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a b s t r a c t

We propose novel adaptive filtering algorithms based on the mean-fourth error objective
while providing further improvements on the convergence performance through propor-
tionate update. We exploit the sparsity of the system in the mean-fourth error framework
through the proportionate normalized least mean fourth (PNLMF) algorithm. In order to
broaden the applicability of the PNLMF algorithm to dispersive (non-sparse) systems, we
introduce the Krylov-proportionate normalized least mean fourth (KPNLMF) algorithm
using the Krylov subspace projection technique. We propose the Krylov-proportionate
normalized least mean mixed norm (KPNLMMN) algorithm combining the mean-square
and mean-fourth error objectives in order to enhance the performance of the constituent
filters. Additionally, we propose the stable-PNLMF and stable-KPNLMF algorithms over-
coming the stability issues induced due to the usage of the mean fourth error framework.
Finally, we provide a complete performance analysis, i.e., the transient and the steady-
state analyses, for the proportionate update based algorithms, e.g., the PNLMF, the
KPNLMF algorithms and their variants; and analyze their tracking performance in a
non-stationary environment. Through the numerical examples, we demonstrate the
match of the theoretical and ensemble averaged results and show the superior perfor-
mance of the introduced algorithms in different scenarios.

& 2014 Elsevier B.V. All rights reserved.
1. Introduction

Many signal processing problems such as noise removal,
e.g., recent works [1–3], echo cancellation, e.g., recent works
[4–7], and channel equalization, e.g., recent works [8,9], can
be formulated in the general system-identification frame-
work depicted in Fig. 1. In this framework, we model the
unknown system adaptively by minimizing a certain statis-
tical measure of the error et between the output of the
ayin),
.tr (A. Demir),
unknown system dt and the model system d̂t . Minimization
in the mean square error (MSE) sense is the most widely
known and used technique providing tractability and relative
ease of analysis. As an alternative, we consider the mini-
mization of the mean-fourth error, which is shown to
improve performance compared to the conventional MSE
objective with a considerable margin in certain scenarios
[10–12]. In this context, the normalized least mean fourth
(NLMF) algorithm is shown to achieve faster convergence
performance through the independence of the input data
correlation statistics in certain settings [13–15].

In this paper, we seek to enhance the performance of
the NLMF algorithm further. We first derive the propor-
tionate normalized least mean fourth (PNLMF) algorithm
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Fig. 1. Block diagram of the system identification task.

M.O. Sayin et al. / Signal Processing 109 (2015) 1–132
based on the proportionate update and the mean fourth
error framework. The proportionate update exploits the
sparsity of the underlying system by updating each com-
ponent of the estimate wt independently [6]. In the echo-
cancellation framework, the proportionate least mean-
square (PNLMS) algorithms are shown to converge faster
for the sparse echo paths [6,16]. We note that the con-
vergence performance of the conventional PNLMS algo-
rithm degrades significantly in the dispersive systems. In
[17], authors propose an improved PNLMS (IPNLMS) algo-
rithm providing enhanced performance independent of
the sparsity of the impulse response of the system. Hence,
in the derivation of the PNLMF algorithm we follow a
similar approach with [17] to increase the reliability of our
novel algorithms and our algorithm PNLMF further
improves the convergence performance of the IPNLMS
algorithm for certain scenarios.

Furthermore, we introduce the Krylov-proportionate nor-
malized least mean fourth (KPNLMF) algorithm [18]. Here,
the Krylov subspace projection technique is incorporated
within the framework of the PNLMF algorithm. The Krylov-
proportionate normalized least mean square (KPNLMS) algo-
rithm, introduced in [19–21], extends the use of the IPNLMS
algorithm to the identification of dispersive systems. Our
KPNLMF algorithm inherits the advantageous features of the
KPNLMS for the dispersive systems in addition to the
benefits of the mean-fourth error objective. We note that a
mixture combination of the mean-square and the mean-
fourth error objectives is shown to outperform both of the
constituent filters [22]. Hence, we propose the Krylov-
proportionate normalized least mean mixed norm
(KPNLMMN) algorithm having a convex combination of the
mean-square and the mean-fourth error objectives. In addi-
tion, we point out that the stability of the mean-fourth error
based algorithms depends on the initial value of the adaptive
filter weights, the input and noise power [23–25]. In order to
enhance the stability of the introduced algorithms, we
further introduce the stable-PNLMF and the stable-KPNLMF
algorithms [24,25]. Finally we provide a complete perfor-
mance analysis for the introduced algorithms, i.e., the
transient, the steady-state and the tracking performance
analyses. We evaluate convergence performance of our
algorithms and compare themwith the well-known example
algorithms under several different configurations through
numerical examples. We observe that the introduced algo-
rithms achieve superior performance in different scenarios.

Our main contributions include the following: (1) We
derive the PNLMF algorithm suitable for sparse systems
such as for echo-cancellation frameworks based on the
natural gradient descent framework and propose the
stable-PNLMF algorithm avoiding the stability issues
induced due to the mean-fourth error objective. (2) We
derive the KPNLMF algorithm utilizing the Krylov projec-
tion technique, which broadens the applicability of the
PNLMF algorithm to the non-sparse systems. (3) We
introduce the KPNLMMN and the stable-KPNLMF algo-
rithms achieving better trade-off in terms of the transient
and steady-state performance under certain settings. (4)
We provide a complete performance analysis, i.e., the
transient and the steady state analyses; and analyze the
tracking performance in a non-stationary environment. (5)
We demonstrate the improved convergence performance
of the proposed algorithms through several numerical
examples under different scenarios.

The paper is organized as follows. In Section 2, we
describe the system identification framework for the mean-
square and the mean-fourth error objectives. We formulate
the PNLMF and KPNLMF algorithms, and their variants in
Sections 3 and 4, respectively. We propose a new simplifica-
tion scheme reducing the computational complexity of the
Krylov-proportionate update based algorithms further in
Section 5. We carry out a complete performance analysis of
the algorithms in Section 6. Section 7 contains the simulation
results for the different configurations followed by the
concluding remarks in Section 8.

Notation: All vectors are column vectors represented by
boldface lowercase letters, ½��T , J � J and j � j are the trans-
pose, l2-norm and the absolute value operators, respec-
tively. For a vector x, xðiÞ is the ith entry. Matrices are
represented with boldface capital letters. For a random
variable x (or vector x), E½x� (or E½x�) is the expectation.
Time index appears as a subscript, e.g., xt.

