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We investigate the BCS–BEC crossover in an ultracold atomic gas in the presence of
disorder. The disorder is incorporated in the mean-field formalism through Gaussian
fluctuations. We observe evolution to an asymmetric line-shape of fidelity susceptibility
(FS) as a function of interaction coupling with increasing disorder strength which may
point to an impending quantum phase transition (QPT). The asymmetric line-shape
is further analyzed using the statistical tools of skewness and kurtosis. We extend our
analysis to density of states (DOS) for a better understanding of the crossover in the
disordered environment.
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1. Introduction

Atomic gases at very low temperature are unique systems where one can observe

the continuous evolution of a fermionic system (BCS type) to a bosonic system

(BEC type) by changing the inter-atomic interaction by means of Fano–Feshbach

resonance.1 The essence of BCS–BEC crossover rests on the two-body physics where

the inter-atomic s-wave scattering length is tuned to influence the interaction from

weak to strong. The weak coupling limit is characterized by the BCS theory where

two fermions make a Cooper pair with a long coherence length whereas in the strong

coupling limit they are closely bound to create composite bosons (short coherence

length), which can undergo Bose–Einstein condensation (BEC). In this evolution
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process there exists a region known as “unitarity”, where the s-wave scattering

length diverges and the interactions depend only on the inverse Fermi momentum

(1/kF ), which causes the physics to become independent of any length scale and

therefore universal for any Fermi system. The experimental advances to realize

this transition has introduced the possibility of studying the so-called BCS–BEC

crossover more closely from different angles.2–4

The situation becomes even more interesting if one assumes the existence

of random disorder in an otherwise very clean system. In the seminal work of

Anderson,5 the localization effect due to disorder was predicted for superconduc-

tors in strong disorder but the weak disorder does not produce any significant effect.

It is immensely difficult to observe the localization or the exponentially decaying

wavefunction in electronic systems. One usually takes the indirect route of conduc-

tivity measurements to observe the effect of localization.6

Ultracold atomic systems with their high level of controllability offer a chance

to observe effects of disorder more directly. Recently, localization effects have been

observed in Bose gases (87Rb and 39K).7,8 Latest experiments are conducted for

three-dimensional systems for both noninteracting atomic Fermi gas9 of 40K and

Bose gas10 of 87Rb. These experiments have widened the possibility of studying the

crossover in the presence of disorder11,12 experimentally.

Recent studies on unitary Fermi gases in the presence of quenched disorder have

predicted a paradigm of robust superfluidity in the crossover region13–17 through the

observation of nonmonotonic condensate fraction13,16 and critical temperature.15

Further, it was indicated that the weak impurity effect can lead to a quantum

phase transition (QPT) by extrapolating the data of critical temperature obtained

through the study of quantum fluctuations [see (Fig. 3) in Ref. 14]. These studies

have motivated us to look into the BCS–BEC crossover and beyond in the presence

of disorder. For this purpose we have carried out a systematic study on fidelity

susceptibility (FS) and density of states (DOS) for the dirty crossover.

Recently, behavior of FS, a tool widely used in quantum computation, is suc-

cessfully applied as an intrinsic criterion to study QPT and tested in a variety of

models.19–26 Since a QPT is an abrupt change of the ground state of a many-body

system when a control parameter λ of the Hamiltonian crosses a critical value λc, it

is then quite natural to expect19 that the overlap F (λ+δλ, λ) ≡ |〈Ψ(λ+δλ)|Ψ(λ)〉|

between the ground states corresponding to two slightly different values of the pa-

rameter λ, should manifest an abrupt drop when the small variation δλ crosses λc.

Such an overlap, which has been named “ground-state fidelity” provides a signa-

ture of a QPT. We have shown that this technique can be adequately used in the

BCS–BEC crossover scenario.27 Although BCS–BEC crossover is not a QPT, we

observe a smooth nonmonotonic evolution of the FS.

In this article we study the overlap function when the system is subjected to

a weak random disorder. The atom–atom interaction is modeled by a short-range

(contact) potential. In Ref. 27 it was shown that for the contact potential the FS

is highly symmetric and its full width at half maximum indicates the crossover
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boundary. Here we observe a breakdown in symmetry (using similar short range

inter-atomic interaction) with increasing disorder and we study the asymmetry by

means of third and fourth moments of the FS distribution.

