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Abstract Follicular lymphoma (FL) is a group of malig-
nancies of lymphocyte origin that arise from lymph nodes,
spleen, and bone marrow in the lymphatic system. It is the
second most common non-Hodgkins lymphoma. Character-
istic of FL is the presence of follicle center B cells consist-
ing of centrocytes and centroblasts. Typically, FL images are
graded by an expert manually counting the centroblasts in an
image. This is time consuming. In this paper, we present a
novel multi-scale directional filtering scheme and utilize it to
classify FL images into different grades. Instead of counting
the centroblasts individually, we classify the texture formed
by centroblasts. We apply our multi-scale directional filter-
ing scheme in two scales and along eight orientations, and
use the mean and the standard deviation of each filter out-
put as feature parameters. For classification, we use support
vector machines with the radial basis function kernel. We
map the features into two dimensions using linear discrimi-
nant analysis prior to classification. Experimental results are
presented.
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1 Introduction

Microscopic image processing has become an important
research area [12,28] in recent years. Follicular lymphoma
(FL) is a group of malignancies of lymphocyte origin
that arise from lymph nodes, spleen, and bone marrow
in the lymphatic system in most cases. It is the second
most common non-Hodgkins lymphoma [6]. Characteris-
tic of FL is the presence of a follicular or nodular pat-
tern of growth presented by follicle center B cells consist-
ing of centrocytes and centroblasts. World Health Organiza-
tion’s (WHO) histological grading process of FL depends
on the number of centroblasts counted within represen-
tative follicles, resulting in three grades with increasing
severity [10]:

Grade 1: 0–5 centroblasts (CBs) per high-power field
(HPF),

Grade 2: 6–15 centroblasts per HPF, and
Grade 3: More than 15 centroblasts per HPF.

While grades one and two are considered indolent, with
long average survival rates and no needs of chemotherapy,
grade three is an aggressive disease. It is rapidly fatal if
not immediately treated with aggressive chemotherapy [21].
Therefore, accurate grading of follicular lymphoma images
is of course essential to the optimal choice of treatment.
In FL grading problem, human experts manually count the
centroblasts in an HPF image. This is obviously time con-
suming. Some computerized methods mimic this approach
[16,19,25]. Instead of counting the centroblasts individually,
we can treat images as textures and try to classify the texture
formed by centroblasts in this article. Recently, Suhre pro-
posed a two-level classification tree using sparsity-smoothed
Bayesian classifier and reported very high accuracy [27].
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Fig. 1 Example images for grades one, two, and three of follicular
lymphoma. a Grade 1, b Grade 2, c Grade 3

Dataset used in [27] and CERTH-AUTH database [20]
are used in this paper. First dataset consists of 90 images
for each of three grades of follicular lymphoma. CERTH-
AUTH database consists of nine images for grade two and
five images of grade three of follicular lymphoma. Examples
of grades one, two, and three images are presented in Fig. 1.

In Sect. 2, the proposed multi-scale directional filter-
ing approach is reviewed. In Sect. 3, the proposed feature
extraction scheme using directional filterbank outputs are
described. In Sect. 4, experimental results are presented.

2 Directional filtering framework

Directional filtering is a new framework developed in this
paper. In this framework, a one-dimensional (1D) prototype
filter with impulse response fh with order N is rotated in
2D to filter images in various directions. In this way, a bank
of filters are obtained by rotating fh along a set of angles
parameterized by θ .

To obtain a directional filterbank, the high-pass fh of a
wavelet filterbank is rotated along various directions. Instead
of rotating fh by bilinear (or cubic) interpolation, we use the
following method: For a specific angle θ , we draw a line l
going through the origin (l : y = tan θx) and determine the
coefficients of the rotated filter fθ (i, j) proportional to the
length of the line segment within each pixel (i, j), which
is denoted by |li, j |. For odd N , f0(0) is exactly the center
of rotation, and therefore, value of f0(0) does not change
in fθ (0, 0). Therefore, we take the line segment in origin
pixel |l0,0| as reference (|FG| in Fig. 2b). For θ ≤ 45◦,
|l0,0| = 1

cos θ
, assuming each pixel is of unit side. For each

pixel in column j in the grid, we calculate the fθ (i, j) as:

fθ (i, j) = fh(i) × |li, j |
|l0,0|

This approach is also used in computerized tomography [8].
Calculating the line segment |li, j | is straightforward. To

