, ��b3, 2 and ��bþ3, 2 are
changed from 0.001 to 0.999 and from 0.001 to
3, respectively. Meanwhile, �rf1, 1 ¼ ð1=2Þ�

r
1, 1, �

�f
1, 2 ¼

ð1=2Þ��1, 2 and all the other design parameters for the
three bottleneck nodes are held constant at their design
values given in Table 2. For cases in which ��fi, j is taken
as equal to 0 or ��i, j and for cases where different
network conditions and parameter values are consid-
ered, see Munyas and _Iftar (2004, 2005a).

The results are given in Figures 5–13. Figure 5
indicates that, as �r1, 1, the design bound on _�r1, 1ðtÞ, is
increased, the stability margin on _�r1, 1ðtÞ increases,
indicated by the increase in er, act1, 1 . Figures 5–7 also
indicate that, when �r1, 1 is changed and all other
uncertainty bounds are kept constant, the values of
er, act1, 2 , e�, act1, l and e�b, act1, l , l¼ 1, 2, remain almost
constant except when �r1, 1 is made too close to 1.
This indicates that the stability margins on �r1, jðtÞ,
��k, 1ðtÞ, ��b1, kðtÞ,

_��k, 1ðtÞ and _��b1, kðtÞ (j¼ 1, . . . , n1,
k¼ 1, . . . , n, k 6¼ i) are insensitive to changes in �r1, 1
except when �r1, 1 is too close to 1. As �r1, 1 gets close
to 1, ~	1 increases without bounds, driving e�, act1, k ,
except er, act1, 1 , to zero. From Figures 5–7, we can

N1 N2

N3

S11 S12 S21 S22 S23

S31 S32 S33 S34

Figure 4. Example network.

Table 1. Nominal time-delays.

j hr1, j hrb1, j h�1, j h�b1, j hr2, j hrb2, j h�2, j h�b2, j hr3, j hrb3, j h�3, j h�b3, j

1 1.5 1 – – 2.5 2 3 2 2.5 2 2 1
2 1.5 1 2 1 2.5 2 – – 2.5 2 1 0.5
3 – – 3 1.5 2.5 2 3.5 3 2.5 2 – –
4 – – – – – – – – 2.5 2 – –
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further say that as �rþ1, 1, the design bound on �r1, 1ðtÞ,
is increased, er, act1, 2 increases, but er, act1, 1 , e�, act1, l and
e�b, act1, l , l¼ 1, 2, remain almost constant as long as the
other uncertainty bounds are kept constant. Similar
conclusions are drawn from Figures 8–10 when r is
replaced by � and from Figures 11–13 when r is
replaced by �b. The effects of changing the design
bounds on the actual stability margins are sum-
marised in Table 3, which is taken from Munyas and
_Iftar (2005a). In this table, ‘þ’ means that the

stability margin increases with increasing design
bound, ‘�’ means that the stability margin is
insensitive to changes in the design bound, and ‘*’
means that the stability margin is insensitive to
changes in the design bound except when the bound
gets too close to 1.

In conclusion, to have large stability margins, the
uncertainty bounds ��þi, j and ��i, j should be chosen as
large as possible (��i, j should not be too close to 1).
However, such a choice of the bounds lead to a smooth

Table 2. Design parameters.

i, j 1, 1 1, 2 1, 3 2, 1 2, 2 2, 3 3, 1 3, 2 3, 3 3, 4


ri, j 0.1 0.15 – 0.2 0.15 0.05 0.08 0.12 0.06 0.09


�i, j – 0.2 0.2 0.25 – 0.3 0.35 0.25 – –


�bi, j – 0.05 0.1 0.08 – 0.07 0.05 0.1 – –

�ri, j 0.2 0.2 – 0.15 0.15 0.15 0.3 0.3 0.3 0.3

�rfi, j 0.02 0.02 – 0.03 0.03 0.03 0.04 0.04 0.04 0.04

��i, j – 0.25 0.3 0.3 – 0.33 0.4 0.1 – –

��bi, j – 0.1 0.15 0.15 – 0.2 0.25 0.05 – –

��fi, j – 0.15 0.15 0.15 – 0.13 0.15 0.05 – –

�rþi, j 2 2 – 3 3 3 2.5 2.5 2.5 2.5

��þi, j – 2 3 3 – 3.5 2 1 – –

��bþi, j – 1 1.5 2 – 3 1 0.5 – –
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Figure 5. Stability margins er, act1, 1 and er, act1, 2 .
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Figure 6. Stability margins e�, act1, 1 and e�, act1, 2 .
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but very slow response. When these bounds are chosen

small, an oscillatory but faster response is obtained

(see x 6). Thus, here, there is a trade-off between

robustness and the time-domain performance.