2. System description

Consider the system identification task given in Fig. 1.
The output of the unknown system is given by

dt ¼wT
oxtþvt ; tAN;

where xtARM is the zero-mean input regressor vector,
woARM is the coefficient vector of the unknown system to
be identified and vtAR is the zero-mean noise assumed to
be independent and identically distributed (i.i.d.) with
variance σv

2
. Although we assume a time invariant desired

vector wo here, we also provide the tracking performance
analysis for certain non-stationary models later in the
paper. We assume that the input regressor xt and the
noise vt are independent as is common in the analysis of
traditional adaptive schemes [33]. We note that the system
identification task also models the conventional high-level
echo-cancellation framework where the signal xt denotes
the far-end signal that excites the echo path, vt is the near-
end noise signal, dt corresponds to the near-end signal,
and wo represents the unknown echo-path impulse
response [16].

Given the input regressor, the estimate of the output
signal is given by

d̂t ¼wT
t xt ; tAN;

where wt ¼ ½wð1Þ
t ;wð2Þ

t ;…;wðMÞ
t �T is the adaptive weight
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vector that estimates wo. In this framework, we aim to
minimize a specific statistical measure of the error
between the output signal dt and the estimate produced
by the adaptive algorithm d̂t , i.e., et9dt� d̂t . The mean
square error (MSE), E½e2t �, and the mean fourth error (MFE),
E½e4t �, are two popular choices to minimize.

In the next sections, we introduce several adaptive
filtering algorithms in the system identification framework
that are constructed based on the MSE and MFE criteria
through the proportional update idea and the Krylov-
subspace-projection technique.

3. Proportionate update approach

In the well-known and popular gradient descent
method, we seek to converge to a local minimum of a
given cost function, e.g., Jðdt ; xt ;wÞ ¼ E½ðdt�xT

t wÞ4�, irre-
spective of the unknown parameter space [33]. However,
in the proportionate update approach, we consider the
cases where the unknown parameters are sparse or quasi-
sparse, where most of the terms in the true parameter
vector, i.e., wo, are close to zero. For such cases, different
from the conventional gradient descent methods, the
natural gradient adaptation aims to exploit the near
sparseness of the parameter space for faster convergence
to the local minimum [26]. Instead of an Euclidean space,
the natural gradient descent adaptation utilizes a Rieman-
nian metric structure, which is introduced in [27]. Assume
that S¼ fwARMg is a Riemannian parameter space on
which we define the cost function Jðd; x;wÞ. Then, the
distance between the current parameter vector wt and the
next parameter vector wtþ1 is defined as

Dðwtþ1;wtÞ9ðwtþ1�wtÞTΘtðwtþ1�wtÞ;
9‖wtþ1�wt‖2Θt

; ð1Þ

where ΘtARM�M denotes the Riemannian metric tensor
describing the local curvature of the parameter space and
depends on wt in general [26]. A formulation of the
proportionate update based algorithms using the natural
gradient descent adaptation has been studied in [28,29].
Particularly, in this paper, we define Θt9G�1

t and Gt is
given by

Gt9diag ϕð1Þ
t ;ϕð2Þ

t ;…;ϕðMÞ
t

� �
;

ϕðkÞ
t 9 1�γ

� �1
M

þγ
jwðkÞ

t j
‖wt‖1þκ

; k¼ 1;…;M; ð2Þ

where γAð0;1Þ is the proportionality factor and κ is a
small regularization constant [17]. However, note that
γ ¼ ðαþ1Þ=2 for the α used in [17].

We note that we can derive most of the conventional
adaptive filtering algorithms through the following generic
update [30,31]:

wtþ1 ¼ arg min
w

fDðw;wtÞþηJðdt ; xt ;wÞg: ð3Þ

Hence, after some algebra for the Riemannian metric
tensor Θt and the stochastic cost function Jðdt ; xt ;wÞ, the
natural gradient descent algorithm yields

wtþ1 ¼wtþηΘ�1
t ∇wJðdt ; xt ;wÞ w ¼ wt ;

�� ð4Þ
where η40 is the step size. As an example, for J1ðdt ; xt ;

wÞ9 ðdt�xT
t wÞ2, (4) yields the IPNLMS algorithm [17] as

wtþ1 ¼wtþμet
Gtxt

xT
t Gtxtþϵ

ð5Þ

by letting η¼ μ=ðxT
t GtxtþϵÞ and ϵ40 denotes the regular-

ization factor. Note that for a stationary regression signal
and given signal-to-noise ratio (SNR) which is defined as
E½wT

oxtxT
t wo�=E½v2t �, we can choose the regularization factor

as [32]

ϵ¼ 1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þSNR

p

SNR
σ2
x :

However, when any a priori information on the SNR is not
available, the determination of the regularization constant
requires special care.

We emphasize that the proportionate update (5) dis-
tinguishes frequently used, rarely used and unused coeffi-
cients; and updates them separately with different step
sizes. In particular, we update each filter coefficient based
on the absolute value in a proportional manner. Hence, we
seek to employ the proportionate update idea in the MFE
framework. To this end, for the stochastic cost function
J2ðdt ; xt ;wÞ9ðdt�xT

t wÞ4, we obtain the PNLMF algorithm
[18], given by

wtþ1 ¼wtþ2μe3t
Gtxt

xT
t Gtxtþϵ

:

We point out that the PNLMF algorithm outperforms the
NLMS and NLMF algorithms when the system to be iden-
tified is sparse. However, the PNLMF algorithm has stabi-
lity issues due to the mean-fourth error objective. In order
to overcome this issue, we propose the stable-PNLMF
algorithm defined as

wtþ1 ¼wtþ
2μGtxte3t

xT
t GtxtðxT

t Gtxtþe2t Þ
; ð6Þ

similar to the stable-NLMF algorithm [24,25]. In practice, in
order to avoid a division by zero, we also propose the
regularized stable-PNLMF algorithm modifying (6) such that

wtþ1 ¼wtþ
2μGtxte3t

ðxT
t GtxtþϵÞðxT

t Gtxtþe2t Þ
:

We note that the stable-PNLMF algorithm (6) updates
its coefficients similar to the IPNLMS algorithm at the
initial stages of the adaptation where the estimation error
is relatively large. However, for small error values, the
stable-PNLMF algorithm updates akin to the PNLMF algo-
rithm, which yields smaller steady-state error.

