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Analysis of Input Impedance and Mutual Coupling
of Microstrip Antennas on Multilayered Circular
Cylinders Using Closed-Form Green’s Function

Representations
Sakir Karan and Vakur B. Ertürk, Member, IEEE

Abstract—Closed-form Green’s function (CFGF) representa-
tions for cylindrically stratified media are developed and used in
conjunctionwithaGalerkinmethodofmoments (MoM)in thespace
domain for the analysis of microstrip antennas onmultilayered cir-
cular cylinders. An attachment mode is used in the MoM solution
procedure to accurately model the feeding of probe-fed microstrip
antennas. The developed CFGF representations are modified in
the source region (where two current modes can partially or fully
overlap with each other during the MoM procedure) so that singu-
larities can be treated analytically and hence, the proposed CFGF
representations can be safely used in this region. Furthermore,
accurate CFGF representations for the probe-related components
(necessary for probe type excitations including the attachment
mode) are obtained when the radial distance between the source
and field points is electrically small or zero. Numerical results in the
form of input impedance of various microstrip antennas and the
mutual coupling between two antennas are presented showing good
agreementwhen compared to the available published results as well
as the results obtained from CST Microwave Studio.

Index Terms—Closed-form Green’s functions, generalized
pencil of function method, method of moments.

I. INTRODUCTION

S EVERAL integral equation (IE) baseddesign/analysis tools
that use closed-form Green’s function (CFGF) representa-

tions as the kernel of an IE have been developed for the design
and rigorous analysis of printed circuit elements and/or printed
antennas/arrays in planar multilayered media [1]–[3]. On the
other hand, when similar printed structures are considered on
multilayered cylinders (with a perfect electric conductor (PEC)
forming the innermost region), most of the available IE based
tools still use the conventional spectral domain or asymptotic
Green’s function representations (the latter being valid for a
single-layer dielectric deposited on a PEC cylinder) with limita-
tions [4]–[6]. When there is only a single-layer dielectric on the
PEC cylinder accurate space-domain formulations without any
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limitations are available [7]–[9] allowing for aflexiblediscretiza-
tion of the printed metalizations with a triangular surface mesh.
Deficiencies on the available CFGF representations for cylindri-
cally stratified media have prohibited to develop the cylindrical
counterpart of the above mentioned planar procedure in spite of
the fact that awide rangeofmilitary and commercial applications
require such tools to investigate aforementioned antennas/arrays
that conform to multilayered cylindrical host platforms.
Several studies on CFGF expressions for cylindrically strati-

fied media have been reported that use either generalized pencil
of function (GPOF) [10] method or rational function fitting
method (RFFM) [11] with the purpose of being used in method
of moments (MoM)-based codes to design and analyze mi-
crostrip antennas and arrays [12]–[21]. However, early studies
are useful only for radiation/scattering problems because the
providedCFGF expressions in them are not validwhen the radial
distance between the source andfield points is electrically
small or zero [13]–[15]. On the other hand, to be able to use the
reported CFGF expressions that are valid when in con-
junctionwithMoM, alternativeGreen’s function representations
are required for certain regions of the cylinder. In [16], [17],
the reported CFGF expressions for the mixed potential integral
equation (MPIE) are not valid along the axial line (defined as

and ) of the cylinder as well as in the source
region (where two current modes can partially or fully overlap
with each other during theMoM procedure). [18]–[20] provided
CFGF expressions valid along the axial line for both electric
field integral equation (EFIE) and MPIE. However, a study that
usesCFGF representationswithin the source region and explains
the related singularity treatments has not been presented to the
best of our knowledge. Therefore, alternative Green’s function
representationsmay be necessary for the self-term related entries
of the MoM matrix. Furthermore, special care is required to
obtain accurate CFGF expressions for the probe-related com-
ponents when is close or equal to . In [21], -related dyadic
Green’s function components are provided together with some
identities to obtain the corresponding closed-form expressions.
However, explicit expressions are not presented. Hence, detailed
probe-relatedCFGF representationsmust be provided for amore
accurate feed model when investigating probe-fed microstrip
antennas that requires an attachment mode.
Considering all these deficiencies, CFGF representations pre-

sented in [18] have been modified leading to new CFGF ex-
pressions that are used in conjunction with a Galerkin MoM in
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Fig. 1. Geometry of the problem. Probe-fed microstrip patch antennas on a
cylindrically layered structure together with its cross-sectional view from the
top.