6. Simulation results

The network shown in Figure 4 under the decen-

tralised controllers derived in x 3 is implemented

using MATLAB Simulink and its time domain
performance is investigated under various condi-
tions. Rather than using the fluid-flow network
model used for controller design, however, we use a
discrete model for all the simulations. We assume
that data flow consists of discrete packets of size 1
Mbits each. All the links are assumed to have a
physical capacity of 100 Mbits/second. Therefore,
each data packet is modelled as a pulse of width
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Figure 7. Stability margins e�b, act1, 1 and e�b, act1, 2 .
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Figure 8. Stability margins er, act2, 1 and er, act2, 2 .
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Figure 9. Stability margins e�, act2, 1 and e�, act2, 2 .
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10 milliseconds. Control packets, which carry rate

information from each bottleneck node to each of

its sources and the other bottlenecks, on the other

hand, have much smaller sizes. The output of the

controllers are assumed to be sampled at a rate of

0.1 kHz. That is, each bottleneck node sends a

control packet to each of its sources and the other

bottlenecks at every 10 milliseconds. Each source

and each bottleneck node updates its data sending

rate as soon as a new control packet arrives (if the

current rate is r packets/second, then a packet of
size 1Mbits is sent every ð1=rÞ seconds). Note that,
due to the presence of time-varying backward time-
delays, control packets are not necessarily received
and hence, data sending rates are not necessarily
updated at equal intervals. A constant simulation
step size of 2 milliseconds is used for all
simulations.

The nominal time-delays (in seconds) given in
Table 1 and design parameters given in Table 2
(except where indicated) are used in the simulations.
Maximum outgoing flow rates, ci (t)s, are the same and
equal to 50 packets/second in all cases except in Case 5
(the actual outgoing flow rate at the bottleneck node i
is equal to ci (t) at time t, if qi (t)4 0; otherwise, i.e., if
qi(t)¼ 0, then any packet arriving to the buffer is
immediately sent out at a rate not to exceed ci (t)).
Desired queue lengths, qd,is are the same and equal
to 50 packets. The uncertain part of the actual
time-delays are taken as �rfi, jðtÞ ¼ �

�f
i, jðtÞ ¼ �

rb
i, jðtÞ ¼

��bi, jðtÞ ¼ 0:05 sinðð�=50ÞtÞ seconds (where t is also in
seconds). The results are given in Figures 14–18.
For all cases, the graphs (a), (b) and (c) show the
queue lengths (in packets) and flow rates (in packets/
second) versus time (in seconds) of the sources of the
bottleneck nodes 1, 2 and 3, respectively, while graph
(d) shows the flow rates versus time between the
bottleneck nodes.

Table 3. Effects of the design bounds on the stability
margins.

Stability margin on

Design bound �ri, jðtÞ
_�ri, jðtÞ ��i, jðtÞ

_��i, jðtÞ ��bi, j ðtÞ
_��bi, j ðtÞ

�ri, j * þ * * * *

�rfi, j * þ * * * *

��i, j * * * þ * *

��fi, j * * * þ * *

��bi, j * * * * * þ

�rþi, j þ � � � � �

��þi, j � � þ � � �

��bþi, j � � � � þ �

Figure 14. Results for Case 1.
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Figure 15. Results for Case 2.

Figure 16. Results for Case 3.
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Figure 17. Results for Case 4.

Figure 18. Results for Case 5.
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Case 1: As shown in Figure 14, in all the bottleneck

nodes, there is a duration where the queue length

remains almost zero. This is the period needed for the

sum of the incoming flows to exceed the capacity of the

outgoing link at the bottleneck node. The high-

frequency oscillations in the queue length are due to

discrete arrival/departure of packets (those oscillations

would not be seen if a fluid-flow model was used).

Besides those oscillations, the existence of time-varying

forward time-delays also causes oscillations, especially

at the steady-state (the frequency of these oscillations is

the same as the rate of change of the forward time-

delays (0.01Hz for this example)). All the queue

lengths and flow rates reach an oscillatory steady-

state within 100–150 seconds. We note that the time-

average value of the steady-state flow rates satisfies

fairness conditions (24)–(25) and (44) in this and all

other cases, except in Case 4, below. The time-average

value of the queue lengths at the steady-state are

always equal to the desired queue length, qd,i.

Case 2: In this case the values of �rþi, j , �
�þ
i, j , �

�bþ
i, j , �ri, j,

�rfi, j, �
�
i, j, �

�b
i, j , �

�f
i, j are decreased to one eighth of the

values given in Table 2. As shown in Figure 15, this

causes an oscillatory (near unstable) transient

response. The response in this case, however, is much

faster than the response obtained in Case 1.

Case 3: �rþi, j , �
�þ
i, j , �

�bþ
i, j , �ri, j, �

rf
i, j, �

�
i, j, �

�b
i, j , �

�f
i, j values are

twice the ones given in Table 2. As shown in Figure 16,

this causes a slower but smoother transient response

compared to cases 1 and 2. The magnitude of the

steady-state oscillations are also larger due to the

slowness of the response.

Case 4: Data supplying rates of the sources are

limited by some di,j values as shown in Table 4. As

shown in Figure 17, the values of rs1, 2ðtÞ, r
s
2, 2ðtÞ and

rs3, 2ðtÞ are saturated by these limits. The controllers,

however, can successfully redistribute the unused rates

to other sources and other bottlenecks. The system

reaches a desired steady-state, although the transient

response is more oscillatory and takes a longer time.

