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Abstract

We study the problem of estimating an unknown deterministic signal that is observed through

an unknown deterministic data matrix under additive noise. In particular, we present a minimax

optimization framework to the least squares problems, where the estimator has imperfect data

matrix and output vector information. We define the performance of an estimator relative to the

performance of the optimal least squares (LS) estimator tuned to the underlying unknown data

matrix and output vector, which is defined as the regret of the estimator. We then introduce an

efficient robust LS estimation approach that minimizes this regret for the worst possible data matrix

and output vector, where we refrain from any structural assumptions on the data. We demonstrate

that minimizing this worst-case regret can be cast as a semi-definite programming (SDP) problem.

We then consider the regularized and structured LS problems and present novel robust estimation

methods by demonstrating that these problems can also be cast as SDP problems. We illustrate

the merits of the proposed algorithms with respect to the well-known alternatives in the literature

through our simulations.
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1. Introduction

In this paper we investigate the estimation of an unknown deterministic signal that is observed

through a deterministic data matrix under additive noise [1–14]. Although the data matrix and the

output vector are not exactly known, estimates for both of them as well as uncertainty bounds on

the estimates are given [2, 8, 15–18]. When the model parameters are not known exactly, a popular
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method to estimate the desired signal is to use the robust LS method [9], since the performances

of the classical LS estimators degrade significantly when the perturbations on the data matrix and

the output vector are relatively high [9, 15, 16, 19–21].

A prevalent approach to find robust solutions to such estimation problems is the robust LS

method [8, 9, 16], in which the uncertainties in the data matrix and the output vector are in-

corporated into optimization framework via a minimax residual formulation. Another well-known

approach to compensate for errors in the data matrix and the output vector is the total least squares

method (TLS) [15], which may yield undesirable results since it employs a conservative approach

due to data de-regularization. Furthermore, the data matrix usually has a known special structure,

such as Toeplitz and Hankel, in many linear regression problems [9, 15] and the performance of the

estimators based on minimax approaches are shown to improve when such a prior knowledge on

data matrix structure is integrated into the problem formulation [9, 15].

Although the robust LS methods are able to minimize the LS error for the worst-case perturba-

tions, they usually provide unsatisfactory results on the average [15, 22–24] due to their conservative

nature. In order to counterbalance this conservative nature of the robust LS methods [9], we propose

a novel robust LS approach that minimizes a worst case “regret” that is defined as the difference

between the squared residual error and the smallest attainable squared residual error with an LS

estimator. By this regret formulation, we seek a linear estimator whose performance is as close

as possible to that of the optimal estimator for all possible perturbations on the data matrix and

the output vector. Our main goal in proposing the minimax regret formulation is to provide a

trade-off between the robust LS methods tuned to the worst possible data parameters (under the

uncertainty bounds) and the optimal LS estimator tuned to the underlying unknown model param-

eters. Furthermore, after studying the data estimation problems in the presence of bounded data

uncertainties, we extend the regret formulation to the regularized LS problem, where the regret is

defined as the difference between the cost of the regularized LS algorithm [10, 16], and the smallest

attainable cost with a linear regularized LS estimator. Furthermore, we extend our discussions to

scenarios involving both structured and unstructured data. Under these frameworks, we provide

the solutions for the proposed regret based minimax LS and the regret based minimax regularized

LS approaches in semi-definite programming (SDP) forms. We emphasize that SDP problems can

be efficiently solved even for real-time applications [25].

Minimax regret approaches have been presented in signal processing literature to alleviate the
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pessimistic nature of the worst case optimization methods [2, 8, 26–29]. However, we emphasize

that the methods proposed in this paper extensively differ from [2, 9, 16, 26, 27, 29]. Note that

the optimization frameworks investigated here are different than [9, 16], where the regret terms

are directly adjoined in the cost functions. Although a similar regret notion is used in [2, 26,

27, 29], the cost function as well as the constraints on uncertainties in the data matrix and the

output vector are substantially different in this paper. Moreover, unlike this paper, in [2], the

problem is described for the channel equalization scenario, where the authors rely on the statistical

assumptions. Furthermore, we note that the uncertainty is in the statistics of the transmitted signal

in [26]. In [27] and [29], the uncertainty is in the transmitted signal and the channel parameters,

respectively. Unlike these relevant works, in this paper, the uncertainty is both on the data matrix

and the output vector. Furthermore, the solutions to the LS problems presented in this paper

cannot be obtained from [2, 8, 26, 27, 29], since the cost functions are different in our optimization

formulations. While in [8], the authors have considered a similar framework, the results of this paper

builds upon them and provide a complete solution to the regret based robust LS estimation methods

unlike [8]. We emphasize that perturbation bounds on the data matrix and the output vector heavily

depend on the estimation algorithms employed to obtain them. Since our methods are formulated

for given perturbation bounds, different estimation algorithms can be readily incorporated into our

framework with the corresponding perturbation bounds [16].

In this paper, we first present a novel robust LS approach in which we seek to find the transmitted

signal by minimizing the worst case regret, i.e., the worst case difference between the residual error

of the LS estimator and the residual error with the optimal LS estimator. In this sense, our aim

is to introduce a trade off between the performance of the robust LS methods and the tuned LS

estimator (LS estimator that is tuned to the unknown data matrix and the output vector). We

next propose a minimax regret method for the regularized LS problem. Finally, we introduce a

structured robust LS method in which the data matrix has a special structure such as Toeplitz and

Hankel. We demonstrate that the proposed robust methods can be cast as SDP problems. In our

simulations, we observe that these approaches provide better performance compared to the robust

methods that are optimized with respect to the worst-case residual error [9, 16], the tuned LS and

the tuned regularized LS estimators (tuned to the estimates of the data matrix and the output

vector), respectively.