It is customary to analyze the electronic, topological and physical properties of

different materials by a systematic study of the density-of-states DOS.28 We note

that the energy gap in DOS for BCS superconductors is same as the pairing gap

for weak disorder. The energy gap shows a nonmonotonic behavior with increasing

disorder strength while the pairing gap is gradually depleted. Here, we calculate

the DOS in the BCS–BEC crossover region and obtain an interesting behavior at

unitarity. Disorder does not introduce a significant change in DOS at the BCS and

BEC regimes but a distinct drop in the energy gap at unitarity is observed.

The rest of this paper is organized as follows. In Sec. 2 we give a brief description

of the disorder model and sketch of the FS calculation. We present our results and

provide a general discussion in Sec. 3. We draw our conclusions in Sec. 4.

2. Formalism

In this section, we provide a sketch of the mean-field theory when subjected to static

random disorder and later we review the FS calculation in the crossover picture.27 A

more comprehensive description of the disorder formalism can be found in Refs. 13,

15 and 16.

2.1. Effect of disorder in the mean-field approximation

To describe the effect of impurities in a Fermi superfluid evolving from BCS to BEC

regimes one needs to start from the real space Hamiltonian in three-dimensions for

a s-wave superfluid,

H(x) =
∑

σ

Φ†
σ(x)

[

−
∇2

2m
− µ+ Vd(x)

]

Φσ(x)

+

∫

dx′V(x,x′)Φ†
↑(x

′)Φ†
↓(x)Φ↓(x)Φ↑(x

′) , (1)

where Φ†
σ(x) and Φσ(x) represent the creation and annihilation of fermions with

mass m and spin state σ, respectively at x, Vd(x) signifies the weak random po-

tential and µ is the chemical potential. We use Planck units, i.e., ~ = 1. In the

interaction Hamiltonian the s-wave fermionic interaction is defined as V(x,x′) =

−gδ(x−x′), where g is the bare coupling strength of fermion–fermion pairing which

we later regularize through the s-wave scattering length a.

Recent experiments have employed different techniques to create disorder. Most

commonly used are laser speckle7 and quasi-periodic lattice.8 In our calculation we

consider an uncorrelated quenched disorder for simplicity. It implies that the range

of the impurities should be much smaller than the average separation between them.
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To model it mathematically, we use the pseudo-potential as Vd(x) =
∑

i gdδ(x −

xi), where gd is the fermionic impurity coupling constant (which is a function

of impurity scattering length b), and xi are the static positions of the quenched

disorder. Thus, the correlation function is 〈Vd(−q)Vd(q)〉 = βδiωm,0γ, where q =

(q, iωm). β = 1/kBT is the inverse temperature, ωm = 2πm/β are the bosonic

Matsubara frequencies with m an integer. The disorder strength can be written as

γ = nig
2
d, where ni denotes the concentration of the impurities. Simple algebraic

manipulations further reveal that γ is a function of the relative size of the impurity

(b/a).

The model of disorder described above can be realized in real experiments when

a collection of light fermionic species inside a harmonic confinement remains in the

same spatial dimension as of the few heavy fermions in an optical lattice. The laser

is tuned in such a way that the lighter species cannot see the optical lattice while

the heavier species cannot see the parabolic potential.15

We use Eq. (1) and the model of disorder, within the modified mean-field formal-

ism through Gaussian fluctuations. After carrying out the self-energy calculation

using Dyson equation, effective action can be written as,13,16

Seff =

∫

dx

∫ β

0

dτ

[

|∆(r)|2

g
−

1

β
Tr ln{−βG−1(r)}

]

, (2)

where r = (x, τ), ∆(r) is the pairing gap and G−1 is the inverse Nambu propagator.

Expansion of the inverse Nambu propagator up to the second-order, it is possible

to write the effective action (Seff) in Eq. (2) as a sum of bosonic action (SB)

and fermionic action (SF ). There is an additional term which emerges from the

linear order of self-energy expansion (G0Σ). It is possible to set the linear order

term to zero, if we consider SF is an extremum of Seff , after having performed all

the fermionic Matsubara frequency sums. The constrained condition leads to the

BCS gap equation, which after appropriate regularization through s-wave scattering

length reads,

−
m

4πa
=

∑

k

[

1

2Ek
−

1

2ǫk

]

, (3)

where Ek =
√

ξ2k +∆2, ξk = ǫk − µ, ǫk = k2/(2m), µ is the chemical potential

and ∆ is the BCS gap function. Next we obtain the density equation through the

thermodynamic potential (Ω). Ω can be written as a sum over fermionic (ΩF ) and

bosonic (ΩB) potentials, n = nF +nB = − ∂
∂µ (ΩF +ΩB) = − 1

β
∂
∂µ (SF +SB). Hence

the mean-field density equation reads

n =
∑

k

(

1−
ξk
Ek

)