The fairness conditions (24)–(25) and (44) are naturally

not satisfied in this case since some of the rates are

saturated. The time-average steady-state value of the

unsaturated rates, however, are distributed according

to their fairness weights among themselves.

Case 5: The maximum outgoing flow rate at the first

bottleneck node, c1(t), switches between 60 packets/
second and 30 packets/second as a square wave of
period 300 seconds. The outgoing flow rates at the

other bottleneck nodes, c2(t) and c3(t), are constant
and equal to 100 packets/second. As a result of these
changes in c1(t), all the queue lengths and flow rates go
through transients in every change of c1(t) as shown

in Figure 18 (note the difference in the time scale of this
figure compared to other figures). The system, how-
ever, reaches the desired steady-state before the next

change in c1(t).

7. Conclusion

In this work, we have considered decentralised rate-
based flow controller design in multi-bottleneck net-
works. The considered multi-input multi-output H1

optimisation problem was set forth in Biberović et al.
(2001). We solved a suboptimal version of this problem
using a series of single-input single-output H1

optimisations for which the method of Toker and

Özbay (1995) is applied. We presented the implemen-
tation of the decentralised controllers at different
bottleneck nodes. The controllers are robust to time-
varying uncertain multiple time-delays in different

channels and also satisfy tracking and weighted
fairness requirements.

The stability margins for uncertainties in the
multiple time-delays and for the rate of change of the
time-delays have also been considered and the lower

bounds for the stability margins have been derived.
According to the sufficient conditions obtained the
lower bounds on the actual stability margins were

depicted with respect to the design bounds on the
uncertainties for various cases. The results show that
when the design bounds on the magnitude of the
uncertainties and the rate of change of the uncertain-

ties in the time-delays are increased, the corresponding
stability margins also increase and hence, the system is
highly robust to time-varying time-delays. However,
the results of the simulations illustrating the time-

domain performance of the proposed controllers
indicate that the controller designed with large values
of the design bounds will be conservative, resulting in a

slow queue response. To get a faster response, the
design bounds can be chosen small, but in this case, the
transient response becomes more oscillatory.

Although we used a fluid-flow model and ignored
all the hard constraints for the purpose of controller

design, the simulations in x 6 indicate that the
controller works well when applied to a network
where the data flow is discrete and hard contraints are
present. The performance evaluation of the proposed

Table 4. Rate limits for Case 4.

i, j 1, 1 1, 2 2, 1 2, 2 2, 3 3, 1 3, 2 3, 3 3, 4

di,j
(packets/second)

50 10 50 20 50 50 10 50 50
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controller when applied to a real network could be the
subject of a future work.

The control approach presented in this work
assumes that each bottleneck node acts as a virtual
source for the next bottleneck node on the path of
a connection. In this approach, there is a control
loop between each successive bottleneck node as
well as between the actual source and the first
bottleneck node. As opposed to the case where the
control loop is between a bottleneck and the actual
source, the present approach allows better use of
network resources, by reducing the length of a
control loop.

The flow dynamics represented by (1) may also
appear in other commodity flow problems, such as
transportation networks, material transport systems
(e.g. oil or gas pipelines), process control, and
manufacturing systems. Of course, there may be
differences between such systems and data-commu-
nication networks considered here, when it comes to
detailed modelling. However, whenever the flow
dynamics of such systems can be modelled by simple
time-delays (possibly time-varying and uncertain) and
commodities can be stored freely at certain places, the
approach presented here may directly be applied (see
Remark 2). Furthermore, even if a more detailed
model (e.g., a model derived by using Navier-Stokes
equations for a gas transport system) is used for a
system which involve time-delays, the ideas presented
in this work could be a good starting point to attack
the flow controller design problem. Moreover, note
that, model (1) is simply an interconnection of multi-
variable integrating systems with uncertain and time-
varying time-delays. Therefore, the presented approach
may find application, not only in flow control
problems, but in control of other interconnected
multivariable integrating systems with uncertain and
time-varying time-delays.
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Appendices

A. Control problem setup

By integrating (1) and substituting the expressions of data
receiving rates (4) and (5), the queue length at the ith
bottleneck node becomes,

qi tð Þ ¼
Xni
j¼1

Z t

0

1� _�rfi, j �ð Þ
� �

ri, j �� �i, j �ð Þ
� �

d�

� �
�

Z t

0

ci �ð Þd�þ qi 0ð Þ

þ
Xn

j¼1, j 6¼i

Z t

0

1� _��fj, i �ð Þ
� �

�j, i ���j, i �ð Þ
� �

��i, j ���
b
i, j �ð Þ

� �h i
d�:

ð29Þ

The nominal queue length is then obtained by setting all
uncertainties to zero

qo, i tð Þ ¼
Xni
j¼1

Z t

0

ri, j �� hri, j

� �
d��

Z t

0

ci �ð Þd�þ qi 0ð Þ

þ
Xn

j¼1, j 6¼i

Z t

0

�j, i �� h�j, i

� �
� �i, j �� h�bi, j

� �h i
d�: ð30Þ

By setting the initial condition qi(0) to zero, taking the
Laplace transform of both sides of (30), separating the
term �ð1=sÞciðsÞ, as it is taken care of separately in Figure 2,
and defining the output of the controller K as

u :¼
r

�

� �
:¼

r1

..