Our main contributions in this paper are as follows. i) We introduce a novel and efficient robust
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LS estimation method in which we find the transmitted signal by minimizing the worst-case regret,

i.e., the worst-case difference between the residual error of the LS estimator and the residual error

of the optimal LS estimator tuned to the underlying model. In this sense, we present a robust

estimation method that achieves a tradeoff between the robust LS estimation methods and the

direct LS estimation method tuned to the estimates of the data matrix and output vector. ii) We

next propose a minimax regret formulation for the regularized LS estimation problem. iii) We then

introduce a structured robust LS estimation method in which the data matrix is known to have a

special structure such as Toeplitz or Hankel. iv)We demonstrate that the robust estimation methods

we propose can be cast as SDP problems, hence our methods can be efficiently applied for real-time

[25]. iv) In our simulations, we observe that our approaches provide better performance compared

to the robust methods that are optimized with respect to the worst-case residual error [30, 31], and

the conventional methods that directly solve the estimation problem using the perturbed data.

The organization of the paper is as follows. An overview to the problem is provided in Section 2.

In Section 3, we first introduce the LS estimation method based on our regret formulation, and then

present the regularized LS estimation approach in Section 4. We then consider the structured LS

approach in Section 5 and provide the explicit SDP formulations for all problems. The numerical

examples are demonstrated in Section 6. Finally, the paper concludes with certain remarks in

Section 7.

2. System Overview

2.1. Notation

In this paper, all vectors are column vectors and represented by boldface lowercase letters.

Matrices are represented by boldface uppercase letters. For a matrix H, HH is the conjugate

transpose, ||H|| is the spectral norm, H+ is the pseudo-inverse, H > 0 represents a positive definite

matrix and H ≥ 0 represents a positive semi-definite matrix. For a square matrix H, Tr(H) is

the trace. Naturally, for a vector x, ||x|| =
√
xHx is the ℓ2-norm. Here, 0 denotes a vector or

matrix with all zero elements and the dimensions can be understood from the context. Similarly, I

represents the appropriate sized identity matrix. The operator vec(·) is the vectorization operator,

i.e., it stacks the columns of a matrix of dimension m × n into a mn × 1 column vector. Finally,

the operator ⊗ is the Kronecker product [32].
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2.2. Problem Description

We investigate the problem of estimating an unknown deterministic vector x ∈ Cn which is

observed through a deterministic data matrix. However, instead of the actual data matrix and the

output vector, their estimates H ∈ Cm×n and y ∈ Cm and uncertainty bounds on these estimates

are provided. In this sense, our aim is to find a solution to the following data estimation problem

y ≈ Hx,

such that

y +∆y = (H+∆H)x,

for deterministic perturbations ∆H ∈ C
m×n, ∆y ∈ C

m. Although these perturbations are un-

known, a bound on each perturbation is provided, i.e.,

||∆H|| ≤ δH and ||∆y|| ≤ δY ,

where δH , δY ≥ 0. In this sense, we refrain from any assumptions on the data matrix and the

output vector, yet consider that the estimates H and y are at least accurate to “some degree” but

their actual values under these uncertainties are completely unknown to the estimator.

Even in the presence of these uncertainties, the symbol vector x can be naively estimated by

simply substituting the estimates H and y into the LS estimator [33]. For the LS estimator we

have

x̂ = H+y,

where H+ is the pseudo-inverse of H [32]. However, this approach yields unsatisfactory results,

when the errors in the estimates of the data matrix and the output vector are relatively high

[17, 30, 31, 34, 35]. A common approach to find a robust solution is to employ a worst-case residual

minimization [30]

x̂ = argmin
x∈Cn

max
||∆H||≤δH ,||∆y||≤δY

||(y +∆y)− (H+∆H)x||2,

where x is chosen to minimize the worst-case residual error in the uncertainty region. However,

since the solution is found with respect to the worst possible data matrix and output vector in the

uncertainty regions, it may be highly conservative [34–36].

Here, we propose a novel LS estimation approach that provides a tradeoff between performance

and robustness in order to mitigate the conservative nature of the worst-case residual minimization
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approach as well as to preserve robustness [34, 35]. The regret for not using the optimal LS estimator

is defined as the difference between the residual error with an estimate of the input vector and the

residual error with the optimal LS estimator, i.e.,

R(x; ∆H,∆y) , ||(y +∆y)− (H+∆H)x||2 − min
w∈Cn

||(y +∆y)− (H+∆H)w||2. (1)

By making such a regret definition, we force our estimator not to construct the symbol vector

according to the worst possible scenario considering that it may be too conservative. Instead, we

define the regret of any estimator by the difference in the estimation performances of that estimator

and the “smartest” estimator knowing both data matrix and output vector in hindsight, so that we

achieve a tradeoff between robustness and estimation performance.

We emphasize that the regret defined in (1) is completely different than the regret formula-

tion introduced in [34, 35]. In (1), the uncertainty is on the data matrix where the desired data

vector x is completely unknown, unlike [34, 35]. We emphasize that we use the residual error

||(y +∆y)− (H+∆H)x||2 instead of the estimation error ||x̂− x|| since the estimation error di-

rectly depends on the vector x and cannot be used in the regret formulation since x is assumed to

be unknown in the presence of data uncertainties. Moreover, in our formulation, the estimate x̂ is

not constrained to be linear unlike [34, 35] since our regret formulation is well-defined without any

limitations on the estimated x̂.

In the next sections, the proposed approaches to the robust LS estimation problems are pro-

vided. We first introduce the regret based unstructured LS estimation method. We next present

the unstructured regularized LS estimation approach in which the worst-case regret is optimized.

Finally, we investigate the structured LS estimation approach.

3. Unstructured Robust Least Squares Estimation

In this section, we provide a novel robust unstructured LS estimator based on a certain minimax

criterion. We consider the most generic estimation problem

min
x∈Cn

max
||∆H||≤δH ,||∆y||≤δY

R(x; ∆H,∆y), (2)

where R(x; ∆H,∆y) is defined as in (1). Now considering the second term in (1), we define

H̃ , H+∆H, ỹ , y+∆y, where H̃ is a full rank matrix, and denote the estimation performance
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of the optimal LS estimator for some given H̃ and ỹ by

f(H̃, ỹ) , min
w∈Cn

∣
∣
∣

∣
∣
∣ỹ − H̃w

∣
∣
∣

∣
∣
∣

2

.