−
∂ΩB

∂µ
, (4)

where ΩB is the bosonic thermodynamic potential which contains the disorder

contribution. Now Eqs. (3) and (4) are ready to be solved self-consistently.
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2.2. Fidelity susceptibility

Study of FS in disordered environment is a subject of interest in recent years, since

it offers a unique intrinsic tool to detect QPT.19–25 A detailed description of QPT

in quantum XY model in the presence of disorder has already been reported.29,30

Furthermore, in a recent analysis the role of FS in a disordered two-dimensional

Hubbard model has been considered.31 Here, we study the FS within the dirty

crossover scenario.

The ground-state fidelity F (λ+δλ, λ) depends on both the controlling parameter

λ and its variation, δλ. The dependence on δλ can be eliminated by considering

the limiting expression for the ground-state fidelity when δλ approaches zero. For

small δλ,

F (λ+ δλ, λ)2 =

[

〈Ψ(λ)|+ δλ
∂〈Ψ(λ)|

∂λ
+

(δλ)2

2

∂2〈Ψ(λ)|

∂λ2

]

|Ψ(λ)〉

= 1−
(δλ)2

2

∂〈Ψ(λ)|

∂λ

∂|Ψ(λ)〉

∂λ
, (5)

where the state |Ψ(λ)〉 is assumed to be real and normalized. A sudden drop of the

ground-state fidelity at the critical point will then correspond to a divergence of

the FS:20,21

χ(λ) ≡ −
1

V
lim
δλ→0

4 lnF (λ + δλ, λ)

(δλ)2

=
1

V

∂〈Ψ(λ)|

∂λ
·
∂|Ψ(λ)〉

∂λ
, (6)

where V is the system volume.

Since we are interested in calculating the FS across the BCS–BEC crossover, we

calculate χ(λ) for the BCS wavefunction:

|Ψ(λ)〉 =
∏

k

[uk(λ) + vk(λ)c
†
k↑c

†
−k↓]|0〉 . (7)

Here, c†
kσ creates a fermion in the single-particle state of wave-vector k, spin σ and

energy ǫk, uk and vk are the BCS coherence factors, v2k = 1− u2
k = (1− ξk/Ek)/2.

When the BCS wavefunction is inserted in Eq. (6), one obtains

χ(λ) =

∫

dk

(2π)3

[

(

duk

dλ

)2

+

(

dvk
dλ

)2
]

, (8)

which can be written as

χ(λ) =

∫

dk

(2π)3
1

4E4
k

[

∆k
dµ

dλ
+ ξk

d∆k

dλ

]2

. (9)

In the numerical calculation of χ, we use the disorder induced self-consistent solu-

tion of the order parameter and the chemical potential where λ = (kFa)
−1.
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3. Results and Discussion

We now present our FS results which are obtained through self-consistent calcu-

lation of Eqs. (3) and (4) and subsequent numerical integration of Eq. (9). In

the first part we show the effect of disorder on FS and related statistical analy-

sis. Afterward we show the effects of disorder on DOS and discuss the possibility

of a QPT. Let us now specify what is meant by weak impurity. We know that

γ has a dimension of kF /m
2 which leads to the dimensionless disorder strength

η = γm2/kF = (3π2/4)γn/ǫ2F . This implies that the impurity density and strength

remains much less than the particle density n and Fermi energy ǫF . For practi-

cal purposes, one can quantify the impurity contribution as weak, as long as the

dimensionless disorder strength satisfies15 η . 5.

3.1. FS with disorder

The recent observation of Anderson localization in ultracold atomic gases7–10 has

opened the possibility of studying disorder effects in the whole crossover region.