In the next section, we extend the enhanced performance
of the proportionate update idea to dispersive (non-sparse)
systems using the Krylov subspace projection technique in
the mean fourth error framework.
4. Projection onto the Krylov subspace

We can utilize the proportionate update approach in a
dispersive system (S¼ fwARMg is an Euclidean parameter
space) through the projection of the unknown system onto
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the Krylov subspace. To this end, we define

KMðR̂ ; p̂Þ9 ½p̂; R̂p̂; R̂2
p̂;…; R̂

M�1
p̂�; ð7Þ

whose column vectors span the Krylov subspace [19]. We
denote the estimates of the autocorrelation matrix of the
regressor and the cross-correlation vector between the
input regressor xt and the output dt through R̂ and p̂,
respectively. We construct the orthogonal matrix
QARM�M by orthonormalizing the columns of KMðR̂ ; p̂Þ.
Through the orthogonal matrix Q , in [20], the author
shows that the projected system wn

o9Q Two has a sparse
structure provided that the input regressor xt is nearly
white, i.e., R̂ � I. In particular, if the autocorrelation matrix
R̂ of the input regressor xt has clustered eigenvalues or a
condition number that is close to one, then any unknown
system will have a sparse representation under the new
Krylov subspace coordinates [21]. However, for the colored
input signal, we can use a preconditioning, i.e., whitening,
process before the projection onto the Krylov subspace
[19].

We define the projected weight vector as ŵ t9Q Twt .
Then, the projected parameter space Ŝ ¼Q TwARM is a
Riemannian parameter space and we can use the natural
gradient descent update as follows:

ŵ tþ1 ¼ ŵ tþηΘ̂
�1

t ∇ŵ Jðdt ;Q Txt ; ŵÞ ŵ ¼ ŵ t
;

�� ð8Þ
where we also project the regression signal onto the
Krylov subspace so that the error is given by et ¼ dt�
ðQ TxtÞT ðQ TwtÞ ¼ dt�xT

t wt since Q is an orthonormal
matrix, i.e., Q TQ ¼ I. However, we note that Θ̂t9 Ĝ

�1
t

and Ĝt is given by

Ĝt9diag ϕ̂
ð1Þ
t ; ϕ̂

ð2Þ
t ;…; ϕ̂

ðMÞ
t

� 	
;

ϕ̂
ðkÞ
t 9 1�γ

� �1
M

þγ
jŵðkÞ

t j
‖ŵ t‖1þκ

; k¼ 1;…;M: ð9Þ

In the original coordinates by multiplying both sides of (8)
from left with Q , we obtain the following update:

wtþ1 ¼wtþηQΘ̂
�1

t ∇ŵ Jðdt ;Q Txt ; ŵÞ ŵ ¼ ŵ t
:

��
By letting η¼ μ=ðxT

t QĜtQ TxtþϵÞ and for the square error
cost J1ðdt ; xt ;wÞ, we obtain the KPNLMS algorithm [21],
given by

wtþ1 ¼wtþμet
QĜtQ Txt

xT
t QĜtQ Txtþϵ

:

Correspondingly, the fourth error cost J2ðdt ; xt ;wÞ yields
the KPNLMF algorithm [18] as

wtþ1 ¼wtþ2μe3t
QĜtQ Txt

xT
t QĜtQ Txtþϵ

: ð10Þ

In [22], the authors demonstrate that a mixture combina-
tion of the mean-square and mean-fourth error objectives
achieve superior performance with respect to both of the
constituent filter. In that sense, we propose the KPNLMMN
algorithm given by

wtþ1 ¼wtþμ δetþ2 1�δ
� �

e3t
� � QĜtQ Txt

xT
t QĜtQ Txtþϵ

;

where δA ½0;1� is the combination weight. Finally, the
extension of the stable-PNLMF algorithm to be used in
the dispersive systems through the Krylov-subspace pro-
jection technique leads to the following algorithm, i.e., the
stable-KPNLMF algorithm, as

wtþ1 ¼wtþ
2μQĜtQ Txte3t

xT
t QĜtQ TxtðxT

t QĜtQ Txtþe2t Þ
:

We point out that we can estimate R¼ E½xtxT
t � and

p¼ E½xtdt �, recursively, in the initial stages of the adapta-
tion such that

R̂ tþ1 ¼ R̂ tþxtxT
t ;

p̂tþ1 ¼ p̂tþxtdt ;

for tAf1;…; Tog. During the estimation stage we can
update wt through the NLMF algorithm, i.e., Ĝt ¼ I. Once
we have estimated R and p, we can construct the Krylov
vectors. However, the explicit generation of Krylov vectors
is an ill-conditioned numerical operation. The well-known
Gram–Schmidt method does not help here as it first gen-
erates the Krylov vectors and then orthonormalizes them.
We can perform the orthonormalization via Arnoldi's
method since it does not explicitly generate Krylov vectors
[34,35]. Furthermore, we construct Q only once in the
algorithm, hence this calculation does not bring significant
additional computational burden for the updates.

In the sequel, we discuss the approaches to reduce the
computational complexity of the introduced algorithms.

5. Algorithms with reduced computational complexity

In this section, we examine several approaches to reduce
the computational complexity of the update for wt. We note
that at each time t computing Ĝt (9) and then QĜtQ Txt , in
general, have a complexity of OðM2Þ unless the matrix
Ωt9QĜtQ T has a special structure. Hence, the algorithm
given in (10) is computationally intensive. However, we can
attain linear computational complexity per iteration, i.e., O
(M), as follows.