Since we consider an unconstrained minimization over w, we have [33]

w∗ , argmin
w∈Cn

∣
∣
∣

∣
∣
∣ỹ − H̃w

∣
∣
∣

∣
∣
∣

2

= H̃
+
ỹ, (3)

as the optimal data vector minimizing the residual error. Then we have

f
(

H̃, ỹ
)

=
∣
∣
∣

∣
∣
∣ỹ − H̃w∗

∣
∣
∣

∣
∣
∣

2

= (ỹ − H̃w∗)H(ỹ − H̃w∗)

= ỹH(ỹ − H̃w∗)

= ỹHP̃ỹ,

where the third line follows from H̃
H
H̃w∗ = H̃

H
ỹ [33] and P̃ , I− H̃H̃

+
is the projection matrix

of the space perpendicular to the range space of H̃. If we use the Taylor series expansion based on

Wirtinger calculus [32] for f
(

H̃, ỹ
)

around H̃ = H and ỹ = y, then

f
(

H̃, ỹ
)

= f(H,y) + 2Re
{

Tr
(

∇f(H̃, ỹ)
∣
∣
H
˜H=H,ỹ=y

[
∆H ∆y

])}

+O
(

||[∆H ∆y]||2
)

. (4)

Note that the first order Taylor approximation is introduced in order to obtain a tractable solu-

tion. Clearly, the effect of using this approximation vanishes as ||[∆H ∆y]|| decreases and for

distortions with larger ||[∆H ∆y]||, one can easily use higher order approximations instead. How-

ever, we observe through our simulations that even for relatively large perturbations, a satisfactory

performance is obtained using this approximation.

We now introduce the following lemma in order to obtain the first order Taylor approximation

in (4) in a closed form.

Lemma 1. Let H̃ = H+∆H be a full rank matrix and ỹ = y+∆y, where H̃ ∈ Cm×n and ỹ ∈ Cm.

Then defining f
(

H̃, ỹ
)

, ỹHP̃ỹ, where P̃ , I− H̃H̃
+
, we have

∂f
(

H̃, ỹ
)

∂H̃

∣
∣
∣
∣ ˜H=H,ỹ=y

= −Py
(
H+y

)H
,
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and

∂f
(

H̃, ỹ
)

∂ỹ

∣
∣
∣
∣ ˜H=H,ỹ=y

= Py,

where P , I−HH+

Proof of Lemma 1. Since H̃ is full rank and m ≥ n, the pseudo-inverse of H̃ is found by [32]

H̃
+
, (H̃

H
H̃)−1H̃

H
.

Hence, we have [32]

D =
∂

∂H̃

(

ỹH ỹ − ỹHH̃(H̃
H
H̃)−1H̃

H
ỹ
)
∣
∣
∣
∣ ˜H=H,ỹ=y

= H(HHH)−1HHyyHH(HHH)−1

− yyHH(HHH)−1

= HH+y
(
H+y

)H − y
(
H+y

)H

= −Py
(
H+y

)H
, (5)

and

b =
∂

∂ỹ

(

ỹH ỹ − ỹHH̃(H̃
H
H̃)−1H̃

H
ỹ
)
∣
∣
∣
∣ ˜H=H,ỹ=y

= Py, (6)

where the last line of the equality follows since HH+ is a symmetric matrix according to the

definition of the pseudo-inverse operation. This concludes the proof of Lemma 1. �

Now turning our attention back to (4), we denote

D ,
∂f
(

H̃, ỹ
)

∂H̃

∣
∣
∣
∣ ˜H=H,ỹ=y

,

and

b ,
∂f
(

H̃, ỹ
)

∂ỹ

∣
∣
∣
∣ ˜H=H,ỹ=y

,
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where we emphasize that the closed form definitions of D and b can be obtained from Lemma 1.

We then approximate (4) and obtain the first order Taylor approximation as follows

f
(

H̃, ỹ
)

≈ f(H,y) + 2Re
{

Tr
(

[D b]H [∆H ∆y]
)}

= κ+ 2Re
{(

vec(D)Hvec(∆H) + bH∆y
)}

= κ+ dH∆h+∆hHd+ bH∆y +∆yHb, (7)

where κ , f(H,y), d , vec(D), and ∆h , vec(∆H). Hence we can approximate the regret in (1)

as follows

R(x; ∆H,∆y) ≈
∣
∣
∣

∣
∣
∣ỹ − H̃x

∣
∣
∣

∣
∣
∣

2

−
(

κ+ dH∆h+∆hHd+ bH∆y +∆yHb
)

. (8)

In the following theorem, we illustrate how the optimization (or equivalently estimation) problem

in (8) can be put in an SDP form.

Theorem 1. Let H ∈ Cm×n and y ∈ Cm be the estimates of the data matrix and the output vector,

respectively, both having deterministic additive perturbations ∆H ≤ δH and ∆y ≤ δY , respectively,

i.e., H̃ = H+∆H and ỹ = y +∆y, where H̃ is the full rank data matrix, ỹ is the output vector,

and m ≥ n. Then the problem

min
x∈Cn

max
||∆H||≤δH ,||∆y||≤δY

R(x; ∆H,∆y), (9)

where R(x; ∆H,∆y) is defined as in (8), is equivalent to solving the following SDP problem

min γ

subject to

τ1 ≥ 0, τ2 ≥ 0, and










γ + κ− τ1 − τ2 (y −Hx)H δY b
H δHdH

y −Hx I −δY I δHX

δY b −δY I τ1I 0

δHd δHXH 0 τ2I











≥ 0, (10)

where X is the m×mn matrix defined as X , xH ⊗ I.