.

rn

�1

..

.

�n

2
66666666664

3
77777777775
, ri :¼

ri, 1

..

.

ri, ni

2
664

3
775, �i :¼

�1, i

..

.

�ði�1Þ, i

�ðiþ1Þ, i

..

.

�n, i

2
66666666664

3
77777777775
,

ð31Þ

the expression for the nominal plant is obtained as
PoðsÞ ¼ ð1=sÞ �Pe�HsP̂. Here

P̂ :¼

Im 0

0
1ffiffiffi
2
p Inðn�1Þ

0 �
1ffiffiffi
2
p Inðn�1Þ

2
66664

3
77775,

where Ik denotes the k� k identity matrix and m :¼
Pi¼1

n ni.
Furthermore, H :¼ diagð �hÞ, where

�h :¼ hr h� h�b
 �

:¼ hr1 � � � hrn h�1 � � � h�n h�b1 � � � h�bn

h i
where hri :¼ ½ hri, 1 � � � hri, ni �, h

�
i :¼ ½ h

�
1, i � � � h�i�1, i h�iþ1, i � � � h�n, i �,

and h�bi :¼ ½ h�b1, i � � � h�bi�1, i h�biþ1, i � � � h�bn, i �. Moreover,
�P :¼ ½ �Pr

ffiffiffi
2
p

�P�
ffiffiffi
2
p

�P�b �, where �Pr :¼ blockdiagð1n1 , . . . , 1nn Þ,

where 1k denotes the 1� k dimensional row vector of

1s, �P� :¼ In 
 1n�1, where 
 denotes the Kronecker

product, and

�P�b :¼

0 J1 J1 J1 � � � J1 J1

J1 0 J2 J2 � � � J2 J2

J2 J2 0 J3 � � � J3 J3

..

. ..
. ..

. ..
. ..

. ..
.

Jn�1 Jn�1 Jn�1 Jn�1 � � � Jn�1 0

2
66666664

3
77777775
,

Ji :¼ 01�ði�1Þ 1 01�ðn�i�1Þ
 �

:

Next, to obtain the uncertainty model, the uncertainty in the
queue length can be obtained as �qi ðtÞ :¼ qiðtÞ � qo, iðtÞ.
Using (29) and (30) and following some manipulations
(see Biberović (2001), for details), we obtain,

�qi tð Þ ¼
Xni
j¼1

��jqi tð Þ þ
Xn

j¼1, j 6¼i

�̂jqi tð Þ þ
Xn

j¼1, j 6¼i

~�jqi tð Þ ð32Þ

where

��jqi tð Þ ¼

Z t

0

_�ri, j �� �i, j �ð Þ
� �

� _�rfi, j �ð Þ
� �

ri, j �� �i, j �ð Þ
� �

d�

�

Z t�hri, j

t�hr
i, j
��r

i, j
tð Þ

ri, j �ð Þd�,

�̂jqi tð Þ ¼

Z t

0

_��j, i �� �j, i �ð Þ
� �

� _��fj, i �ð Þ
� �

�j, i �� �j, i �ð Þ
� �

d�

�

Z t�h�
j, i

t�h�
j, i
���

j, i
tð Þ

�j, i �ð Þd�,

~�jqi tð Þ ¼ �

Z t

0

_��bi, j �� �
b
i, j �ð Þ

� �
�i, j �� �

b
i, j �ð Þ

� �
d�

þ

Z t�h�b
i, j

t�h�b
i, j
���b

i, j
tð Þ

�i, j �ð Þd�:

The uncertain parts ��jqi ðtÞ, �̂
j
qi
ðtÞ and ~�jqi ðtÞ are generated by

the systems shown in Figure 19, Figure 20, and
Figure 21, respectively. In these figures, Ms represents
multiplication by s.
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As in Quet et al. (2002), it can be shown that the
L2-induced norm of the delay blocks in �r

i, j, 1, ��
j, i, 1 and

��b
i, j, 1, in Figure 19, Figure 20, and Figure 21, respectively, is

less than ð1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �ri, jÞ

q
, ð1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ��j, iÞ

q
, and ð1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ��bi, jÞ

q
, respectively.

Thus, noting that the norms of the multiplication blocks are

bounded by the bounds of the multipliers, the L2-induced

norm of �r
i, j, 1, ��

j, i, 1, and ��b
i, j, 1 become less than

ðð�ri, j þ �
rf
i, jÞ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �ri, j

p
Þð1=eri, j, 1Þ, ðð��j, i þ �

�f
j, iÞ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ��j, i

q
Þð1=e�j, i, 1Þ,

and ð��bi, j=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ��bi, j

q
Þð1=e�bi, j, 1Þ, respectively. Thus, if eri, j, 1 ¼

ð
ffiffiffi
2
p
ð�ri, j þ �

rf
i, jÞ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �ri, j

p
Þ, e�j, i, 1 ¼ ð

ffiffiffi
2
p
ð��j, i þ �

�f
j, iÞ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ��j, i

q
Þ, and e�bi, j, 1 ¼

ð
ffiffiffi
2
p
��bi, j=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ��bi, j

q
Þ are chosen, then the L2-induced norm of each

of �r
i, j, 1, ��

j, i, 1, and ��b
i, j, 1 is less than ð1=

ffiffiffi
2
p
Þ.