In [21], the authors demonstrate that whenever the
projected vector Q Two is sparse (i.e., R̂ has one of the
properties: p̂ is an eigenvector of R̂ or eigenvalues of R̂ are
clustered or eigenvalue-spread of R̂ is close to 1), the
nonzero entries are concentrated in the first few elements
in terms of the l2-norm (Euclidean norm). Similarly, the
projected weight vector ŵ t has its nonzero entries mainly
in the first few elements. Hence, in [20], the author
approximates Ĝt with the following simplified matrix:

~Gt9diagf ~ϕð1Þ
t ;…; ~ϕ

ðλÞ
t ;ψ t ;…;ψ tg;

~ϕ
ðkÞ
t 9 1�γ

� �1
M

þγ
jŵðkÞ

t j
δtþκ

;

ψ t9 1�γ
� �1

M
þγ

ςτt
δtþκ

; ð11Þ

where

τt9
1
λ

∑
λ

l ¼ 1
ŵðlÞ

t ; δt9 λþς M�λ
� �� �

τt
�����

and ς is a pre-specified small constant. However, in this
paper, we seek to achieve computationally more efficient
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algorithms. To this end, instead of (11), we approximate Ĝt

with

Gt9diagfϕð1Þ
t ;…;ϕ

ðλÞ
t ;ψ ;…;ψg;

ϕ
ðkÞ
t 9 1�γ

� � 1
M

þγ
jŵðkÞ

t j
∑λ

l ¼ 1jŵ
ðlÞ
t jþκ

; k¼ 1;…; λ; ð12Þ

where ψ ¼ ð1�γÞ=M40, i.e., we assume that ŵðkÞ
t � 0 for

all kAfλþ1;…;Mg. Then, as in [20], we define Ωt9QGQ T

and Q λARM�λ as the first λ columns of Q such that
Q ¼ ½Q λQM�λ�. Then, we can compute Ωtxt through

Ωtxt ¼ ½Q λQM�λ�
Gt;λ 0
0 ψ I

" #
Q T

λ

Q T
M�λ

" #
xt

¼Q λðGt;λQ
T
λxt�ψQ T

λxtÞþψxt ; ð13Þ
where we define Gt;λARM�λ as the first λ columns of Gt

[20]. Note from (13) that we do not need QM�λ to compute
Ωtxt . On the contrary, we need to compute the elements
of Gt;λ (12) since ŵ t ¼Q Twt . However, we emphasize that
only the first λ entries of ŵ t , i.e., ŵ t;λ, are needed since
only fϕðkÞ

t : k¼ 1;…; λg are computed in our computation-
ally more efficient algorithm. Hence, we update the sub-
vector ŵ t;λ as

ŵ tþ1;λ ¼ ŵ t;λþ2μe3t
Gt;λQ

T
λxt

xT
t Ωtxtþϵ

ð14Þ

and the update for wt is given by

wtþ1 ¼wtþ2μe3t
Ωxt

xT
tΩxtþϵ

: ð15Þ

At each time t the sub-matrix Gt;λ is computed, and using
(13) the sub-vector ŵ t;λ and the weight vector wt are
updated as in (14) and (15), respectively. Note that the
computational complexity of (13) is only OðλMÞ, i.e., O(M),
so are those of (14) and (15). Therefore, using this
approach, given in (12)–(15), we can attain linear compu-
tational complexity per iteration.

Since QM�λ is not used, in the new scheme we can
compute only the first λ≪M columns of Q beforehand. In
[20], the author suggests that λ� 5 is enough to achieve
acceptable performance in general. Additionally, we can
choose the smallest λ satisfying that R̂

λ
p̂ is within the

subspace spanned by the first λ columns of KMðR̂ ; p̂Þ [20].
To this end, a threshold δ¼0.01 yields reasonable perfor-
mance in the selection of the smallest λ in general [20].

In the next section, we provide a complete performance
analysis for the proposed algorithms.

6. Performance analysis

We can write the proportionate update based algo-
rithms in the following form:

wtþ1 ¼wtþμ
Φtxt

xT
tΦtxtþϵ

f etð Þ ð16Þ

where Φt denotes Gt for the PNLMF variant algorithms
while Φt corresponds to Ωt for the KPNLMF variant
algorithms. We note that Φ is a symmetric positive defi-
nite matrix for both of the cases. Additionally, f ðetÞ is the
error nonlinearity function, e.g., f ðetÞ ¼ 2e3t .
We define a priori and the weighted a priori estimation
error as follows:

ea;t9xT
t ðwo�wtÞ and eΣa;t9xT

t Σðwo�wtÞ;

whereΣ is a symmetric positive definite weighting matrix.
We utilize the weighting matrixΣ later in the analysis. The
deviation parameter vector is defined as ~w ¼wo�wt .
Then, the weighted energy recursion of (16) leads to

E ‖ ~w tþ1‖2Σ

 �¼ E ‖ ~w t‖2Σ


 ��2μE xT
t

ΦtΣ
xT
tΦtxtþϵ

� 	
~wf etð Þ

� 

þμ2E xT
t

ΦtΣΦt

ðxT
tΦtxtþϵÞ2

 !
xt f

2 etð Þ
" #

;

¼ E½‖ ~w t‖2Σ��2μE½eΣ1
a;t f ðetÞ�þμ2E½‖xt‖2Σ2

f 2ðetÞ�;
ð17Þ

where

Σ19
ΦtΣ

xT
tΦtxtþϵ

and Σ29
ΦtΣΦt

ðxT
tΦtxtþϵÞ2

:

In the subsequent analysis of (17), we employ the
following assumptions:

Assumption 1. The observation noise vt is a zero-mean
independently and identically distributed (i.i.d.) Gaussian
random variable and independent from xt. The regressor
signal xt is also zero-mean i.i.d. Gaussian random vector
with the auto-correlation matrix Rx9σ2

x I.

Assumption 2. The a priori estimation error ea;t has
Gaussian distribution and it is jointly Gaussian with the
weighted a priori estimation error eΣ1

a;t . The assumption is
reasonable for long filters, i.e., p is large, sufficiently small
step size μ and by Assumption 1 [36].

Assumption 3. The random variables ‖xt‖2Σ2
and f 2ðetÞ are

uncorrelated, which enables the following split as

E½‖xt‖2Σ2
f 2ðetÞ� ¼ E½‖xt‖2Σ2

�E½f 2ðetÞ�:

Assumption 4. The coefficients of the mean of the esti-
mation vector wt are far larger than the corresponding
variance such that the matrix Φt and the deviation vector
~w t are uncorrelated and

E eΣ1
a;t ea;t

h i
¼ E ~wT

t E
xtxT

tΦtΣ
xT
tΦtxtþϵ

� 
~w t

� 
:

Remark 6.1. By Assumption 1, we can express the relation
between the various performance measures, i.e., the
mean-square deviation (MSD) E½‖ ~w t‖2� denoted by ξ, the
excess mean square error (EMSE) E½e2a;t � denoted by ζ and
the mean square error (MSE) E½e2t � ¼ σ2

e as follows:

σ2
e ¼ ζþσ2

v ¼ σ2
xξþσ2

v : ð18Þ

Hence, once we evaluate one of those performance mea-
sures, we can obtain the other results through (18).