the space domain (that uses rectangular meshes) for the analysis
of probe-fed microstrip antennas on multilayered circular cylin-
ders. An attachment mode, similar to the ones presented in [22]
and [23] for planar stratified media, is used to more accurately
model the feeding part of the antennas. These proposed CFGF
representations are used everywhere including the source region
as well as for the probe-related components (including the at-
tachment mode) that are used to obtain an improved model for
probe-fed type excitations. Therefore, the treatment of all singu-
larities that appear in the source region (during the MoM anal-
ysis) in addition to the axial line for all components including
the probe-related ones are presented.
In Section II, the geometry and the derivation of the proposed

CFGF representations are provided. This section also contains
the analytical treatment of the singularities. Section III provides
the MoM solution procedure. Numerical results are presented in
Section IV to assess the accuracy and efficiency of the proposed
CFGF representations. An time dependence, with being
the angular frequency, is assumed and suppressed throughout
this paper.

II. GREEN’S FUNCTION FORMULATION

A. Geometry

Fig. 1 illustrates the geometry of two patches on an infinitely
long (along the -axis) cylindrically stratified media, where a
PEC cylindrical ground with a radius (denoted by )
forms the innermost region. Material layers surround the PEC
region coaxially ( denotes the substrate layer; de-
notes the superstrate layer, and denotes the air layer in
Fig. 1). Each layer has a permittivity, permeability, thickness
and radius denoted by , , and , respectively. Each
patch antenna, located either on the dielectric-dielectric or di-
electric-air interface, has a dimension of by along the
- and -directions, respectively, and fed via a probe (depicted
in the cross-sectional view of Fig. 1) at the location
and with (and ).

B. Proposed Space Domain Green’s Function Representations

Because a space domain hybrid MoM/Green’s function tech-
nique is used in this paper for the analysis of probe-fed an-
tennas/arrays depicted in Fig. 1, new space domain CFGF repre-
sentations are developed for tangential and probe-related com-
ponents, separately.
1) Tangential Components: Entries of the MoM impedance

matrix require accurate representations of the tangential com-
ponents of the dyadic Green’s function due to tangential cur-
rent sources for arbitrary source and field points (that mostly
lie on the same interface, and in particular within the source
region). However, the CFGF representations presented in [18]
experience a relatively severe singularity within the source re-
gion. Therefore, in [18] it was suggested that alternative Green’s
function representationsmust be used for the entries of theMoM
impedance matrix that represent the self terms. Moreover, some
accuracy problems have been observed for small values
despite the axial line treatment, which can also affect the ac-
curacy of MoM solutions during an antenna analysis. Conse-
quently, these deficiencies require modifications in the CFGF
representations given in [18].
The starting point of the proposed CFGF representations for

the tangential components is the spectral domain Green’s func-
tion representations, ( or or ), for
given in [18] as

(1)

where and , , for ;
, , for and , and finally
, , for . In (1) and

all special cylindrical functions except the
product are inside the term and expressed in the form
of ratios. Explicit expressions for are given in [18]
for all tangential components. Then, as the first step, recog-
nizing the Fourier series (with respect to ) and Fourier trans-
form (with respect to ) relations between the spectral and
space domain Green’s function representations, one can note
that , , and both the
and terms in the space domain correspond to ,
and in the spectral domain, respectively. Therefore, the space
domain Green’s function representation, , can be written as

(2)
where for the , , for the

( due to reciprocity), for
cases. The term in (2) is expressed as the inverse Fourier
transform (IFT) of its spectral domain counterpart as

(3)
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with denoting the IFT operation, which can be per-
formed in closed-form with the aid of the GPOF method if there
is no numerical problems or singularities. The main advantage
of expressing as (2) is to transfer these derivatives onto the
basis and testing functions by performing an integration by parts
twice in a Galerkin-type MoM procedure for carefully chosen
basis and testing functions, which must be differentiable with
respect to , , and . Note that as a result of this step, only
the part appears as the space domain Green’s function re-
lated term in the integrand of any mutual impedance expression
([18]) between two current modes.
Then, as explained in [18], first performing an envelope ex-

traction with respect to (i.e., the cylindrical eigenmodes) to
improve the efficiency and accuracy of the summation over
in (3), and then performing another envelope extraction with
respect to to the resultant expression to handle convergence
problems in the spectral expressions for small values,
is obtained as

(4)

where

(5)

(6)

is the limiting value of when ,
and is the value of when (de-
noted as ). The expression given by (4) yields very accu-
rate results when used in the mutual impedance calculations
(after performing an integration by parts twice) when there is
no singularity. However, there are two cases that yield singu-
larities, which should be treated. The first one manifests itself
along the axial line, and the second one occurs in the source re-
gion. Hence, as the next step the treatment of these singularities
are given.