The proof of Theorem 1 is provided in Appendix A.
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Remark 1. In the proof of Theorem 1, we use Proposition 1 that relies on the lossless S-procedure.

However, S-procedure is lossless with two constraints when the corresponding two quadratic (Her-

mitian) forms on the complex linear space [37]. However, classical S-procedure for quadratic forms

is, in general, lossy with two constraints in the real case [38]. Hence, Theorem 1 cannot be extended

for real linear space.

Now we can consider two important corollaries of Theorem 1. First, a special case of Theorem

1 in which the uncertainty is only in the data matrix. We emphasize that the perturbation errors

only in the data matrix are also common in a wide range of real life applications [33]. Here, we can

define the regret as follows

R(x; ∆H) ,
∣
∣
∣

∣
∣
∣y − H̃x

∣
∣
∣

∣
∣
∣

2

− min
w∈Cn

∣
∣
∣

∣
∣
∣y − H̃w

∣
∣
∣

∣
∣
∣

2

, (11)

and similar to the previous case, we calculate the optimal estimation performance under a given

uncertainty bound

f
(

H̃
)

, min
w∈Cn

∣
∣
∣

∣
∣
∣y − H̃w

∣
∣
∣

∣
∣
∣

2

≈ κ+ 2Re
{

Tr
(

∇f(H̃,y)
∣
∣
H
˜H=H ∆H

)}

= κ+ 2Re
{

vec(DH)vec(∆H)
}

= κ+ dH∆h+∆hHd.

Hence we approximate the regret in (11) as follows

R(x; ∆H) ≈
∣
∣
∣

∣
∣
∣y − H̃x

∣
∣
∣

∣
∣
∣

2

−
(

κ+ dH∆h+∆hHd
)

. (12)

Corollary 1. Let H ∈ Cm×n and y ∈ Cm be the estimates of the data matrix and the output

vector, respectively, where m ≥ n. Suppose there is a bounded uncertainty on the full rank data

matrix H̃, i.e., H̃ = H+∆H, ||∆H|| ≤ δH . Then the problem

min
x∈Cn

max
||∆H||≤δH

R(x; ∆H), (13)
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where R(x; ∆H) is defined as in (12), is equivalent to solving the following SDP problem

min γ

subject to

τ ≥ 0 and








γ + κ− τ (y −Hx)H δHd

y −Hx I δHX

δHd δHXH τI







≥ 0. (14)

Outline of the Proof of Corollary 1. The proof of Corollary 1 can be explicitly derived

from the proof of Theorem 1 by simply setting δY = 0 and τ1 = 0, hence is omitted. �

Second, we consider another special case of Theorem 1 in which the uncertainty is only in the

output vector. We emphasize that similar to the previous case, this one is also a common case in

a wide range of real-life applications [33], and studied under a similar framework in [34]. Here, we

can define the regret as follows

R(x; ∆y) , ||ỹ −Hx||2 − min
w∈Cn

||ỹ −Hw||2, (15)

and similar to the previous case, we calculate the optimal also performance under a given uncertainty

bound

f(ỹ) , min
w∈Cn

||ỹ −Hw||2

≈ κ+ 2Re
{

Tr
(

∇f(H, ỹ)
∣
∣
H

ỹ=y ∆y
)}

= κ+ 2Re
{

bH∆y
}

= κ+ b
H∆y +∆yHb.

Hence we approximate the regret in (15) as follows

R(x; ∆y) ≈ ||ỹ −Hx||2 −
(

κ+ bH∆y +∆yHb
)

. (16)

Corollary 2. Let H ∈ Cm×n and y ∈ Cm be the estimates of the data matrix and the output

vector, respectively, where m ≥ n. Suppose there is a bounded uncertainty on the output vector ỹ,

i.e., ỹ = y +∆y, ||∆y|| ≤ δY . Then the problem

min
x∈Cn

max
||∆y||≤δY

R(x; ∆y), (17)
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where R(x; ∆y) is defined as in (16), is equivalent to solving the following SDP problem

min γ

subject to

τ ≥ 0 and








γ + κ− τ (y −Hx)H δY b
H

y −Hx I −δY I

δY b −δY I τI







≥ 0. (18)

Outline of the Proof of Corollary 2. The proof of Corollary 2 can be explicitly derived

from the proof of Theorem 1 by simply setting δH = 0 and τ2 = 0, hence is omitted. �

Remark 2. Corollaries 1 and 2 follows from the proof of Theorem 1, which relies on the lossless

S-procedure. Under the frameworks presented in the Corollaries 1 and 2, one can safely extend the

same conclusions for the real case also, since S-procedure is lossless for quadratic forms with one

constraint both in complex and real spaces [39, 40].

4. Unstructured Robust Regularized Least Squares Estimation

In this section, we introduce a worst-case regret optimization approach to solve the regularized

LS estimation problem in [31]. The regret for not using the optimal regularized LS estimator is

defined by

R(x; ∆H,∆y) ,

{∣
∣
∣

∣
∣
∣ỹ − H̃x

∣
∣
∣

∣
∣
∣

2

+ µ ||x||2
}

− min
w∈Cn

{∣
∣
∣

∣
∣
∣ỹ − H̃w

∣
∣
∣

∣
∣
∣

2

+ µ ||w||2
}

, (19)

where µ > 0 is the regularization parameter. We emphasize that there are different approaches

to choose µ, however, for the focus of this paper, we assume that it is already set before the

optimization so that these methods can be readily incorporated in our framework. Hence, we solve

the regularized LS estimation problem for an arbitrary µ > 0 and note that we have already covered

the µ = 0 case in Section 3.