The L2-induced norm of the blocks �r
i, j, 2, ��

j, i, 2, and

��b
i, j, 2, in Figure 19, Figure 20, and Figure 21, respectively,

can be calculated to be less than ð2�rþi, j =e
r
i, j, 2Þ, ð2�

�þ
j, i =e

�
j, i, 2Þ, and

Figure 19. Uncertainties in the system, ��jqi ðtÞ.

Figure 20. Uncertainties in the system, �̂jqi ðtÞ.

Figure 21. Uncertainties in the system, ~�jqi ðtÞ.
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ð2��bþi, j =e
�b
i, j, 2Þ, respectively, as in Quet et al. (2002). Thus,

choosing eri, j, 2 ¼ 2
ffiffiffi
2
p
�rþi, j , e�j, i, 2 ¼ 2

ffiffiffi
2
p
��þj, i , and e�bi, j, 2 ¼ 2

ffiffiffi
2
p
��bþi, j ,

the L2-induced norm of each of these blocks becomes less

than ð1=
ffiffiffi
2
p
Þ, as well.

By combining Figure 19, Figure 20, and Figure 21, the
operator from u to �q :¼ ½ �q1 � � � �qn �

T can be written as
W21�

o
LTVW22, where

W22 :¼

Im 0

0
1ffiffiffi
2
p Inðn�1Þ

0
1ffiffiffi
2
p Inðn�1Þ

2
66664

3
77775,

�o
LTV :¼ blockdiagð�r,��,��bÞ, where �r :¼ blockdiagð�r

1, . . . ,�n
r Þ,

�r
i :¼ blockdiag

�r
i, 1, 1

�r
i, 1, 2

" #
, . . . ,

�r
i, ni, 1

�r
i, ni, 2

" # !
,

�� :¼ blockdiag ��1, . . . ,�n
�

� �
,

and

��i :¼ blockdiag
��1, i, 1

��1, i, 2

" #
, . . . ,

��i�1, i, 1

��i�1, i, 2

" #
,

��iþ1, i, 1

��iþ1, i, 2

" #
, . . . ,

��n, i, 1

��n, i, 2

" # !
,

where the superscript . represents � or �b. Furthermore,
W21 :¼L � diag(U), where L :¼ ½Lr L� L�b � and
U :¼ ½Ur ffiffiffi

2
p

U�
ffiffiffi
2
p

U�b� , where Lr :¼ blockdiagð12n1 , . . . , 12nn Þ,
L� :¼ 12(n�1)
 In,

L�b :¼

0 Ĵ1 Ĵ1 Ĵ1 � � � Ĵ1 Ĵ1

Ĵ1 0 Ĵ2 Ĵ2 � � � Ĵ2 Ĵ2

Ĵ2 Ĵ2 0 Ĵ3 � � � Ĵ3 Ĵ3

..

. ..
. ..

. ..
. . .

. ..
. ..

.

Ĵn�1 Ĵn�1 Ĵn�1 Ĵn�1 � � � Ĵn�1 0

2
66666664

3
77777775
,

where Ĵi :¼ Ji 
 12,

Ur :¼ Ur
1 Ur

2 � � � Ur
n

 �
, Ur

i :¼ Ur
i, 1 Ur

i, 2 � � � Ur
i,ni

 �
,

Ur
i, jðsÞ :¼

1

s
eri, j, 1 eri, j, 2

� �
,

U� :¼ U�
1 U�

2 � � � U�
n

 �
,

U�
i :¼ U�

1, i U�
2, i � � � U�

i�1, i U�
iþ1, i � � � U�

n, i

 �
,

U�
i, jðsÞ :¼

1

s
e�i, j, 1 e�i, j, 2

� �
, U�b :¼ U�b

1 U�b
2 � � � U�b

n

h i
,

U�b
i :¼ U�b

1, i U�b
2, i � � � U�b

i�1, i U�b
iþ1, i � � � U�b

n, i

h i
,

U�b
i, jðsÞ :¼

1

s
e�bi, j, 1 e�bi, j, 2

� �
:

By defining q :¼ ½ q1 � � � qn �
T, qd :¼ ½ qd, 1 � � � qd, n �

T,
c :¼ ½ c1 � � � cn �

T, and e :¼ qd� q, the overall control
system can now be represented as in Figure 2.
Furthermore, since the L2-induced norm of each of �r

i, j, l,
��

j, i, l, and ��b
i, j, l (l¼ 1, 2) is less than ð1=

ffiffiffi
2
p
Þ, due to

its structure given above, the L2-induced norm of �o
LTV is

less than 1.