Axial line singularity ( , ): The argument of
the Hankel function becomes zero along the
axial line ( , ). The remedy for this problem is to
use the small argument approximation of the Hankel function
given by

(7)
where . The last term, , in (7)
exhibits a logarithmic singularity when and , and
yields numerical problems for small values (still ).
Therefore, for the tangential components, when and
is small, approximating term as
can be approximated as

(8)

where and and . Then, subtracting
from in (4) and adding

the subtracted part as a new term to (4), (4) becomes

(9)

During the mutual impedance calculations, the added term [i.e.,
the third term in (9)] is calculated analytically.

Space domain singularity ( , , ): It oc-
curs within the source region, where the source and observation
points overlap with each other (i.e., ), which appears in
self term calculations during theMoM process.When the
last term of 9 [or (4)]) that involves
exhibits an integrable singularity. Recognizing that

(10)

and making use of (8), is approximated as

(11)

Then, is subtracted from in (9) and the subtracted part is
added as a new term to (9). As a result becomes

(12)

As seen in (12), the last two terms are related to the treatment
of the space domain singularity (in addition to the axial line
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singularity). In (12), the first, second and the fourth terms can
now be calculated in closed-form via GPOF. They do not have
any singularity. On the other hand, the third (related to axial line
singularity) and the fifth (related to spatial domain singularity)
terms are calculated analytically during the mutual impedance
calculations.
2) Probe-Related Components ( and ): All the cylin-

drically conformal antennas, investigated in this paper, are as-
sumed to be fed via a probe, where an attachment mode is used.
Therefore, accurate and efficient representations of probe-re-
lated components of the dyadic Green’s function are necessary
to calculate the entries of the MoM voltage vector as well as
the input impedance (or mutual impedance when more antennas
exist). However, accurate CFGF representations for the probe-
related components have not been available especially when the
radial distance between the source and field points is electrically
small or zero. Therefore, a similar procedure that is explained
for tangential components is pursued (with certain modifica-
tions) for the probe-related components.
An ideal, infinitesimally thin probe is modeled as

(13)

where is the magnitude of the excitation current and
is the Dirac delta function. Then, the mutual impedance

expression, which forms the entries of the MoM voltage vector,
can be written as

(14)

where is the area of the tangential current mode ( or
) with and is the volume of the probe
with representing the differential volume. Hence, (14) can
be simplified to

(15)

where and denote the start and end points of the probe
along the radial direction, respectively, and is the space do-
main Green’s function representation for the probe-related com-
ponents. Note that because the electric field direction and the
integration direction for the integral are opposite, we put a
minus sign in front of (15).
Similar to the tangential components, recognizing that

and terms in the space domain cor-
respond to and in the spectral domain, respectively, the
inner integral in (15) is rewritten as

(16)

where , for , and , for cases. Then,
expressing as the IFT of its spectral counterpart, (16) can
be written as

(17)

In (17), the key term is given by

(18)

where

(19)

(20)

with , , and being the corresponding entries
(each superscript indicates the corresponding entry) of F , F ,
F and F linked to F (all of which are given explicitly in
[18]). Note that by expressing as (16), the deriva-
tives can again be transferred onto the testing functions (similar
to the tangential components case) by performing an integration
by parts once resulting as the only space domain
related term in the integrand of any mutual impedance, , ex-
pression for the entries of the MoM voltage vector.
Then, following a similar approach to that of tangential com-

ponents, an envelope extraction with respect to is applied to
(17). Briefly, noting that converges to a constant
when approaches to infinity, its limiting value is numerically
determined as

(21)

Then, recognizing the series expansion given by

(22)

[ is as in (5)], (17) becomes

(23)

Next, to perform the integration more efficiently, the term
is subtracted from the second term
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of (23) and its contribution (by evaluating the integration an-
alytically) is added in closed-form as

(24)

Note that the integrands of the integration for the first two
terms of (24) are now well behaved. Hence, the integration
for these terms can be easily calculated using a simple numerical
integration algorithm.
Finally, similar to tangential components, applying another

envelope extraction with respect to yields

(25)

where is the value of when
. The probe related expression given by (25) yields very

accurate results when there is no singularity. However, again

the axial line and the space domain singularities must be treated
analytically.