This motivates us to check whether it is possible to predict a QPT in an interaction

driven disorder induced ultracold Fermi system. Starting from the clean limit, we

increase the impurity strength and observe a gradual change of FS from symmetric

to asymmetric profile (Fig. 1). The left panel in Fig. 1 shows FS versus interaction

for various disorder strengths (η ∈ [0, 5] with increments of 0.2) and the loss of

symmetry and decrease of width. The right panel depicts a density plot between

interaction, disorder and FS. From this plot one can realize the gradual increase in

FS peak height and also a slow shift of the peak to the weaker to relatively stronger

coupling. We note that in a study of quantum spin chains similar observations were

also made.30 We thus ask whether this behavior is a precursor of an imminent phase

transition with much stronger disorder.14

Fig. 1. (Color online) χ (in units of k−3

F
) is plotted for various disorder strengths along the

BCS–BEC crossover. The left panel, each χ is separated by an increment of η = 0.2 from η = 0 to
η = 5. The behavior reveals the break in symmetry for FS. In the right panel we present the same
data in density plot format for a clear understanding of the change in peak height and width of
the FS.
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A measure of the asymmetry in FS would be a useful tool and thus we calculate

the skewness and kurtosis of the FS. In nuclear physics skewness and kurtosis are

established tools to study the phase transition from an equilibrium hadronic state to

quark-gluon plasma.32,33 Furthermore, these techniques are also applicable to chiral

phase transition in quantum chromodynamics (QCD).34 Skewness (S) is defined as

the measure of the asymmetry of the distribution, and kurtosis (κ) measures the

curvature of the distribution peak, which are defined as

S =
〈(x − 〈x〉)3〉

〈(x− 〈x〉)2〉3/2
, κ =

〈(x− 〈x〉)4〉

〈(x − 〈x〉)2〉2
− 3 . (10)

In the present context x = (kF a)
−1. The critical transition point can be identified as

the point where S and κ change sign, since the change of sign will signify an abrupt

nonanalytic change in the orientation (for skewness) and height (for kurtosis) of

the distribution. Hence, they can be used as indicators of an impending transition.

Physically, the change of sign in skewness can be viewed as change of direction

of asymmetry from left to right or vice versa. In the case of κ it can be viewed as

change of a sharp distribution to a flat one. At the phase transition, FS is expected

to diverge as a result of a sudden drop in fidelity.27 Here, we expect that, as we

near the transition point the FS distribution should become increasingly sharper

resulting in an increasingly larger kurtosis.

We calculate S and κ as a function of disorder which are depicted in Fig. 2.

In this figure, the left panel represents the skewness, which being positive implies

that the FS distribution tail is longer on the BEC side. The right panel tells us

about the kurtosis which is negative, and thus corresponds to a flatter peak which

is usually observed in the phase transition.33 The solid line depicts the calculated

S and κ. The bold points are our nonlinear extrapolation of the data.

We observe, with increasing disorder, the FS peak moves towards the relatively

strong interaction regime and the asymmetry gradually increases which can be

viewed in the progressive change of S and κ in Fig. 2. From the Anderson theorem

it is known that in three-dimensions there exits a critical impurity strength beyond

 0.02

 0.1

 0.18

 0  5  10  15  20  25

S

-0.4

-0.2

 0

 0  2  4  6  8  10

Fig. 2. (Color online) The left panel presents the skewness whereas the lower panel is the kurtosis.
Our calculation of skewness and kurtosis are presented through the solid line. The bold points
depict the nonlinear extrapolation and the dotted line indicates the zero axis.
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which the electrons will be localized. In this study, we cannot comment exactly

on the localization because of the limitations of the modified mean-field theory.

However, it can be noticed (Fig. 2) that both S and κ approach zero where a

sign change will occur (possible phase transition). To estimate the critical point

of phase transition, we first apply least square fitting of the data points which

indicates that ηc is around 10 − 13. As an alternative, we also employ nonlinear

spline interpolation. The results suggest the zero crossing for these moments may

occur at ηc ≃ 9 (kurtosis) and ηc ≃ 23 (skewness). A range of values for ηc in S and

κ has also been encountered in the study of quark-gluon plasma with the suggested

interpretation of ηc ≃ 9 signifying the beginning of the QPT and ηc ≃ 23 indicating

the completion of QPT.33 We also note that our linearly extrapolated critical point

is in agreement with Ref. 14, where ηc is estimated to be around 11.

3.2. DOS with disorder

In the previous section we have considered the possibility of a QPT in a dirty

crossover. To study the influence of disorder in the BCS–BEC crossovermore closely,

we calculate the DOS defined as

N(ω) =
∑

k

u2
kδ(ω − Ek) + v2kδ(ω + Ek) , (11)

where uk, vk and Ek are the usual BCS parameters as introduced earlier.

In Fig. 3 we present the behavior of DOS, N(ω), at different interaction regimes.