We next provide the mean square convergence perfor-
mance of the introduced algorithms.
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6.1. Transient analysis

By Assumptions 1 and 2, and Price's result [37–39], we
obtain

E eΣ1
a;t f etð Þ

h i
¼ E eΣ1

a;t ea;t
h iE½ea;t f ðea;tþvtÞ�

E½e2a;t �
: ð19Þ

We can evaluate the first term on the right hand side of
(19) through the generalized Abelian integral functions
[40,41]. By Assumption 4, we replace Φt with its mean
Φt9E½Φt � in

E
xtxT

t ΦtΣ
xT
t Φtxtþϵ

" #
¼ E

xtxT
t

xT
t Φtxtþϵ

" #
ΦtΣ:

Then, we have

E
xtxT

t

xT
t Φtxtþϵ

" #
¼ 1
ð2πÞM=2σM

xZ
⋯
Z

xtxT
t

xT
tΦtxtþϵ

exp �xT
t Φtxt

2σ2
x

 !
dxt : ð20Þ

In order to evaluate (20), as in [41], we define

F β
� �

9
1

ð2πÞM=2σM
x

Z
⋯
Z

xtxT
t e

�βðϵþxT
t Φ txt Þ

xT
tΦtxtþϵ

e�xTt Φ txt=2σ2
x dxt

and the derivative of FðβÞ with respect to β yields

dFðβÞ
dβ

¼ � e�βϵ

ð2πÞM=2σM
x

Z
⋯
Z

xtxT
t e

�ð1=2ÞxTt B� 1
t xt dxt ; ð21Þ

where

Bt9
1
σ2
x
þ2βΦt

� 	�1

:

Then, after some algebra we obtain (21) as

dFðβÞ
dβ

¼ Bt
e�βϵjBt j1=2

σM
x

; ð22Þ

where jBt j denotes the determinant of Bt.
We point out that Φt ¼Gt has a diagonal structure,

however, Φt ¼Ωt ¼QĜtQ T may not necessarily be diag-
onal. Hence, consider that the eigenvalue decomposition
of Φt ¼UΛtUT where Λt ¼ diagfλð1Þt ;…; λðMÞ

t g so that we
can write Bt ¼UDtUT where

Dt ¼ 1
σ2
x
þ2βΛt

� 	
Then, we obtain

Bt ¼ ∏
M

l ¼ 1

1
σ2
x
þ2βλðlÞt

� 	�1

:

�����
����� ð23Þ

Since Fð0Þ yields (20), through (22) and (23), we get

E
xtxT

t

xT
t Φtxtþϵ

" #
¼UDΛU

Tσ2
x ; ð24Þ

where DΛ ¼ diagfI1ðΛÞ;…; IMðΛÞg and

IkðΛÞ ¼
Z 1

0
e�βϵ ∏

M

l ¼ 1
ð1þ2βλðlÞÞ�1=2ð1þ2βλðkÞÞ�1 dβ;

which is in the form of a generalized Abelian integral fun-
ction and can be evaluated numerically. Note that we can
approximate λðkÞ as

λðkÞ ¼ 1�γ
M

þγ
jwðkÞ

o j
‖wo‖1þκ

or

λðkÞ ¼ 1�γ
M

þγ
jwnðkÞ

o j
‖wn

o‖1þκ

for the PNLMF and the KPNLMF algorithms, respectively.
Next, we evaluate the second term on the right hand

side of (17). To this end, we define

A9E
xtxT

tΦtΣ
xT
tΦtxtþϵ

" #

¼ σ2
xUDΛU

TΦtΣ:

Taking derivative of A with respect to ϵ, we get

∂A
∂ϵ

¼ �E
xtxT

t ΦtΣ
ðxT

t ΦtxtþϵÞ2

" #

¼ �σ2
xU ~DΛU

TΦtΣ;

where ~DΛ9diagf~I1ðΛÞ;…; ~IMðΛÞg and

~IkðΛÞ ¼
Z 1

0
βe�βϵ ∏

M

l ¼ 1
ð1þ2βλðlÞÞ�1=2ð1þ2βλðkÞÞ�1 dβ:

We point out that

E ‖xt‖2Σ2

h i
¼ �Tr

∂A
∂ϵ
Φt

� �
¼ σ2

x Tr U ~DΛU
TΦtΣΦt

n o
: ð25Þ

By (24) and (25), the weighted energy recursion (17)
yields

E ‖ ~w tþ1‖2Σ

 �¼ E ‖ ~w t‖2Σ


 ��2μσ2
xE ‖ ~w t‖2YΣ

 �E ea;t f ðetÞ


 �
E e2a;t
h i

|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
hGðea;t ;vt Þ

þμ2σ2
x Trf ~YΣΦtgE½f 2ðetÞ�|fflfflfflfflffl{zfflfflfflfflffl}

hU ðea;t ;vt Þ

; ð26Þ

where Y9UDΛU
TΦt and ~Y9U ~DΛU

TΦt . In Table 1, we
tabulate hGðea;t ; vtÞ and hUðea;t ; vtÞ for the mean-square,
mean-fourth and mixture norm updates [36]. We note
that by Assumption 1, we have σ2

ea ¼ σ2
xE½‖ ~w t‖2�.

We point out that by the Cayley–Hamilton theorem, we
can write

YM ¼ �c0I�c1Y�⋯�cM�1Y
M�1;

where ci's are the coefficients of the characteristic poly-
nomial of Y as follows:

detðyI�YÞ ¼ yMþcM�1yM�1þ⋯þc1yþc0:

Hence, the transient behavior of the proportionate update
based algorithms is given by the following theorem.