Axial line singularity ( , ): Similar to the
tangential components, there is a logarithmic singularity due to
the argument of . Hence, the procedure followed
up to the approximation of is the same. However, for
the probe related components, is approximated as

(26)

because this term is inside the integration.
In (25), the singular terms are the third and the fourth terms.

There is no singularity problem in the second term because
is exactly zero when

and this term does not contribute along the axial line. Therefore,
using (26) in [the last term of the small
argument approximation of the Hankel function given by (7)],
and denoting the result as

(27)

is subtracted from in the third and fourth
terms of (25), and adding the subtracted parts as new terms to
(25), (25) becomes

(28)
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The last two terms of (28) are the newly added terms and are cal-
culated analytically during the mutual impedance calculations
([24]).

Space domain singularity ( , , ): Dif-
ferent than the tangential components, in the probe related ex-
pressions, situation may not be observed. However, be-
cause the length of the probe is fairly short, may be very
small (due to , and leading ).
Therefore, a similar approach to that of tangential components
are followed when (coming from ). Briefly, ap-
proximating as

(29)

is subtracted from in (28) and the subtracted terms are
added as new terms to (28) leading to

(30)

In (30), again the last two terms are the newly added terms and
are calculated analytically during the mutual impedance calcu-
lations [24].

Fig. 2. Deformed integration path.

C. Closed-Form Evaluation of Space Domain Green’s
Function Representations

All the terms that contain the IFT (i.e., ) in (12) and
(30) are calculated in closed-form via GPOF by first noticing
that their integrands are even functions of , and then folding
the original Fourier integral to a 0 to integral as explained
in [18]. Then, the original path is deformed as shown in Fig. 2
to overcome the effects of pole and branch-point singularities.
However, this path is a slightly modified version of the one
given in [18] so that more accuracy, especially within the source
region, can be obtained with less number of spectral samples
and complex exponentials. Instead of a single path before
(wave number of the source layer) as in [18], two paths
are defined in Fig. 2, where can be chosen between 0.5 and
0.8. The value of is kept to be small to
minimize the deviation from the original path, and should
be larger than the wave numbers of all layers ensuring that all
aforementioned singularities are avoided. On the other hand,
and are selected relatively large. Note that the spectral sam-
pling is nonuniform in this path requiring relatively more sam-
ples around and significantly less samples away from . The
parameters that define this integration path are as follows:

(31)

(32)

(33)

(34)

(35)

where , and for ,
3, 4.
To obtain the final closed-form expressions for the terms that

contain the IFT in (12) and (30), first , , , , sam-
ples are taken on paths , , , and , respectively, and
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are expressed in terms of , , , and complex
exponentials of via GPOF [10] method. Finally, as discussed
in [18], [18, eq. 43], the final closed form expressions are found
analytically. Note that, contributions coming from the values
larger than are not included because they are usually very
small due to the envelope extraction with respect to . How-
ever, it may be necessary to set to a relatively large value
during the self-term evaluations.

III. METHOD OF MOMENTS FORMULATION WITH THE
ATTACHMENT MODE

Probe-fed microstrip patch antennas, as depicted in Fig. 1, are
analyzed by using the proposed CFGF representations in con-
junction with a Galerkin MoM procedure (referred to as the hy-
brid MoM/CFGF technique). Piecewise sinusoidal (PWS) [25]
current modes are used as subsectional basis functions (piece-
wise sinusoid along the direction of the current and constant in
the direction perpendicular to the current) [24], [25] to expand
the unknown current density on the patches together with an at-
tachment mode, similar to the one presented in [22] and [23],
to model the feeding accurately by ensuring the continuity of
the current from the probe to the patch. Hence, the attachment
mode should be consistent with the PWS current mode, and as
an example a -directed attachment mode is defined as

otherwise
(36)

where

otherwise
(37)

in the region with and ( is the
angular extension of the attachment mode in the -direction)
being the dimensions of the attachment mode along the - and
-directions, respectively, and the probe is located at the center
of this region. Finally, the parameter in (36) is defined as