rotate the filter for θ ≤ 45◦ (which corresponds to Nv ≤ 1),
we place f0 to the vertical center of a N × N grid, where
CX (i, j) and CY (i, j) are the coordinates of the center of cell
with the horizontal index i = 0, . . . , N − 1, and the vertical
index j = 0, . . . , N −1. Then, we construct a line l along the
desired direction where the bisector of the line is the exact
center of the grid (which is also the center of filter). For every
pixel of the grid, we calculate the rotated filter coefficients
as:

fθ (i, j) = fh(i, 0) × sin θ

2

×
(

min

{
Cx (i, j) + 0.5,

Cy(i, j) + 0.5

tan θ

}2

− max

{
Cx (i, j) − 0.5,

Cy(i, j) − 0.5

tan θ

}2
)

(1)

To rotate the filter for θ ≥ 45◦, we first rotate the filter 90◦−θ

then transpose f90◦−θ to get fθ . Note that this method of
rotation does not change the DC response of the original
filter, because

∑
i, j fθ (i, j) = ∑

k f0(k).
Resulting filters at angles θ = {0◦, ±26.56◦, ±45◦,

±63.43◦, 90◦} for the filter fh (Fig. 2a) form a directional
filter bank are shown in the first row of Table 1. The number
of nonzero filter coefficients are larger in bilinear interpola-
tion resulting a higher computational cost compared to the
proposed approach. Furthermore, the frequency responses
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Fig. 2 Filter rotation process
for the Lagrange à trous filter.
a fh(i, j), b Line
θ = arctan (1/2) = 26.565◦,
c lengths of line segments in
each pixel of the rectangular
grid, d resulting directional
filter f26.56◦

of the proposed filters are smoother than those of bilinear-
based methods as shown in Fig. 3. These directional filters
are used in a multi-resolution framework for feature extrac-
tion. For the first scale, directional images can be extracted by
convolving the input image with this filter bank. The mean
and the standard deviation of these directional images are
used as the directional feature values of the image (other
statistics can also be used). To obtain direction feature val-
ues at lower scales, the original image is low-pass-filtered
and decimated by a factor of two horizontally and vertically
and a low–low subimage is obtained. Since downsampling
is a shift variant process, we also introduce a half-sample
delay before downsampling. To implement this, we down-
sample two shifted versions of input image (corresponding
to (�x,�y) = {(0, 0), (1, 1)}), filter the two downsampled
images using our directional filter bank, and fuse the outputs
to construct one output image per filter in directional filter
bank. Fusion method used in article is simply taking square
of images, summing them, and taking the square root of the
sum.

A variant of this multi-scale filtering framework uses
four shifted versions instead of two (corresponding to
(�x,�y) = {(0, 0), (1, 0), (0, 1), (1, 1)}). Although this
increases the accuracy by average 1 %, it also doubles the

computational complexity. This speed vs. accuracy trade-off
should be evaluated for potential applications.

The low-pass filter fl used in directional filterbank can
be the low-pass filter of a wavelet filter bank. In this case, it
can be an ordinary half-band filter. The low–low sub-image
can be filtered by directional filters to obtain the second
level directional subimages and corresponding feature val-
ues. This process can be repeated several times depending
on the nature of input images. The filtering flow diagram is
shown in Fig. 4.

The proposed directional filterbank design is different
from Do and Vetterli’s filterbank [5], where directional filters
are obtained from filters of a quincux filterbank using mod-
ulations and rotations by resampling matrices. Other direc-
tional and quincux filterbanks include [1,2,7,13], but none
of them uses Herman and Kuba’s directional interpolation
approach. In our experiments, we use directional filters in
three scales, and θ = {0◦,±26.56◦,±45◦,±63.43◦, 90◦}.
The low-pass filter is the half-band filter fl = [0.25 0.5 0.25]
and the high-pass filter Kingsburys 8th order q-shift analysis
filter [15]: f0 = [−0.0808 0 0.4155−0.5376 0.1653 0.0624 0
− 0.0248].