B. Controller derivation

To find a solution to the optimisation problem (14), we
define a new problem:

inf
�̂
K stabilising �̂P

W1 Iþ �̂P
�̂
K

� ��1
�

�̂
K Iþ �̂P

�̂
K

� ��1
2
664

3
775

��������

��������
1

¼ 	opt ð33Þ

where
�̂
K and �̂P are to be defined below. As will be shown

below, if there exists a solution, a stabilising controller,
�̂
K,

providing 	opt, to the problem (33), then, there exists a
solution, a stabilising controller, K, providing 	opt, to the
problem given in (14). To show this we first let

K̂ :¼ P̂K ¼ ½ K̂rT K̂�
T

K̂�b:
T
�
T. This leads to PoK ¼ �PK̂,

where �PðsÞ :¼ ð1=sÞ �Pe�Hs ¼ ½PrðsÞ P�ðsÞ P�bðsÞ �, where

PrðsÞ :¼ ð1=sÞ �Pre
�Hrs, P�ðsÞ :¼ ð

ffiffiffi
2
p
=sÞ �P�e

�H�s and P�bðsÞ :¼

ð
ffiffiffi
2
p
=sÞ �P�be

�H�bs with Hr :¼ diag(hr), H� :¼ diag(h�), and

H�b :¼ diag(h�b). Note that, Pr and P� are block diagonal.

Although P�b is not block diagonal, by permuting the

columns of In(n�1), we can find a non-singular matrix T,

satisfying TTT¼TTT
¼ I, such that P̂�b :¼ P�bTT is block

diagonal. Then, by defining
�̂
K
�b

:¼ TK̂�b, P�bK̂�b ¼ P̂�b
�̂
K
�b

is

obtained and �̂P :¼ ½Pr P� P̂�b �,
�̂
K :¼ ½ K̂rT K̂�

T �̂
K
�bT �

T.

Hence, PoK ¼ �PK̂ ¼ �̂P
�̂
K implying that ðIþ PoKÞ

�1
¼

ðIþ �PK̂Þ�1 ¼ ðIþ �̂P
�̂
KÞ�1. Furthermore, due to the fact that

k
�̂
K
�b
k1 ¼ kTK̂

�bk1, the infimum obtained in both problems

(14) and (33) are equal to 	opt. These results show the

equivalency of the two problems. Therefore, we first find a

solution to the problem given in (33) and then, using this

solution, we obtain a solution to the problem given in (14).
It can be shown that problem (33) can be decomposed

into the following problems:

inf
�̂
Ki stabilising �̂Pi

W1ð1þ �̂Pi
�̂
KiÞ
�1

�
�̂
Kið1þ �̂Pi

�̂
KiÞ
�1

2
4

3
5

������
������
1

¼: 	opti ð34Þ

for i¼ 1, . . . , n, where �̂Pi :¼ ½Pr
i P�i P̂�bi �,�̂

Ki :¼ ½ K̂r
i

T
K̂�i

T �̂
K
�b

i

T
�
T, where Pr

i , P
�
i , P̂

�b
i , K̂r

i , K̂
�
i , and

�̂
K
�b

i are the ith diagonal blocks of Pr, P�, P̂�b, K̂r, K̂�, and
�̂
K
�b
, respectively. Note that 	opt ¼ maxið	

opt
i Þ, which means

that an optimal (respectively, suboptimal) solution to (33) is

obtained by combining the optimal (respectively, subopti-

mal) solutions to the problems in (34).
The problems defined in (34) are similar to the problem

considered in Quet et al. (2002). Therefore, as it was done in
Quet et al. (2002), we will decompose the problems (34) into
subproblems involving single delays and find a suboptimal
solution to each problem in (34). For this, as in Quet et al.
(2002), let us consider the coprime factorisations of �̂Pi inH

1:

�̂PiðsÞ ¼ Pr
i ðsÞ P�i ðsÞ P̂�bi ðsÞ

 �
¼ NiðsÞM

�1
i ðsÞ ¼

~M�1i ðsÞ
~NiðsÞ,

ð35Þ

where

NiðsÞ ¼ ~NiðsÞ

¼
1

sþ �

e�h
r
i, 1
s . . . e

�hri, ni
s

ffiffiffi
2
p

e�h
�
1, i
s

. . .
ffiffiffi
2
p

e�h
�
n, i
s

ffiffiffi
2
p

e�h
�b
i, 1
s . . .

ffiffiffi
2
p

e�h
�b
i, n
s

" #
,
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and

~MiðsÞ ¼
s

sþ �
, MiðsÞ ¼

s

sþ �
Iniþ2nðn�1Þ,

where �4 0 is arbitrary.
Now, a parametrisation of all controllers

�̂
KiðsÞ which

stabilise �̂PiðsÞ can be obtained as

�̂
KiðsÞ ¼ XiðsÞ þMiðsÞQiðsÞ½ � YiðsÞ �NiðsÞQiðsÞ½ �

�1 ð36Þ

in terms of Qi2H
1, where Qi :¼ ½Qr

i
T Q�

i
T

Q�b
i

T
�
T, where

Qr
i :¼ ½Qr

i, 1 . . . Qr
i, ni �

T,Q�
i :¼ ½Q

�
1, i . . . Q�

i�1, i Q�
iþ1, i . . . Q�

n, i �
T,

Q�b
i :¼ ½Q�b

i, 1 . . . Q�b
i, i�1 Q�b

i, iþ1 . . . Q�b
i, n �

T. Furthermore,

Xi2H
1 and Yi2H

1 satisfy the Bezout identity:
~MiðsÞYiðsÞ þ ~NiðsÞXiðsÞ ¼ 1. Since lims!0

~MiðsÞ ¼ 0, to satisfy

the Bezout identity we must have lims!0 Ñi(s) Xi(s)¼ 1,

or equivalently, ��1½1 � � � 1
ffiffiffi
2
p
� � �

ffiffiffi
2
p ffiffiffi

2
p
� � �

ffiffiffi
2
p
�Xið0Þ ¼ 1.