(38)

when the antenna (with the dimensions and ) is located in
the air-dielectric interface. When the antenna is located at the
dielectric-dielectric interface (substrate-superstrate situation),
then is defined as

(39)

In both definitions is the free-space wavenumber and
denotes the real part of the relative dielectric constant in case
the dielectric layer may be lossy.
Expanding each patch by basis functions (a total of

basis functions in the -direction and a total of basis func-
tions in the -direction with for , 2 in

Fig. 1), and using an attachment mode only on the source patch,
the following matrix equation (for , 2) is obtained:

(40)

In (40), is the 2 2 matrix given by

(41)

which provides the impedance matrix of the attachment mode.
Similarly, in (40), given by

(42)

is the mutual impedance matrix between the attachment mode
and the basis functions of the patches (for two antennas depicted
in Fig. 1) with a size of , while in (40) being
its transpose; and finally in (40) is the
MoM impedance matrix of the two-patch configuration (see
Fig. 1) in the absence of the attachment mode given by

(43)

In (42) and (43), the subscripts are written in such a way that for
instance ( , 2) means the vector which gives the
mutual impedances between the -directed attachment mode
and the -directed current modes on patch and/or ( ,

, 2) means the matrix which gives the mutual impedances
between the -directed current modes on patch and the -di-
rected current modes on patch . In the course of obtaining all
entries of (41), (42) and (43), (12) is used (together with the
closed-form counterparts of its IFT related terms).
On the other hand in (40), is the 2
1 known voltage vector for the attachment mode, where

stands for the transpose operation, and is the
known MoM voltage vector for the two-patch configuration (in
the absence of the attachment mode), given by

(44)

Note that (30) (together with the closed-form counterparts of its
IFT related terms) is used in all entries of and (44).
Lastly, in (40) is the MoM cur-

rent vector for the two-patch configuration in the absence of the
attachment mode containing the unknown coefficients of the -
and -directed PWS basis functions, and
is the 2 1 current vector for the attachment mode that contains
the coefficients of the attachment mode. Because the amplitude
of the probe current (i.e., the excitation current) is selected to be
1 , the amplitude of the superposed - and -directed
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attachment modes must be 1. Hence, if only -directed attach-
ment mode is defined, , if only -directed attachment
mode is defined, , and if both - and -directed attach-
ment modes are defined, . Consequently, because the
coefficients of the attachment mode are known, the matrix equa-
tion given by (40) can be cast into

(45)

Once (45) is solved for the unknown current coefficients
, the two patch configuration, illus-

trated in Fig. 1, is modeled as a two-port network to find the
input impedance, (or ), of a single patch antenna and/or
to find the mutual coupling, ,
between two patch antennas. When patch one is excited with a
terminal current of , the total voltage calculated at the
probe location of patch one, with patch two is open-circuited,
gives . Hence, making use of the solution of (45) together
with the attachment mode, can be calculated as

(46)

A similar expression can be used to calculate . On the other
hand, one can use (46) to calculate under the condition that
this time patch two will be excited with a terminal current of

while the total voltage will be calculated at the probe
location of patch one, with patch one is open-circuited.
Finally, the mutual coupling coefficient between two an-

tennas can be calculated as

(47)

where .

IV. NUMERICAL RESULTS

The first numerical example is related to the convergence of
the summation in (3). As explained in [18], an envelope ex-
traction with respect to improves the efficiency and accuracy
of the summation over . Consequently, the infinite summa-
tion converges by summing relatively small number (referred
to as ) of cylindrical eigenmodes. This is illustrated in Fig. 3,
where the imaginary part of [argument of in (3)]
and its envelope extracted version [named as the modified (4)]
versus is plotted for , and
for a dielectric coated PEC cylinder with ,

, at . The
modified (4) can easily be obtained from (4) by simply setting

. As seen in Fig. 3, the imaginary part of mod-
ified (4) converges approximately . This value is
sufficient for all components though only is provided here.
Note that the real part of both equations converge rapidly.
Next, input impedance of several probe-fed microstrip patch

antennas and the mutual coupling between two probe-fed
patches are obtained using the MoM/CFGF technique that uses