Similar to the previous case, we denote the estimation error of the optimal LS estimator for

some estimated data matrix H and output vector y by

f(H,y) , min
w∈Cn

||y −Hw||2 + µ ||w||2

=
∣
∣
∣
∣P−1 y

∣
∣
∣
∣
2

= yHP−1 y,
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where P , I + µ−1HHH . Considering the first order Taylor series expansion based on Wirtinger

calculus [32] for f(H̃, ỹ) around H̃ = H and ỹ = y

f(H̃, ỹ) ≈ κ+ 2Re
{

Tr
(

∇f(H̃, ỹ)
∣
∣
H
˜H=H,ỹ=y

[
∆H ∆y

])}

,

= κ+ dH∆h+∆hHd+ bH∆y +∆yHb,

where d , vec(DH), ∆h , vec(∆H),

D ,
∂f(H̃, ỹ)

∂H̃

∣
∣
∣
∣ ˜H=H,ỹ=y

= −P−1yyHP−1H, (20)

and

b ,
∂f(H̃, ỹ)

∂ỹ

∣
∣
∣
∣ ˜H=H,ỹ=y

= P−1y,

where the last line follows since P is symmetric. Hence we can approximate the regret in (19) as

follows

R(x; ∆H,∆y) ≈
∣
∣
∣

∣
∣
∣ỹ − H̃x

∣
∣
∣

∣
∣
∣

2

+ µ ||x||2 − (κ+ dH∆h+∆hHd+ bH∆y +∆yHb), (21)

similar to (8). In the following theorem, we illustrate how the optimization problem in (21) can be

put in an SDP form.

Theorem 2. Let H ∈ Cm×n and y ∈ Cm be the estimates of the data matrix and the output vector,

respectively, both having deterministic additive perturbations ∆H ≤ δH and ∆y ≤ δY , respectively,

i.e., H̃ = H+∆H and ỹ = y +∆y, where H̃ is the full rank data matrix, ỹ is the output vector,

and m ≥ n. Then the problem

min
x∈Cn

max
||∆H||≤δH ,||∆y||≤δY

R(x; ∆H,∆y), (22)
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where R(x; ∆H,∆y) is defined as in (21), is equivalent to solving the following SDP problem

min γ

subject to

τ1 ≥ 0, τ2 ≥ 0, and













γ + κ− τ1 − τ2 (y −Hx)H xH δY b
H δHdH

y −Hx I 0 −δY I δHX

x 0 µI 0 0

δY b −δY I 0 τ1I 0

δHd δHXH 0 0 τ2I














≥0. (23)

Proof of Theorem 3. The proof of Theorem 2 follows similar lines to the proof of Theorem 1,

hence is omitted here. �

Remark 3. Under the framework introduced in this section, one can straightforwardly obtain the

corollaries similar to Corollaries 1 and 2 by considering cases in which the uncertainty is either

only on the data matrix or only on the output vector, i.e., δY = 0 and δH = 0 cases, respectively.

The derivations follow similar lines to Corollaries 1, 2 and Theorem 2, hence is omitted. However,

similar results can be readily derived from the result in Theorem 2 with suitable changes in the

SDP formulations.

5. Structured Robust Least Squares Estimation

There are various communication systems where the data matrix and the perturbation on it

have a special structure such as Toeplitz, Hankel, or Vandermonde [30, 36]. Incorporating this

prior knowledge into the estimation framework could improve the performance of the regret based

minimax LS estimation approach [30, 36]. Hence, in this section, we investigate a special case of

the problem in (2), where the associated perturbations for the data matrix H and the output vector

y have special structures. The structure on the perturbations is defined as follows

∆H =

p
∑

i=1

αiHi, (24)

and

∆y =

p
∑

i=1

βiyi, (25)

14



where Hi ∈ Cm×n, yi ∈ Cm, and p are known but αi, βi ∈ C, i = 1, . . . , p, are unknown. However,

the bounds on the norm of α , [α1, . . . , αp]
H and β , [β1, . . . , βp]

H are provided as ||α|| ≤ δα

and ||β|| ≤ δβ, where δα, δβ ≥ 0. We emphasize that this formulation can represent a wide range

of constraints on the structure of perturbations of the data matrix and the output vector such as

Toeplitz and Hankel [30, 33]. Our aim is to solve the following optimization problem

min
x∈Cn

max
||α||≤δα,||β||≤δβ

R(x; ∆H,∆y),

where

R(x; ∆H,∆y) ,
∣
∣
∣

∣
∣
∣ỹ − H̃x

∣
∣
∣

∣
∣
∣

2

− min
w∈Cn

∣
∣
∣

∣
∣
∣ỹ − H̃w

∣
∣
∣

∣
∣
∣

2

, (26)

H̃ , H+∆H = H+

p
∑

i=1

αiHi, (27)

ỹ , y +∆y = y +

p
∑

i=1

βiyi. (28)

After following similar lines to Section 3, and introducing the first order Taylor approximation

to f
(

H̃, ỹ
)

around α = 0 and β = 0, we obtain

f
(

H̃, ỹ
)

≈ κ+ 2Re
{

Tr
(

∇f(H̃, ỹ)
∣
∣
H

α=0,β=0 [α β]
)}

, (29)

where f
(

H̃, ỹ
)

= ỹHP̃ỹ and P̃ = I− H̃H̃
+
. We next introduce the following lemma to calculate

the first order Taylor approximation in (29) in a closed form.

Lemma 2. Let H̃ = H+∆H be a full rank matrix and ỹ = y +∆y, where H̃ ∈ Cm×n, ỹ ∈ Cm,

∆H and ∆y are defined as in (24) and (25), respectively. Then denoting f
(

H̃, ỹ
)

, ỹHPỹ, where

P̃ , I− H̃H̃
+
, we have

∂f(H̃, ỹ)

∂α

∣
∣
∣
∣
α=0,β=0

=
[

−yHPHH1H
+y, . . . ,−yHPHHpH

+y
]H

, (30)

and
∂f(H̃, ỹ)

∂β

∣
∣
∣
∣
α=0,β=0

=
[
yHPy1, . . . ,y

HPyp

]H
, (31)

where P , I−HH+.