Theorem 1. Consider a proportionate update based algo-
rithm with the error nonlinearity function f ðetÞ. Then, assum-
ing the adaptive filter is mean-square stable and through
Assumptions1–4, the mean-square convergence behavior of
the filter is characterized by the state space recursion

Wtþ1 ¼AtWtþμ2σ2
xYt



Table 1
hGðet Þ and hU ðet Þ functions in terms of σ2ea and σv

2
.

f ðet Þ hGðea;t ; vt Þ hU ðea;t ; vt Þ

et 1 σ2ea þσ2v
2e3t 6ðσ2ea þσ2v Þ 60ðσ2ea þσ2v Þ3
δetþ2ð1�δÞe3t δþ6ð1�δÞðσ2ea þσ2v Þ δ2ðσ2ea þσ2v Þ þ12δð1�δÞðσ2ea þσ2v Þ2

þ60ð1�δÞ2ðσ2ea þσ2v Þ3
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where the state vectors are defined as

Wt9

E ‖ ~w t‖2

 �

⋮

E ‖ ~w t‖2YM � 1

h i
2
664

3
775; Yt9hUðea;t ; vtÞ

Trf ~YΦtg
⋮

Trf ~YYM�1Φtg

2
64

3
75

and the coefficient matrix At is given by

At9

1 �2μσ2
xhG ⋯ 0

0 1 ⋯ 0
⋮ ⋮ ⋱ ⋮

2μc0σ2
xhG 2μc1σ2

xhG ⋯ 1þ2μcM�1σ2
xhG

2
66664

3
77775:

Note that we have removed the argument of hGðea;t ; vtÞ for
notational simplicity.

In the sequel, we analyze the steady-state behavior of
the algorithms.

6.2. Steady-state analysis

In the steady-state we assume that

lim
t-1

E½‖wtþ1‖2Σ� ¼ lim
t-1

E½‖wt‖2Σ�:

Then, by (26), at steady state we have

E ‖ ~w t‖2YΣ

 �¼ μ

2
Trf ~YΣΦtg

hUðea;t ; vtÞ
hGðea;t ; vtÞ

: ð27Þ

Since Y is a positive definite matrix, the steady state mean
square deviation (MSD) yields

ξ9 lim
t-1

E ‖ ~w t‖2

 �

;

¼ μ
2
Trf ~YY�1ΦtghU ðea;t ; vtÞhGðea;t ; vtÞ

:

Then, the steady-state behavior of the proportionate update
based algorithms is given by the following theorem.

Theorem 2. Consider the same setting of Theorem 1. Then,
the steady-state MSD denoted by ξ of the adaptive filter
satisfies

ξ¼ μ
2
TrfYghU ðea;t ; vtÞ

hGðea;t ; vtÞ
; ð28Þ

where Y9UDΛΛUT and DΛ9 ~DΛD
�1
Λ ¼ diagfI1ðΛÞ;…; IM

ðΛÞg and

Ik Λ� �¼ R10 βe�βϵ∏M
l ¼ 1ð1þ2βλðlÞÞ�1=2ð1þ2βλðkÞÞ�1 dβR1

0 e�βϵ∏M
l ¼ 1ð1þ2βλðlÞÞ�1=2ð1þ2βλðkÞÞ�1 dβ

:

Through (28), we can calculate the steady-state MSD of
the introduced algorithms exactly. Then, the steady-state
MSD of the proportionate update based algorithms with
mean-square error objective, i.e., the IPNLMS and KPNLMS
algorithms, is given by

ξs ¼
μσ2

v TrfYg
2�μσ2

x TrfYg
: ð29Þ

In addition, the steady-state MSD for the mean-fourth
error objective, i.e., the PNLMF and KPNLMF algorithms, is
found as

ξf ¼
1�10μσ2

xσ
2
v TrfYg7

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�20μσ2

xσ2
v TrfYg

q
10μσ4

x TrfYg
;

where the smaller root coincides with the ensemble aver-
aged results. Furthermore, in the following, we provide the
steady-state MSD of the mixed-norm algorithms under the
assumption that the estimation error gets so small that we
can neglect the relatively high order error terms. Since
σ2
ea ¼ σ2

xξ, (28) for mixed-norm error objective yields

ξ0m ¼ μσ2
vδ TrfYgðδþ12ð1�δÞσ2

v Þ
2δþ12ð1�δÞσ2

v�μσ2
x TrfYgδo

; ð30Þ

where δo9δ2þ24δð1�δÞσ2
vþ180ð1�δÞ2σ4

v . We note that
for δ¼1, (30) coincides with (29).
Remark 6.2. We note that for the stable-PNLMF and the
stable-KPNLMF algorithms, we have

hG ea;t ; vt
� �¼ 1

E½e2a;t �
E ea;t

2e3t
xT
tΦtxtþe2t

� 

and

hU ea;t ; vt
� �¼ E

4e6t
ðxT

tΦtxtþe2t Þ2

" #
:

We assume that the estimation error et gets relatively
small at the steady state such that

f etð Þ ¼ 2e3t
xT
tΦtxtþe2t

-
2e3t

xT
tΦtxt

and similarly

f 2 etð Þ ¼ 4e6t
ðxT

tΦtxtþe2t Þ2
-

4e6t
ðxT

t ΦtxtÞ2
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as t-1. Then, by Assumption 3, at the steady-state, for
the proposed stable algorithms we obtain

ξs ¼
μ
2
TrfYgE½4e

6
t �E½e2a;t �

E½2ea;te3t �|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
E

1
ðxT

t ΦtxtÞ2

" #

E
1

xT
tΦtxt

�  : ð31Þ

We point out that with the involvement of the braced term
only on the right hand side of (31), (31) yields the steady-
state MSD of the algorithms with the mean-fourth error
cost function. Hence, the steady-state performance of the
proposed stable algorithms might differ from the steady-
state performance of the conventional least mean fourth
algorithms based on the statistics of the regressor signal.

Additionally, at the initial stages of the adaptation where
the estimation error is relatively large, the error nonlinearity
is approximately given by

f etð Þ ¼ 2e3t
xT
t Φtxtþe2t

� 2et

implying that the proposed stable algorithms demonstrate
similar learning rate with the least mean square algorithms
in the transient stage.