Fig. 3. Imaginary parts of (3) and modified (4) versus for for
, , , , and .

proposed CFGF representations (in the presence of the afore-
mentioned attachment mode), and compared with the available
results in literature as well as the results obtained from a
commercial software CST Microwave Studio (its time-domain
solver is used) to assess the accuracy of the proposed CFGF
representations. In all numerical results, obtained via using
the proposed CFGF representations, PWS basis functions are
used with the attachment mode given by (36). In the course of
obtaining the CFGF representations for the tangential compo-
nents [i.e., for (12)], the GPOF related parameters are selected
as , , , , , ,

, , , , , ,
, , , whereas they are selected as
, , , , , ,
, , , , , ,
, , for the probe-related components

[i.e., (30)].
The input impedance of a probe-fed rectangular patch

antenna on a dielectric coated cylinder with ,
, forms the first input impedance

related numerical example. The dimensions of the rectangular
patch are , and is excited with a
mode by a probe at the feed location

, which cor-
responds to the middle of its width. Fig. 4 shows the input
impedance (real and imaginary parts) of this patch versus
frequency where the results obtained using the MoM/CFGF
technique are compared with that of CST Microwave Studio.
A good agreement is obtained. In the course of obtaining
the MoM/CFGF results, a total of basis functions
( , ) are used with only a -directed attachment
that has the same size of a single -directed PWS basis function
in the -direction and twice the size of a single -directed PWS
basis function in the -direction.
The second example involves the same probe-fed antenna

on the same coated cylinder (i.e., , ,
, , ). However, the
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Fig. 4. Input impedance versus frequency for a probe-fed patch antenna with
the following parameters: , , ,

, and .

Fig. 5. Input impedance versus frequency for the probe-fed patch antenna
with the same parameters as given in Fig. 4 except fed at

.

feed location is at , which is
close to one of the corners. Similar to the first example, the input
impedance (real and imaginary parts) versus frequency results
obtained via MoM/CFGF technique are compared with that of
CSTMicrowave Studio as shown in Fig. 5. PWS basis
functions ( , ) are used together with both a -
and a -directed attachment modes that have the same length
with that of the - and -directed PWS modes, respectively,
while their widths are twice of the corresponding PWS modes.
Similar to the previous cases, a good agreement is obtained be-
tween the MoM/CFGF and CST Microwave Studio results.
As the third example, the first example is revisited with the

same probe location (i.e., , ,
, , , ,

) in the presence of a superstrate that has a thickness
and . The input impedance versus fre-

quency result, obtained using the MoM/CFGF technique, for
this antenna is given in Fig. 6 together with the CSTMicrowave
Studio result, and very good agreement is obtained. In the course

Fig. 6. Input impedance versus frequency for the probe-fed patch antenna with
the same parameters as given in Fig. 4 except with a superstrate with

, .

Fig. 7. Input impedance versus frequency for the probe-fed patch antenna with
the same parameters as given in Fig. 4 located on the top of two dielectric layers.
The parameters are , , ,

and .

of obtaining the MoM/CFGF results a total number of
PWS basis functions ( , ) and only the -di-
rected attachment mode are used. The size of the attachment has
the same size of a single -directed PWS basis function in the
-direction and twice the size of a single -directed PWS basis
function in the -direction.
Finally, as the last single antenna example, a similar geometry

to that of the third example is considered. Briefly, a
by antenna, fed with a probe at ,

, is on the top of two dielectric layers which coax-
ially surround the PEC cylinder with a radius of .
The first layer has a thickness and ,
and the second layer has a thickness and

. Fig. 7 shows the input impedance versus frequency
results, obtained using the MoM/CFGF technique and the CST
Microwave Studio. As the previous examples, very good agree-
ment is obtained. A total number of PWS basis func-
tions ( , ) and only a -directed attach-
ment mode are used. The attachment mode has the same size
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Fig. 8. Input impedance versus frequency for increasing number of basis func-
tions in the presence of an attachment mode for a patch with the following pa-
rameters: , , , ,

, and .