Thus, we choose XiðsÞ ¼ ½

r
i, 1 . . . 
ri,ni ð


�
1, i=

ffiffiffi
2
p
Þ . . .

ð
�i�1, i=
ffiffiffi
2
p
Þ ð
�iþ1, i=

ffiffiffi
2
p
Þ . . . ð
�n, i=

ffiffiffi
2
p
Þ ð
�bi, 1=

ffiffiffi
2
p
Þ . . . ð
�bi, i�1=

ffiffiffi
2
p
Þ ð
�bi, iþ1=

ffiffiffi
2
p
Þ . . .

ð
�bi,n=
ffiffiffi
2
p
Þ�T�, where positive numbers 
�i, l satisfy (18). Thus,

Yi(s) must be chosen as follows:

YiðsÞ ¼ ~M�1i ðsÞ 1�
~NiðsÞXiðsÞ

 �
¼
sþ �

s
�
�

s

Xni
j¼1


ri, je
�hri, jsþ

Xn
j¼1, j 6¼i


�j, ie
�h�

j, i
s
þ
Xn

j¼1, j6¼i


�bi, j e
�h�b

i, j
s

" #
:

Then, substituting (36) into (34) and re-arranging terms, we
obtain,

Using (18), we can write the following,

Xni
j¼1

inf
Qr

i, j
2H1


ri, jW1ðsÞ Y
r
i, jðsÞ�Nr

i, jðsÞQ
r
i, jðsÞ

h i
Mr

i, jðsÞ

�ðsÞ Xr
i, jðsÞþMr

i, jðsÞQ
r
i, jðsÞ

h i
Mr

i, jðsÞ

2
64

3
75

�������
�������
1

þ
Xn

j¼1, j6¼i

inf
Q�

j, i
2H1


�j, iW1ðsÞ Y
�
j, iðsÞ�N�

j, iðsÞQ
�
j, iðsÞ

h i
M�

j, iðsÞ

�ðsÞ X�j, iðsÞþM�
j, iðsÞQ

�
j, iðsÞ

h i
M�

j, iðsÞ

2
64

3
75

�������
�������
1

þ
Xn

j¼1, j6¼i

inf
Q�b

i, j
2H1


�bi, jW1ðsÞ Y
�b
i, j ðsÞ�N�b

i, j ðsÞQ
�b
i, j ðsÞ

h i
M�b

i, j ðsÞ

�ðsÞ X�bi, j ðsÞþM�b
i, j ðsÞQ

�b
i, j ðsÞ

h i
M�b

i, j ðsÞ

2
64

3
75

�������
�������
1

¼: 	i � 	
opt
i

where

Yr
i, jðsÞ :¼

sþ �

s
�
�

s
e�h

r
i, js, Xr

i, jðsÞ :¼ 

r
i, j�,

Nr
i, jðsÞ :¼

1


ri, jðsþ �Þ
e�h

r
i, j s, Mr

i, jðsÞ :¼
s

sþ �
,

Y�i, jðsÞ :¼
sþ �

s
�
�

s
e�h

�
i, js, X�i, jðsÞ :¼


�i, jffiffiffi
2
p �,

N�i, jðsÞ :¼

ffiffiffi
2
p


�i, jðsþ �Þ
e�h

�
i, j s, M�i, jðsÞ :¼

s

sþ �

where the superscript . represents � or �b. Therefore, we
define the following problems, each of which involves a single
delay:

inf
Qr

i, j
2H1


ri, jW1 Yr
i, j �Nr

i, jQ
r
i, j

h i
Mr

i, j

� Xr
i, j þMr

i, jQ
r
i, j

h i
Mr

i, j

2
64

3
75

�������
�������
1

¼: 	ri, j ð37Þ

inf
Q�

j, i
2H1


�j, iW1 Y�j, i �N�
j, iQ

�
j, i

h i
M�

j, i

� X�j, i �M�
j, iQ

�
j, i

h i
M�

j, i

2
64

3
75

�������
�������
1

¼: 	�j, i ð38Þ

inf
Q�b

i, j
2H1


�bi, jW1 Y�bi, j �N�b
i, jQ

�b
i, j

h i
M�b

i, j

� X�bi, j �M�b
i, jQ

�b
i, j

h i
M�b

i, j

2
64

3
75

�������
�������
1

¼: 	�bi, j ð39Þ

where j¼ 1, . . . , ni for the problem defined in (37)
and j¼ 1, . . . , n, j 6¼ i for the problems defined in (38)
and (39). Note that, a suboptimal solution to (34) can be
obtained by combining optimal solutions of (37)–(39),
since