In Fig. 4, f0 is the 2D version of fl and fθ1=0, fθ2=26.56,
fθ3=45, fθ4=63.43, fθ5=90, fθ6=−26.56, fθ7=−45, fθ8=−63.43
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Table 1 Directional filters for θ = {0◦,±26.56◦,±45◦,±63.43◦, 90◦} obtained using proposed method (first column) and bilinear interpolation
(second column), respectively

Angle Directional filter Rotated filter

−63.43◦

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 −0.0313 −0.0313 0 0 0 0
0 0 0 0 0 0 0
0 0 0.2813 0.2813 0 0 0
0 0 0 1 0 0 0
0 0 0 0.2813 0.2813 0 0
0 0 0 0 0 0 0
0 0 0 0 −0.0313 −0.0313 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 −0.01459 −0.03004 0 0 0 0
0 −0.00451 −0.01475 0.012539 0 0 0
0 0 0.204712 0.336475 0 0 0
0 0 0.084917 1 0.084917 0 0
0 0 0 0.336475 0.204712 0 0
0 0 0 0.012539 −0.01475 −0.00451 0
0 0 0 0 −0.03004 −0.01459 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

−45◦

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

−0.0625 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0.5625 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 0.5625 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 −0.0625

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 −0.0085 0 0 0 0 0
−0.0085 −0.05178 −0.00222 0 0 0 0

0 −0.00222 0.329505 0.202284 0 0 0
0 0 0.202284 1 0.202284 0 0
0 0 0 0.202284 0.329505 −0.00222 0
0 0 0 0 −0.00222 −0.05178 −0.0085
0 0 0 0 0 −0.0085 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

−26.56◦

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0
−0.0313 0 0 0 0 0 0
−0.0313 0 0.2813 0 0 0 0

0 0 0.2813 1 0.2813 0 0
0 0 0 0 0.2813 0 −0.0313
0 0 0 0 0 0 −0.0313
0 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0
−0.01459 −0.00451 0 0 0 0 0
−0.03004 −0.01475 0.204712 0.084917 0 0 0

0 0.012539 0.336475 1 0.336475 0.012539 0
0 0 0 0.084917 0.204712 −0.01475 −0.03004
0 0 0 0 0 −0.00451 −0.01459
0 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

0◦

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

−0.0625 0 0.5625 1 0.5625 0 −0.0625
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

−0.0625 0 0.5625 1 0.5625 0 −0.0625
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

26.56◦

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0
0 0 0 0 0 0 −0.0313
0 0 0 0 0.2813 0 −0.0313
0 0 0.2813 1 0.2813 0 0

−0.0313 0 0.2813 0 0 0 0
−0.0313 0 0 0 0 0 0

0 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0
0 0 0 0 0 −0.00451 −0.01459
0 0 0 0.084917 0.204712 −0.01475 −0.03004
0 0.012539 0.336475 1 0.336475 0.012539 0

−0.03004 −0.01475 0.204712 0.084917 0 0 0
−0.01459 −0.00451 0 0 0 0 0

0 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

45◦

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 −0.0625
0 0 0 0 0 0 0
0 0 0 0 0.5625 0 0
0 0 0 1 0 0 0
0 0 0.5625 0 0 0 0
0 0 0 0 0 0 0

−0.0625 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 −0.0085 0
0 0 0 0 −0.00222 −0.05178 −0.0085
0 0 0 0.202284 0.329505 −0.00222 0
0 0 0.202284 1 0.202284 0 0
0 −0.00222 0.329505 0.202284 0 0 0

−0.0085 −0.05178 −0.00222 0 0 0 0
0 −0.0085 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

63.43◦

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 −0.0313 −0.0313 0
0 0 0 0 0 0 0
0 0 0 0.2813 0.2813 0 0
0 0 0 1 0 0 0
0 0 0.2813 0.2813 0 0 0
0 0 0 0 0 0 0
0 −0.0313 −0.0313 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 −0.03004 −0.01459 0
0 0 0 0.012539 −0.01475 −0.00451 0
0 0 0 0.336475 0.204712 0 0
0 0 0.084917 1 0.084917 0 0
0 0 0.204712 0.336475 0 0 0
0 −0.00451 −0.01475 0.012539 0 0 0
0 −0.01459 −0.03004 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

90◦

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 −0.0625 0 0 0
0 0 0 0 0 0 0
0 0 0 0.5625 0 0 0
0 0 0 1 0 0 0
0 0 0 0.5625 0 0 0
0 0 0 0 0 0 0
0 0 0 −0.0625 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 −0.0625 0 0 0
0 0 0 0 0 0 0
0 0 0 0.5625 0 0 0
0 0 0 1 0 0 0
0 0 0 0.5625 0 0 0
0 0 0 0 0 0 0
0 0 0 −0.0625 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

Proposed method produces computationally more efficient filters
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Fig. 3 Frequency responses of directional filters at various orientations
obtained by proposed method (a, c and e) and bilinear interpolation (b,
d, and f). Proposed method produces smoother frequency responses.

a Directional filter (θ = 0◦), b rotational filter (θ = 0◦), c direc-
tional filter (θ = 45◦), d rotational filter (θ = 45◦), e directional filter
(θ = 63◦), f rotational filter (θ = 63◦)

are the rotated high-pass filters obtained from Kingsbury’s
filter fh .