Fig. 9. Input impedance versus frequency for increasing number of basis func-
tions in the absence of an attachment mode for the same geometry given in
Fig. 8.

of a single -directed PWS basis function in the -direction and
twice the size of a single -directed PWS basis function in the
-direction.
For the next set of numerical results, effect of the attach-

ment mode and the mutual coupling calculations between
two microstrip antennas are carried out for two identical
microstrip patch antennas given in [26]. The dimensions of
each patch in [26] are , , and they are
mounted on a coated cylinder with the parameters ,

, , . Feeding the
antennas with a probe at to excite
the mode yields a resonance at 1.444 GHz as seen in
Fig. 8, where the input impedance versus frequency results are
obtained by using both the MoM/CFGF technique and CST

Fig. 10. E-plane coupling results for the geometry given in Fig. 8.

Fig. 11. H-plane coupling results for the geometry given in Fig. 8.

Microwave Studio. In the course of obtaining the MoM/CFGF
results, the number of basis functions is gradually increased
( with , ; with ,

and finally with , ) and
the convergence of MoM/CFGF technique is investigated in
the presence of an attachment mode. A -directed attachment
mode is used whose dimension is the same with that of the
-directed PWS mode along the -direction and is twice of that
of the -directed PWS mode along the -direction. On the other
hand, if the input impedance versus frequency results of the
same antenna is investigated in the absence of the attachment
mode, a convergence problem can be observed, where the
imaginary part of the input impedance becomes less accurate
as the number of basis functions is increased as seen in Fig. 9.
Then, using basis functions for each antenna (
, ), the E- and H-plane coupling coefficients, given

by (47), versus edge-to-edge spacing ( and ,
respectively, : free-space wavelength) between these patches
(on the same cylinder) are presented in Fig. 10 and Fig. 11, re-
spectively, at 1.444 GHz. For both cases, the MoM/CFGF re-
sults are compared with that of CST Microwave Studio as well
as the measurement results given in [26]. In all cases, very good
agreement is achieved.
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Finally, it should be noted that the efficiency of the presented
hybrid MoM/CFGF solution strongly depends on how efficient
the proposed CFGF representations are evaluated. It takes ap-
proximately 2–3 seconds to evaluate each entry of the MoM
impedance matrix using MATLAB on a regular personal com-
puter. However, it should be mentioned that the evaluation of
the CFGF representations and certain evaluations in the MoM
procedure have not been optimized yet. In particular, the main
bottleneck in this calculation is the two-fold (or originally
four-fold) numerical integrations used to calculate the mutual
impedance between two PWS current modes (i.e., basis and
testing functions), and this part has to be optimized. Besides, in
each numerical example presented in this paper, significantly
more basis functions are used than what is required to guarantee
high accuracy. Using less number of basis functions, still high
accuracy can be achieved.On the other hand, to generate theCST
Microwave Studio results, remarkably powerful workstations
with multi cores and RAMvalues in the order of 10GB are used.
However, the required CPU time for one frequency point during
the input impedance calculations or one distance point during
the mutual coupling coefficient calculations significantly favors
the hybrid MoM/CFGF technique presented in this paper.

V. CONCLUSION

New CFGF representations for cylindrically stratified media,
which constitute the kernel of an EFIE, are developed and used
in conjunction with a Galerkin MoM solution procedure, re-
ferred to as the hybrid MoM/CFGF technique, to investigate
probe-fed microstrip antennas on multilayered circular cylin-
ders. An attachment mode is used to model the feeding accu-
rately by ensuring the continuity of the current from probe to
the patch. Very accurate results are obtained both in terms of
the input impedance of single antennas and mutual coupling be-
tween two antennas.
The accuracy and efficiency of the proposed hybrid MoM/

CFGF technique strongly depend on the computation of the
CFGF representations, which are used everywhere including the
source region as well as for the probe-related components (in-
cluding the attachment mode). Therefore, all singularities that
appear in the source region in addition to the axial line are an-
alytically treated. Furthermore, because of several techniques
used in the course of derivations, printed structures can be inves-
tigated both for electrically small and large cylinders. However,
it should be kept in mind that the approximating functions, that
are used to evaluate the CFGF representations, represent spher-
ical waves with complex distances. Thus, types of waves that are
different in nature than spherical waves, such as surface waves,
are not represented properly and their effects are not included
in this study as oppose to some studies for planar geometries.
Thus, the CFGF representations proposed in this paper are less
accurate for large separations, where surface waves dominate.
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