Proof of Lemma 2. Note that the derivative of f
(

H̃, ỹ
)

is taken with respect to [α β], hence

we can use the Chain Rule to calculate the derivatives by using the results we have obtained in

Lemma 1.
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First, we consider the derivative of f
(

H̃, ỹ
)

with respect to αi, i = 1, . . . , p, i.e.,

di ,
∂f(H̃, ỹ)

∂αi

∣
∣
∣
∣
α=0,β=0

= Tr





(

∂f(H̃, ỹ)

∂H̃

)H

∂H̃

∂αi

∣
∣
∣
∣
α=0,β=0





= Tr
(

−H+yyHPHHi

)

= −yHPHHiH
+y,

where the last line follows from the cyclic property of the trace operator.

Similarly, we next consider the derivative of f
(

H̃, ỹ
)

with respect to βi, i = 1, . . . , p, i.e.,

bi ,
∂f(H̃, ỹ)

∂βi

∣
∣
∣
∣
α=0,β=0

= Tr





(

∂f(H̃, ỹ)

∂ỹ

)H

∂ỹ

∂βi

∣
∣
∣
∣
α=0,β=0





= yHPyi.

This concludes the proof of Lemma 2. �

Now turning our attention back to (29), we denote

d ,
∂f
(

H̃, ỹ
)

∂α

∣
∣
∣
∣
α=0,β=0

,

and

b ,
∂f
(

H̃, ỹ
)

∂β

∣
∣
∣
∣
α=0,β=0

,

where we emphasize that the closed form definitions of d and b can be obtained from Lemma 2.

We then approximate (29) and obtain the first order Taylor approximation as follows

f
(

H̃, ỹ
)

≈ κ+ d
H
α+αHd+ b

H
β + β

H
b.

Therefore, we can approximate the regret in (26) as follows

R(x; ∆H,∆y) ≈
∣
∣
∣

∣
∣
∣ỹ − H̃x

∣
∣
∣

∣
∣
∣

2

−
(

κ+ dHα+αHd+ bHβ + βHb
)

. (32)

In the following theorem, we illustrate how the optimization problem in (32) can be put in an

SDP form.
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Theorem 3. Let H,H1, . . . ,Hp ∈ Cm×n, y,y1, . . . ,yp ∈ Cm, δH , δY ≥ 0, m ≥ n, where H̃ is

the full rank data matrix defined as in (27), ỹ is the output vector defined as in (28), with the

corresponding estimates H and y, respectively. Then the problem

min
x∈Cn

max
||α||≤δα,||β||≤δβ

R(x; ∆H,∆y), (33)

where R(x; ∆H,∆y) is defined as in (32), is equivalent to solving the following SDP problem

min γ

subject to

τ1 ≥ 0, τ2 ≥ 0, and










γ + κ− τ1 − τ2 (y −Hx)H δαd
H δβb

H

y −Hx I −δαG δβQ

δαd −δαG
H τ1I 0

δβb δβQ
H 0 τ2I











≥ 0, (34)

where G , [H1x, . . . ,Hpx] and Q , [y1, . . . ,yp].

Proof of Theorem 3. The proof of Theorem 2 follows similar lines to the proof of Theorem 1,

hence is omitted here. �

Remark 4. Under the framework introduced in this section, one can straightforwardly obtain the

corollaries similar to Corollaries 1 and 2 by considering cases in which the uncertainty is either

only on the data matrix or only on the output vector, i.e., δβ = 0 and δα = 0 cases, respectively.

The derivations follow similar lines to Corollaries 1, 2 and Theorem 3, hence is omitted. However,

similar results can be readily derived from the result in Theorem 3 with suitable changes in the

SDP formulations.

Remark 5. The proofs of Theorem 2 and Theorem 3 follow from the results of Theorem 1, which

relies on the lossless S-procedure. However, S-procedure is lossless with two constraints when the

corresponding two quadratic (Hermitian) forms on the complex linear space [37]. However, classical

S-procedure for quadratic forms is, in general, lossy with two constraints in the real case [38]. Hence,

Theorem 2 and Theorem 3 cannot be extended for real linear space. On the other hand, under

the frameworks described in Remark 3 and Remark 4, one can safely extend the same conclusions
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Figure 1: Sorted residual errors for the rgrt-LS, rbst-LS, LS, and TLS estimators over 1000 trials

when δH = δY = 1.2, m = 5, and n = 3.

for the real case also, since S-procedure is lossless for quadratic forms with one constraint both in

complex and real spaces [39, 40].

6. Simulations

We provide numerical examples in different scenarios in order to illustrate the merits of the

proposed algorithms. In the first set of the experiments, we randomly generate a data matrix of

size m×n, and an output vector of size m× 1, which are normalized to have unit norms. Then, we

generate 1000 random perturbations ∆H, ∆y, where ||∆H|| ≤ δH , ||∆y|| ≤ δY , m = 5, n = 3, and

δH = δY = 1.2. Here, we label the algorithm in Theorem 1 as “rgrt-LS”, the robust LS algorithm

of [9] as “rbst-LS”, the total LS algorithm [9] as “TLS”, and finally the LS algorithm tuned to the

estimates of the data matrix and the output vector as “LS”, where we directly use x̂ = H+y.

For each algorithm and for each random perturbation, we find the corresponding x̂ and calculate

the error
∣
∣
∣

∣
∣
∣H̃x̂− ỹ

∣
∣
∣

∣
∣
∣

2

. After we calculate the errors for each algorithm and for all random perturba-

tions, we plot the corresponding sorted errors in ascending order in Fig. 1 for 1000 perturbations.
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Since the rbst-LS algorithm optimizes the worst-case residual error with respect to worst possible

disturbance, it usually yields the smaller worst-case residual error among all algorithms for these

simulations. On the other hand, since the LS algorithm directly uses the estimates, it usually yields

the smaller residual error when the perturbations on the data matrix and the output vector are

significantly small.