	opti �
Xni
j¼1

	ri, j þ
Xn

j¼1, j 6¼i

	�j, i þ
Xn

j¼1, j 6¼i

	�bi, j ¼: ~	i : ð40Þ

To solve the problems in (37)–(39) using the results of

Quet et al. (2002), let us define C�i, jðsÞ :¼ ½X�i, jðsÞ þ

M�i, jðsÞQ
�
i, jðsÞ�½Y

�
i, jðsÞ �N�i, jðsÞQ

�
i, jðsÞ�

�1, where the superscript

inf
Qi2H

1

W1ðsÞ
s

sþ �

sþ �

s
�
�

s

Xni
j¼1


ri, je
�hri, js þ

Xn
j¼1, j 6¼i


�j, ie
�h�

j, i
s
þ

Xn
j¼1, j6¼i


�bi, j e
�h�b

i, j
s

 !"

�
1

sþ �

Xni
j¼1

e�h
r
i, jsQr

i, jðsÞ þ
ffiffiffi
2
p Xn

j¼1, j6¼i

e�h
�
j, i
sQ�

j, iðsÞ þ
ffiffiffi
2
p Xn

j¼1, j6¼i

e�h
�b
i, j
sQ�b

i, jðsÞ

 !#

�ðsÞ
s

sþ �

Xni
j¼1


ri, j�þ
s

sþ �
Qr

i, jðsÞ

	 

s

sþ �
þ

Xn
j¼1, j6¼i


�j, iffiffiffi
2
p �þ

s

sþ �
Q�

j, iðsÞ

	 

s

sþ �

"

þ
Pn

j¼1, j 6¼i


�bi, jffiffiffi
2
p �þ

s

sþ �
Q�b

i, jðsÞ

 !
s

sþ �

#

2
666666666666666664

3
777777777777777775

������������������������

������������������������
1

:¼ 	opti

International Journal of Control 115

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
T
Ü
B
T
A
K
 
E
K
U
A
L
]
 
A
t
:
 
0
8
:
0
5
 
1
4
 
J
a
n
u
a
r
y
 
2
0
0
9



. represents r, � or �b. Then, we can write

Q�i, jðsÞ ¼ M�i, jðsÞ þ C�i, jðsÞN
�
i, jðsÞ

h i�1
C�i, jðsÞY

�
i, jðsÞ � X�i, jðsÞ

h i
:

ð41Þ

If (41) is substituted into (37)–(39), the optimal controller
for each of these problems can be obtained as (Toker and
Özbay 1995)

C�i, jðsÞ ¼ 

�
i, j �	
�
i, j

sh�i, j � k�i, j
sh�i, j

 !
1

1þ F�i, jðsh
�
i, jÞ

ð42Þ

where F �i, j is a finite impulse response filter and k�i, j and �	�i, j
are constants to be calculated as in Quet et al. (2002). Then,
using (41), Q�i, j’s are found and substituted back to obtain Qi.
Once Qi is found, we obtain

�̂
Ki :¼ ½ K̂r

i

T
K̂�i

T �̂
K
�b

i

T
�T from

(36), which defines K̂. Then, a controller which is a
suboptimal solution to the problem given in (14) can be
obtained as K ¼ PyK̂, where Py is a left inverse of P̂. Using

Py ¼
Im 0 0

0
ffiffiffi
2
p

Inðn�1Þ 0

� �
,

the controller given in (15) is obtained.

C. Steady-state rates

The tracking error can be written as
eðsÞ ¼ ðIþ PoðsÞKðsÞÞ

�1
ð1=sÞ½qd þ cðsÞ�. Substituting this into

(20), u1 :¼ limt!1 u(t) can be obtained as

u1 ¼ lim
s!0

suðsÞ ¼ lim
s!0

KðsÞ Iþ PoðsÞKðsÞð Þ
�1 qd þ cðsÞð Þ

¼ lim
s!0

KoðsÞ s
2Iþ �PoðsÞKoðsÞ

� ��1
sqd þ scðsÞð Þ,

ð43Þ

where �PoðsÞ :¼ sPoðsÞ and Ko(s) :¼ sK(s). Obtaining K(s) from
(15) and using (16), (17), and (42), we obtain

� :¼ lim
s!0

KoðsÞ ¼
�r

��

� �
,

where

�r :¼

�r11
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,

and

where

�ri, j ¼�
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r
i,k

�	ri,k
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�
k, i
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�	�bi,k

and

��j, i ¼ �
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r
i, k
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þ
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k¼1, k 6¼i
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�
k, i

�	�k, i
þ
Xn

k¼1, k 6¼i


�bi, kh
�b
i, k

�	�bi, k

:

Then, the limit given in (43) is obtained as

u1 ¼ �G�1c1, ð44Þ

where c1 :¼ ½ c1,1 . . . cn,1 �
T
¼ limt!1 cðtÞ.

G :¼ lim
s!0

�PoðsÞKoðsÞ

¼
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j¼1

�r1, jþ
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j¼2

��j, 1 � ��1,2 . . . � ��1,n

� ��2,1
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..
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j¼1
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3
777777777775
,
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