Remark 6.3. We note that a mixture of the mean square
and the mean fourth error cost functions outperforms both
of the constituent filters [22,42]. In [42], the authors show
that the optimum error nonlinearity for the adaptive filters
without data normalization is an optimal mixture of
different order of error measures. Hence, a mixture of
the mean-square error and the mean-fourth error objec-
tives can better approximate the optimum error nonli-
nearity also for the proportionate update algorithms. At
the steady-state by (27) and setting Σ¼ σ2

xY
�1
t , we obtain

ζ ¼ μ
2
σ2
xTrfYg

E½f 2ðetÞ�E½e2a;t �
E½ea;t f ðetÞ�

; ð32Þ

where ζ ¼ limt-1E½e2a;t � denotes the steady-state excess
mean square error. Then, through Assumptions 1 and 2,
and Price's result [42], we get

E½ea;t f ðetÞ� ¼ E½e2a;t �E½f 0ðetÞ�;
where f 0ðetÞ is the derivative of f ðetÞ with respect to et.
Then, (32) yields

ζ ¼ μ
2
σ2
xTrfYg

E½f 2ðetÞ�
E½f 0ðetÞ�

: ð33Þ

However, the excess mean square error is lower bounded
by the Cramer–Rao lower bound denoted by C [43]. Hence,
(33) leads to

E½f 2ðetÞ�
E½f 0ðetÞ�

Z
2C

μσ2
x TrfYg|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
α

and with equality for

f etð Þ ¼ �α
p0eðetÞ
peðetÞ

; ð34Þ

where peðetÞ is the probability density function of the
estimation error et [42]. For a given error distribution, we
can derive the optimum error nonlinearity through (34).
Additionally, after some algebra, through the Edgeworth
expansion of the distribution, we obtain

f optðetÞ ¼ ∑
1

j ¼ 0
c2jþ1e

2jþ1
t ;

where c2jþ1's are the combination weights. Hence, we re-
emphasize that through the mixture of mean-square and the
mean-fourth error objectives we can approximate the opti-
mum error nonlinearity better than the constituent filters.

In the next subsection, we analyze the tracking perfor-
mance of the introduced algorithms in a non-stationary
environment.
6.3. Tracking performance

We model the non-stationary system through a first-
order random walk model, in which the parameter vector
of the unknown system changes in time as follows:

wotþ1 ¼wotþqt ; ð35Þ

where qtARM is a zero-mean vector process which is
independent of the regressor xt and the noise vt and has a
covariance matrix C¼ E½qtqT

t �. Since the definitions of a priori
estimation error does not change under the first-order
random walk model, the new weighted energy recursion is
given by

E½‖ ~w tþ1‖2Σ� ¼ E½‖ ~w t‖2Σ��2μσ2
xE½‖ ~w t‖2YΣ�hGðea;t ; vtÞ

þμ2σ2
x Trf ~YΣΦtghUðea;t ; vtÞþE½qT

tΣqt �:

Then, at steady-state we have

E ‖ ~w t‖2YΣ

 �¼ μσ2

x Trf ~YΣΦtghU ðea;t ; vtÞþμ�1 TrfCΣg
2σ2

xhGðea;t ; vtÞ
:

Hence, we obtain the following theorem.

Theorem 3. Consider the same setting of Theorems1 and 2
in a non-stationary environment modeled with the first-
order random walk model through (35). Then, at the steady-
state the following equality holds:

ξ0 ¼ μσ2
x TrfYghUðea;t ; vtÞþμ�1 TrfCY�1g

2σ2
xhGðea;t ; vtÞ

; ð36Þ

where ξ0 is the steady-state MSD of the algorithm.

By (36), the steady state MSD in the non-stationary
environment for f ðetÞ ¼ et leads to

ξ0s ¼
μσ2

v TrfYgþμ�1σ�2
x TrfCY�1g

2�μσ2
x TrfYg

:

Correspondingly, the tracking performance of the mean-
fourth error objective is roughly given by

ξ0f �
TrfCY�1g

12μσ2
xσ2

v�180μσ2
xσ4

v TrfYg
:

Assuming the higher order measure of the estimation
error is negligibly small at the steady-state, we obtain the
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steady-state MSD for f ðetÞ ¼ δetþ2ð1�δÞe3t as

ξ0m ¼ μσ2
vδ TrfYgðδþ12ð1�δÞσ2

v Þþμ�1σ�2
x TrfCY�1g

2δþ12ð1�δÞσ2
v�μσ2

x TrfYgδo
:

Remark 6.4. We point out that under the first order random
walk model, since the system impulse response, i.e., wot ,
changes in time, the system statistics, e.g., p, changes even if
qt is a zero mean vector process independent from the
regression signal. Hence, the performance of the Krylov-
proportionate update based algorithms degrades in the non-
stationary environments. However, for the sufficiently slow
change in the environment, the Krylov-proportionate algo-
rithms can provide good tracking performance [20]. In
Section 7, we substantiate this by several different numerical
examples.

In the next section, we provide numerical examples
comparing the convergence performance of the proposed
algorithms in several different configurations.

7. Numerical examples

In this section, we examine the mean-square conver-
gence performance of the proposed algorithms in various
examples. In the first experimental setup, we consider an
echo cancellation scenario. We observe a near-end signal
dt with a linear model such that

dt ¼wT
oxtþvt ;

where xtARM denotes the far-end signal, vtAR is a white
Gaussian noise signal and woARM represents the unknown
echo path. We choose an artificial male voice sample1 having
the average characteristics of comprehensive human voice
with a smaller variability relative to the real speech samples
[44]. We generate the normalized echo path seen in Fig. 2
based on the Allen and Berkley's image source method for
small-room acoustics [45,46]. The reflection coefficient of each
wall is 0.7 and the room dimensions are 4�4�2.5 in metres.
The sink, i.e., the microphone, locates at ð2 m;2 m;1 mÞ. In
order to examine the performance of the algorithms against
abrupt changes in the echo path, the source locates at
ð2 m;1 m;2 mÞ for t in ½0;5 sÞ and at ð2 m;2 m;2 mÞ in
½5 s;10 s�. Correspondingly, we have sparse echo paths wo

of length M¼256 and we use the same length for the
adaptive filter wt. The sampling rate2 is 8 kHz and noise
variance is σ2

v ¼ 10�3. We measure the convergence rate of
the algorithms in terms of thenormalized misalignment
defined as ‖wo�wt‖2=‖wo‖2. In Fig. 3, we compare the time
evolution of the system mismatch of the PNLMS, the IPNLMS,
the sparse-NLMF introduced in [47], and the regularized
stable-PNLMF algorithms for μPNLMS ¼ μIPNLMS ¼ μsNLMF ¼
μsPNLMF ¼ 0:1, γ¼0.5, and κ ¼ 10�4. For the PNLMS algorithm,
we set δ¼0.1 and ρ¼0.2. We note that we use a regularized
version of the sparse-NLMF and set the threshold as 10 and
λ¼ 10�6, as suggested in [47]. Due to stability concerns, the
1 Artificial male voice sample [44] which can be found at http://
www.itu.int/net/itu-t/sigdb/genaudio/Pseries.htm.