These results can be observed in Fig. 1, where in one extreme, the largest residual errors are

observed as 2.9762 for the TLS estimator, 2.2557 for the LS estimator, 1.9275 for the rbst-LS

estimator, and 1.9325 for the rgrt-LS estimator. In the other extreme, i.e., when there is almost

no perturbation, the smallest estimation errors are observed as 0.3035 for the LS estimator, 0.4036

for the TLS estimator, 0.8727 for the rbst-LS estimator, and 0.6387 for the rgrt-LS estimator.

While the LS estimator can be preferable when there is relatively smaller perturbations and the

rbst-LS estimator can be preferable when there is significantly higher perturbations, the introduced

algorithm provides a tradeoff between these algorithms and achieve a significantly smaller average

error performance. The average residual error of the rgrt-LS estimator is observed as 1.1928,

whereas this value is 1.2180 for the LS estimator, 1.2708 for the rbst-LS estimator, and 1.3826 for

the TLS estimator. Hence, the rgrt-LS estimator is not only robust but also efficient in terms of

the average error performance compared to its well-known alternatives.

For the second experiment, we generate 1000 random perturbations ∆H, ∆y, where ||∆H|| ≤
δH , ||∆y|| ≤ δY , m = 5, n = 3 for different perturbation bounds and compute the averaged error

over 1000 trials for the rgrt-LS, the LS, the rbst-LS, and the TLS algorithms. In Fig. 2, we present

the averaged residual errors for these algorithms for different values of perturbation bounds, i.e.,

δY = δH = δ ∈ [0.3, 0.6]. We observe that the proposed rgrt-LS algorithm has the best average

residual error performance over different perturbation bounds compared to the LS, the rbst-LS and

the TLS algorithms.

As can be observed from Fig. 2, as the perturbation bounds increase, the performances of the LS

and the TLS estimators significantly deteriorate, whereas the performance of the rbst-LS estimator

almost does not change. The residual error of the rgrt-LS estimator, on the other hand, slightly

increases as the perturbation bounds increase, yet the robustness of this estimator can be observed

in Fig. 2. Furthermore, the rgrt-LS estimator significantly outperforms its competitors in terms

of the average error performance by introducing a transition between the best-case performance of

the LS estimator and the worst-case performance of the rbst-LS estimator.
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Figure 2: Averaged residual errors for the rgrt-LS, rbst-LS, LS, and TLS estimators over 1000 trials

when δH = δY ∈ [0.3, 0.6], m = 5, and n = 3.

In the next experiment, we examine a system identification problem [15], which can be formu-

lated as H0x = y0, where H = H0 +W is the observed noisy Toeplitz matrix and y = y0 +w is

the observed noisy output vector. Here, the convolution matrix H (which is Toeplitz) constructed

from h which is selected as a random sequence of ±1’s. For a randomly generated filter h of length

3, we generate 1000 random structured perturbations for H0 and y0, where ||α|| ≤ 2 ||H0||, and
plotted the sorted estimation errors in ascending order in Fig. 3.

The average residual errors, on the other hand, are observed as 1.5549 for the structured regret

LS estimator “str-rgrt-LS” of Remark 4, 1.7141 for the structured robust LS algorithm “str-rbst-

LS”, 2.0061 for the TLS estimator, 2.1205 for the LS estimator, and 2.6319 for the structured

least squares bounded data uncertainties estimator, labeled as “SLS-BDU” and presented in [15].

Therefore, we observe that the str-rgrt-LS algorithm yields the smallest average residual error among

its competitors. In addition, we observe that the str-rgrt-LS estimator has a smaller residual error

in most of the trials compared to its well-known alternatives, owing to its novel regret formulation.

Finally, in Fig. 4, we provide errors sorted in ascending order for the algorithm in Theorem 2
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Figure 3: Sorted residual errors for the str-rgrt-LS, str-rbst-LS, SLS-BDU, LS, and TLS estimators

over 1000 trials when δH = δY = 2, m = 5, and n = 3.

as “rgrt-reg-LS”, for the robust regularized LS algorithm in [16] as “rbst-reg-LS” and finally for

the regularized LS algorithm as “reg-LS” [10], where the experiment setup is the same as in the

first experiment except the perturbation bounds are set to 0.65 and the regularization parameter is

chosen as µ = 0.5. In Fig. 4, we observe that the robustness and the performance tradeoff (between

the rbst-reg-LS and the reg-LS algorithms) of the introduced rgrt-reg-LS algorithm.

When there is small perturbations on the data matrix and the output vector, i.e., in the best-

case scenario, the residual error of the reg-LS estimator is 0.1045, whereas it is 0.2416 for the

rgrt-reg-LS estimator and 0.4282 for the rbst-reg-LS estimator. As can be observed from Fig. 4, for

higher perturbations, the performance of the reg-LS estimator significantly deteriorates, whereas

the rgrt-reg-LS and rbst-reg-LS algorithms provide a robust performance. On the other hand, the

rgrt-reg-LS estimator significantly outperforms the rbst-reg-LS estimator in terms of the average

error performance and achieves even a more desirable error performance compared to the reg-LS

estimator. The average residual errors are calculated as 0.9059 for the rgrt-reg-LS estimator, 0.9177

for the reg-LS estimator, and 1.0316 for the rbst-reg-LS estimator.
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when δH = δY = 0.65, µ = 0.5, m = 3, and n = 2.

7. Conclusion

In this paper, we introduce a robust approach to LS estimation problems under bounded data

uncertainties based on a novel regret formulation. We study the robust LS estimation problems in

the presence of unstructured and structured perturbations under residual and regularized residual

error criteria. In all cases, the data vectors that minimize the worst-case regrets are found by solving

certain SDP problems. In our simulations, we observed that the proposed estimation methods

provide an efficient tradeoff between the performance and robustness, better than the best available

alternatives in different signal processing applications.