Interestingly, we do not observe any significant difference in BCS and BEC limit

in terms of energy gap as well as stacking of energy states. But at unitarity, the

Fig. 3. (Color online) The DOS for different couplings and various disorder strengths is presented.
From top to bottom the figures describe weak coupling, unitarity and strong coupling regions
respectively. It is noticeable that disorder plays a significant part only in the unitarity leaving the
other two regions almost unchanged.
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Fig. 4. (Color online) Variation of the energy gap (spectral gap) with disorder strength and
interaction energy is shown. A distinct drop in EGap can be noted in the crossover region due
to disorder and this drop increases with increasing impurity strength. However the two extremes
(BCS and BEC) do not show much change.

energy gap gradually reduces as a function of disorder and sharp coherence peaks

at the excitation edges are observed.

We examine this behavior more closely in Fig. 4. In the BCS–BEC crossover

region ((kF a)
−1 ∈ [−1, 1]) one can observe that the EGap is reduced, but on the

BCS and BEC sides it remains unaffected by disorder. It is interesting to note

that in a recent study on coexistence of pseudogap and usual BCS energy gap in a

harmonic trap,36 the reduction of energy gap was observed only at unitarity when

the DOS was calculated at different positions from trap center. We already know

that in a BCS superconductor the energy gap reduces at moderate disorder but

starts increasing for stronger disorder, which brings the onset of localization. Here

the effect of disorder is more prevalent at unitarity compared to the other regions.

This can be taken as an indication of an early onset of QPT at unitarity and the

emergence of a transient state (glassy phase) at relatively moderate disorder.

3.3. Discussion

In this work we have combined different ideas from condensed matter physics and

quantum information theory to investigate the effect of disorder on the BCS–BEC

crossover. We now discus various aspects and experimental perspectives of the ideas

presented here.

We emphasize that through a relatively simple method we are able to comment

on the possible QPT in a disordered unitary Fermi gas. Apart from a detailed
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real space analysis of the inhomogeneous system (by employing a BdG analysis)

it will also be very interesting to see the effect of the impurity in this model by

incorporating higher-orders in the Dyson equation. Such a comparative study, in-

volving the third- and fourth-orders in the free energy expansion would be useful

in understanding the range of validity of the perturbation theory.

We note that Bose gas experiments were conducted with different disorder real-

izations such as speckle and incommensurate (bichromatic) lattice.7,8 To realize the

proper range of localization length (smaller than the system size) it is necessary to

design an appropriate optical system for speckle potential. However, the quasiperi-

odic lattice naturally provides a very short coherence length.38 The uneven land-

scape of the impurity potential allows existence of spatially confined states which

can result in “island” formation of superfluid system in an otherwise insulating

domain and this feature is expected to influence the Bose condensate more severely

than the BCS Cooper pairs because of strong phase coherence. The quenched dis-

order described here is repulsive, thus it is nonconfining. The impurity potential

represents essentially the scattering centers which affect mostly the phases of the

wavefunctions of the particles that are scattered from them. Thus, the model does

not influence any localization inherently.

We also note that the use of FS is gathering attention in the study of ultracold

atomic systems.39 From the quantum information theory side, an experimental

model to observe fidelity was suggested almost a decade ago40 and it is observed

in photon entanglement measurements.41 Since one can now observe the macro-

scopic wavefunctions in ultracold atom experiments, we expect the realization of

the overlap of two wavefunctions in the near future.

4. Conclusion

In conclusion, we have considered the possibility of QPT near unitarity through the

study of FS and DOS with quenched disorder. The disorder is included in the mean-

field formalism through Gaussian fluctuations. The FS provides a strong indication

in terms of evolution from symmetric to asymmetric FS line-shape due to disorder

for a QPT. A more detailed real space analysis with strong disorder should provide

further information on this issue.

We have calculated the DOS for different interaction regimes. Interestingly, the

DOS shows sharp coherence peaks at the excitation edges and gradual lowering of

the energy gap. On the other hand, the DOS remains almost the same as that of

a clean system in the deep BCS and BEC regimes. This suggests that the unitary

superfluid is a better candidate for impending disorder driven QPT.

We note that the effect of impurities in superconducting lattice systems has been

extensively studied. The emergence of ultracold Fermi gases necessitates a detailed

investigation with disorder in a homogeneous continuum model. The quenched dis-

order model within the BEC has been studied through the mean-field theory and

QMC simulations.35,42,43 A systematic description across the crossover is missing.
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Investigating dirty crossover through fidelity susceptibility

We hope our analysis will bridge this gap and stimulate further investigations in

the whole crossover.
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