2 We resample the input voice sample, which is originally 16 kHz.
regularization constants are chosen as ϵPNLMS ¼ 10�1, ϵIPNLMS

¼ ϵsPNLMF ¼ 10�3, and ϵsNLMF ¼ 10�2. Additionally, in Fig. 4,
for t in ½0;1:5 s�, we compare the echo return loss enhance-
ment (ERLE), which is defined as [48]

ERLE¼ 10 log10
E½d2t �
E½e2t �

 !
:

For presentation purposes, we filter the ERLE curves with a
moving average of length 1000. Through Figs. 3 and 4, we
point out that the stable-PNLMF algorithm achieves enhanced
performance relative to the other algorithms.

In the second example, we examine the performance of
the algorithms for a dispersive system woAR256 whose
coefficients are chosen from a normal distribution. In Fig. 5,
we plot the first 25 out of 256 coefficients of the system. We
use simplified O(M) versions, introduced in [20], of the
KPNLMS and the KPNLMF algorithms. The SNR is 30 dB.
We set μ¼0.1, γ¼0.5, κ ¼ 10�5, ζ ¼ 0:001, To ¼ 2M and
ϵ¼0.065. We choose the threshold as δ¼ 10�4 and we

http://www.itu.int/net/itu-t/sigdb/genaudio/Pseries.htm.
http://www.itu.int/net/itu-t/sigdb/genaudio/Pseries.htm.
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select the smallest λ satisfying that threshold, i.e., λ¼7. In
Fig. 5, we demonstrate the sparse structure of the system
constructed by the projection of the true system onto the
Krylov-subspace. Hence, we can employ proportionate
update approach in the dispersive systems through the
Krylov-subspace projection techniques. In Fig. 6, we compare
the time evolution of the MSD of the KPNLMS, the IPNLMS,
and the proposed stable-PNLMF and the stable-KPNLMF
algorithms. As in Fig. 3, we can achieve better trade-off in
terms of the transient and the steady-state performances
through the stable-KPNLMF algorithm while avoiding the
stability issues induced due to the mean-fourth error frame-
work. In Fig. 7, we evaluate the performance of the proposed
simplification scheme for different λ values. We observe that
the proposed simplification scheme demonstrates almost
identical performance with the simplification scheme intro-
duced in [20]. Additionally, the learning rate and the compu-
tational complexity of the algorithm increases with the λ
values. However, note that λ¼10 and λ¼256 (full dimension)
achieve similar convergence performance while the compu-
tational complexities are OðλMÞ and OðM2Þ, respectively.

In the third example, we examine the performance of
the proposed KPNLMMN algorithm with respect to the
KPNLMS and KPNLMF algorithms. Different from the exa-
mple 2, we set M¼10, μ¼0.05, ϵ¼0.41, and SNR is 10 dB.
The regularization constant ϵ is determined according to
[32]. We choose the unknown system coefficients ran-
domly from a normal distribution and normalize it. For the
threshold δ¼ 10�4, the smallest λ satisfying that thresh-
old is λ¼4. Note that we compare the performance with
the KPNLMF algorithm and in order to avoid stability
issues we have set relatively short filter length instead of
far smaller step sizes resulting longer convergence dura-
tion. In Fig. 8, we plot the time evolution of the
MSD of the KPNLMMN algorithm where the combination
weight δ¼0.5 with the KPNLMS and the KPNLMF algo-
rithms. We observe that the KPNLMMN algorithm has
smaller steady-state MSD than the KPNLMF algorithm for
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Fig. 8. Time evolution of the MSD of the KPNLMS, the KPNLMF and the
proposed KPNLMMN (δ¼ 0:5) algorithms in a dispersive system.

0 1000 2000 3000 4000 5000
−12

−10

−8

−6

−4

−2

0

2

t

M
S

E
 (d

B
)

Time evolution of the MSE for the PNLMF algorithm

Simulation
Theory

Fig. 9. Time evolution of the MSE of the PNLMF algorithm.
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Fig. 10. Time evolution of the MSE of the KPNLMF algorithm.
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Fig. 11. Dependence of the steady-state MSD on the step size μ for the
PNLMF algorithm.
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Fig. 12. Dependence of the steady-state MSD on the step size μ for the
KPNLMF algorithm.
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similar convergence rate and has a faster convergence
rate with respect to the KPNLMS algorithm for the same
steady-state MSD. Hence through the mixture norm app-
roach, we can achieve superior performance relative to the
constituent filters in the proportionate update based
algorithms.

Finally, for the same system configuration with the
example 3, we demonstrate that the theoretical results
and the ensemble averaged simulation results match. In
Figs. 9 and 10, we plot the time evolution of the MSE of the
PNLMF and the KPNLMF algorithms respectively. In addi-
tion, in Figs. 11 and 12, we plot the steady-state MSD
versus the adaptation step size for the PNLMF and the
KPNLMF algorithms, respectively. We note that we use the
system statistics, i.e., R and p, directly. In Figs. 9–12, we
observe that the theoretical and ensemble averaged results
match. Furthermore, we evaluate the steady-state perfor-
mance of the KPNLMMN algorithm in a non-stationary
environment with the first-order random walk model. We
choose qt randomly satisfying ‖qt‖1ffi10�4 for relatively
slow change of the system impulse response. In Fig. 13, we
observe that the theoretical results accurately match with
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Fig. 13. Dependence of the steady-state MSD on the step size μ for the
KPNLMMN algorithm in a non-stationary environment.
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the simulated results for the tracking performance of the
KPNLMMN algorithm.
8. Conclusion

In this paper, we derive the proportionate update and
Krylov-proportionate update based algorithms through the
natural gradient descent algorithm, enabling the derivation of
new variants of this important family of algorithms. We
propose the stable-PNLMF and the stable-KPNLMF algorithms
overcoming the well-known stability issues due to the use of
the mean fourth error cost function. We propose the
KPNLMMN algorithm as a convex mixture combination of
the mean-square and mean-fourth error objectives, which
achieves superior performance with respect to the both
constituent filters. Finally, we provide a comprehensive
performance analysis in the steady state, tracking and tran-
sient phases for all introduced algorithms, and demonstrate
the accuracy of our derivations with several different numer-
ical examples under various configurations.
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