3 Feature extraction and classification

Since images in this dataset are of relatively uniform texture,
there is no need to segment the images prior to feature extrac-

tion. Also, it is not possible to have two different grades of
FL in an image, so we produce one decision per image. Each
input image is fed to the feature extraction algorithms directly
after converting to grayscale. We use the mean and the stan-
dard deviation of filter outputs for a 3-scale and 8 directional
filterbank, and the feature vector size is 2 × 3 × 8 = 48.

Choosing number of scales and directions larger than nec-
essary may result in redundant data, which in turn increase
complexity and reduce classifier accuracy due to curse of

123



S68 SIViP (2014) 8 (Suppl 1):S63–S70

Fig. 4 Flowchart of directional
filtering framework. In this
article, one low-pass fl and
eight directional high-pass
filters with θ = {0◦,±26.56◦,
±45◦,±63.43◦, 90◦} are used
for image analysis

dimensionality. In order to overcome this problem, we apply
several well-known dimension reduction techniques to our
features before classification. Each feature is classified once
without any dimension reduction, once after principal com-
ponent analysis (PCA) [11], once after linear discriminant
analysis (LDA) [23], and one after independent component
analysis (ICA) [9]. For PCA, the dimension is reduced while
keeping the 99.9 % of the cumulative energies of eigenval-
ues. Since the maximum number of dimensions is bounded
by the number of classes, dimension is reduced to two for
each feature, in LDA.

We classify the extracted features using support vector
machines (SVM) with radial basis function (RBF) as the
kernel function. The accuracy of the system is measured by
twofold, tenfold, and leave-one-out cross-validations, which
are standard methods for measuring the accuracy of classi-
fication in the literature. In order to find the best possible
accuracy, we perform a parameter search for C and γ para-
meters of SVM using a simple heuristic.

dummy

4 Experimental results

We compare the proposed feature extraction scheme with
various multi-scale directional feature extraction algorithms,
such as curvelets [4], contourlets [5] steerable pyramids [26],
complex wavelets [14], Gabor filters [22], and texton fil-
terbanks [17,18,24]. We use a 270 image dataset that has
90 images per grade, which is also use in [27].1 Exper-
imental results are presented in Tables 2 and 3. Mean
accuracy in Tables 2 and 3 is calculated by dividing the
trace of confusion matrix to the number of elements in
the dataset. Directional filtering method paired with LDA
achieves perfect classification accuracy, even in twofold
cross-validation in first dataset. Table 4 compares the leave-

1 Although the license to use this dataset has expired at the time of
publication of this paper, results are taken from [3], where experiments
were conducted when license was valid.

Table 2 Twofold, tenfold, and leave-one-out cross-validation accura-
cies of each grade, for each feature in first dataset

Feature Dimension
reduction

Mean accuracy (%)

Twofold Tenfold Leave-one-out

Dir. Fil. None 99.26 98.89 98.89

ICA 98.15 98.52 98.89

LDA 100.00 100.00 100.00

PCA 88.52 88.15 88.15

CWT None 98.52 98.89 99.26

ICA 99.26 99.63 99.63

LDA 99.63 99.63 99.63

PCA 77.41 79.63 78.52

LM None 95.19 96.30 97.41

ICA 95.93 97.78 98.15

LDA 99.26 99.26 99.26

PCA 87.04 88.15 88.52

MR8 None 95.93 98.52 97.78

ICA 95.56 96.30 96.30

LDA 98.15 98.89 98.52

PCA 78.15 77.78 77.41

Contourlet None 94.81 97.04 97.78

ICA 93.70 97.78 97.41

LDA 76.67 76.67 0.00

PCA 90.37 92.96 92.22

Curvelet None 96.67 98.15 97.41

ICA 97.78 98.52 97.78

LDA 33.33 33.33 0.00

PCA 90.37 91.11 91.85

Gabor Fil. None 93.70 95.93 97.41

ICA 99.63 99.63 99.63

LDA 33.33 33.33 0.00

PCA 78.89 79.26 80.37

Pyramid None 95.93 97.41 97.78

ICA 99.26 99.26 98.52

LDA 99.63 99.63 99.63

PCA 78.52 83.33 84.07

Features achieving best results are in bold for each case
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Table 3 Twofold, tenfold, and leave-one-out cross-validation accura-
cies of each grade, for each feature in CERTH-AUTH dataset