Appendix A. Proof of Theorem 1

Before we introduce the proof of Theorem 1, we need the following proposition that follows

Proposition 2 of [34].
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Proposition 1. Given matrices P1, Q1, P2, Q2, N, where N is a Hermitian matrix, i.e., N =

NH ,

N ≥ PH
1 Z1Q1 +QH

1 ZH
1 P1 +PH

2 Z2Q2 +QH
2 ZH

2 P2,

∀ Z1,Z2 : ||Z1|| ≤ δ1, ||Z2|| ≤ δ2, if and only if there exist τ1, τ2 ≥ 0 such that








N− τ1Q
H
1 Q1 − τ2Q

H
2 Q2 −δ1P

H
1 −δ2P

H
2

−δ1P1 τ1I 0

−δ2P2 0 τ2I







≥ 0. (A.1)

Proof of Proposition 1. Following similar lines to [34], we first note that

N ≥ PH
1 Z1Q1 +QH

1 ZH
1 P1 +PH

2 Z2Q2 +QH
2 ZH

2 P2,

∀ Z1,Z2 : ||Z1|| ≤ δ1, ||Z2|| ≤ δ2, if and only if for every u we have

uHNu ≥ max
||Z1||≤δ1, ||Z2||≤δ2

{

uHPH
1 Z1Q1u+uHQH

1 ZH
1 P1u+ uHPH

2 Z2Q2u+ uHQH
2 ZH

2 P2u
}

= 2δ1 ||P1u|| ||Q1u||+ 2δ2 ||P2u|| ||Q2u|| , (A.2)

where the last line follows from the Cauchy-Schwartz inequality by choosing

Z1 =
δ1P1uu

HQH
1

||P1u|| ||Q1u||
,

and

Z2 =
δ2P2uu

HQH
2

||P2u|| ||Q2u||
.

Furthermore, from the Cauchy-Schwartz inequality, (A.2) can be written as

uHNu− 2
(
δ1y

H
1 P1u+ δ2y

H
2 P2u

)
≥ 0, (A.3)

∀u,y1,y2 : ||y1|| ≤ ||Q1u|| , ||y2|| ≤ ||Q2u||. Note that the constraint ||y1|| ≤ ||Q1u|| is equivalent
to

uHQH
1 Q1u− yH

1 y1 ≥ 0,

and similarly, ||y2|| ≤ ||Q2u|| is equivalent to

uHQH
2 Q2u− yH

2 y2 ≥ 0.
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Hence, after some algebra we obtain (A.3) as follows








u

y1

y2








H 






N −δ1P
H
1 −δ2P

H
2

−δ1P1 0 0

−δ2P2 0 0








︸ ︷︷ ︸

,F0








u

y1

y2








︸ ︷︷ ︸

,y

≥ 0,

∀y such that







u

y1

y2








H 






QH
1 Q1 0 0

0 −I 0

0 0 0








︸ ︷︷ ︸

,F1








u

y1

y2







≥ 0,

and







u

y1

y2








H 






QH
2 Q2 0 0

0 0 0

0 0 −I








︸ ︷︷ ︸

,F2








u

y1

y2







≥ 0.

Then applying S-procedure [25], we have

yHF0y ≥ 0,

∀y : yHF1y ≥ 0,yHF2y ≥ 0,

where ∃ y0 : yH
0 F1y0 > 0,yH

0 F2y0 > 0. (A.4)

Note that due to the structures of F1 and F2, the regularity conditions can be easily verified. Since

F0,F1, and F2 are Hermitian matrices, i.e., Fi = FH
i , i = 0, 1, 2, by Theorem 1.1 in [37], (A.4) is

satisfied if and only if ∃ τ1, τ2 ≥ 0 such that

F0 − τ1F1 − τ2F2 ≥ 0.

That is 






N− τ1Q
H
1 Q1 − τ2Q

H
2 Q2 −δ1P

H
1 −δ2P

H
2

−δ1P1 τ1I 0

−δ2P2 0 τ2I







≥ 0.

This concludes the proof of Proposition 1. �
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Now we consider the minimax problem defined in (9), and reformulate it as follows

min
x∈Cn

max
||∆H||≤δH ,||∆y||≤δY

R(x; ∆H,∆y) = min
x,γ

γ,

subject to

R(x; ∆H,∆y) ≤ γ, ∀∆H,∆y : ||∆H|| ≤ δH , ||∆y|| ≤ δY , (A.5)

where

R(x; ∆H,∆y) =
∣
∣
∣

∣
∣
∣ỹ − H̃x

∣
∣
∣

∣
∣
∣

2

−
(

κ+ dH∆h+∆hHd+ bH∆y +∆yHb
)

, (A.6)

and κ , f(H,y). By applying the Schur complement to the constraints in (A.5), we can compactly

denote (A.5) in the matrix form as follows




γ+κ+dH∆h+∆hHd+bH∆y+∆yHb

(

ỹ − H̃x
)H

ỹ − H̃x I



≥0, (A.7)

∀∆H,∆y : ||∆H|| ≤ δH , ||∆y|| ≤ δY . Rearranging terms in (A.7), we obtain




γ + κ (y −Hx)

H

y −Hx I



 ≥ −




dH

X



∆h
[

1 0

]

−




1

0



∆hH
[

d XH
]

−




bH

−I



∆y
[

1 0

]

−




1

0



∆yH
[

b −I

]

, (A.8)

∀∆H,∆y : ||∆H|| ≤ δH , ||∆y|| ≤ δY , where we used ∆Hx = X∆h, ∆h = vec (∆H), and X ,

xH ⊗ I. By applying Proposition 1 to (A.8), it follows that (9) is equivalent to

min γ

subject to

τ1 ≥ 0, τ2 ≥ 0, and










γ + κ− τ1 − τ2 (y −Hx)H δY b
H δHdH

y −Hx I −δY I δHX

δY b −δY I τ1I 0

δHd δHXH 0 τ2I











≥ 0,

hence the desired result. Therefore, this concludes the proof of Theorem 1. �
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