Feature Dimension
reduction

Mean accuracy (%)

Twofold Tenfold Leave-one-out

Dir. Fil. None 92.31 84.62 92.31

ICA 61.54 61.54 61.54

LDA 100.00 100.00 100.00

PCA 61.54 61.54 61.54

CWT None 92.31 84.62 92.31

ICA 61.54 61.54 61.54

LDA 100.00 100.00 100.00

PCA 76.92 76.92 76.92

LM None 92.31 92.31 92.31

ICA 84.62 76.92 76.92

LDA 61.54 61.54 61.54

PCA 84.62 76.92 76.92

MR8 None 92.31 92.31 92.31

ICA 84.62 76.92 84.62

LDA 61.54 61.54 61.54

PCA 92.31 92.31 92.31

Contourlet None 100.00 100.00 100.00

ICA 61.54 61.54 61.54

LDA 100.00 100.00 100.00

PCA 76.92 76.92 76.92

Curvelet None 100.00 100.00 100.00

ICA 61.54 61.54 61.54

LDA 61.54 61.54 61.54

PCA 92.31 92.31 92.31

Gabor None 76.92 69.23 84.62

ICA 61.54 61.54 61.54

LDA 61.54 61.54 61.54

PCA 61.54 61.54 61.54

Pyramid None 76.92 84.62 92.31

ICA 84.62 100.00 100.00

LDA 61.54 61.54 61.54

PCA 84.62 61.54 69.23

Features achieving best results are in bold for each case

Table 4 Leave-one-out cross-validation accuracies of each grade, for
each feature on first dataset

Method Grades Mean

Grade 1 Grade 2 Grade 3

Dir. Fil. & LDA 100.00 100.00 100.00 100.00

Suhre [27] 98.89 98.89 100.00 99.26

Features achieving best results are in bold for each case

one-out cross-validation accuracies of directional filtering
paired with LDA with method proposed in [27], where the
new method performs better than the current state of the art.

Fig. 5 Directional-filtering-based features of first dataset reduced to
two dimensions by LDA

Table 5 Time required for each feature to be extracted from a N × N
image, for N = [512, 1,024, 2,048]
Feature Required time per N × N sample (s)

N = 512 N = 1,024 N = 2,048

Dir. Fil. 0.0323 0.1343 0.5447

CWT 0.0615 0.277 1.2129

LM 2.1083 7.2679 32.69

MR8 0.2083 0.8757 3.4984

Contourlet 0.178 0.6051 2.5417

Curvelet 0.1863 0.7188 3.3451

Gabor 0.9655 3.9268 16.1438

Pyramid 0.2714 1.4155 6.1437

Features achieving best results are in bold for each case

Similar results are presented in Table 3 for CERTH-AUTH
dataset.

Figure 5 shows directional-filtering-based features of first
dataset reduced to two dimensions by LDA. All grades are
compactly clustered and easily separable.

We also performed tests to measure the computational
complexity of algorithms. These tests are done on a com-
puter with Intel i7-4700MQ CPU and 16 GB memory. Val-
ues presented in Table 5 are average times over 10 runs. It
is clear that directional filters are the most efficient among
tested algorithms. They can extract feature parameters from a
512×512 image in eight directions andthree scales in 0.032 s
in MATLAB.

5 Conclusion

A method for grading FL images, based on a novel multi-
scale directional feature extraction framework, is proposed.
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In this framework, we use a directional filterbank filtering the
image at θ = {0◦, ±26.56◦, ±45◦, ±63.43◦, 90◦} direc-
tions. This new multi-scale directional framework is com-
pared with a number of multi-scale directional image repre-
sentation methods including the complex wavelet transforms,
curvelets, contourlets, gray-level co-occurrence matrices,
Gabor filters, steerable pyramids, and texton filter banks.

In terms of computational efficiency, directional filter
banks are the fastest among all tested methods.

When features extracted with proposed method are reduced
to 2D using linear discriminant analysis, a SVM classifier
with a proper selection of parameters achieves almost per-
fect recognition accuracy, surpassing other multi-scale direc-
tional feature extraction algorithms, and the state-of-the-art
method.

Therefore, texture-classification-based grading of FL
images is as good as centroblast-counting-based conven-
tional methods.
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