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Computational homogenization of soft matter friction:
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SUMMARY

A computational contact homogenization framework is established for the modeling and simulation of soft
matter friction. The main challenges toward the realization of the framework are (1) the establishment of
a frictional contact algorithm that displays an optimal combination of accuracy, efficiency, and robustness
and plays a central role in (2) the construction of a micromechanical contact test within which samples
of arbitrary size may be embedded and which is not restricted to a single deformable body. The former
challenge is addressed through the extension of mixed variational formulations of contact mechanics to
a mortar-based isogeometric setting where the augmented Lagrangian approach serves as the constraint
enforcement method. The latter challenge is addressed through the concept of periodic embedding, with
which a periodically replicated C1-continuous interface topography is realized across which not only pend-
ing but also ensuing contact among simulation cells will be automatically captured. Two-dimensional
and three-dimensional investigations with unilateral/bilateral periodic/random roughness on two elastic
micromechanical samples demonstrate the overall framework and the nature of the macroscopic frictional
response. Copyright © 2014 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The characterization of the link between microscopic surface roughness and the macroscopic fric-
tional interaction among contacting surfaces has been one of the major challenges in tribology. In
the regime of continuum mechanics where the present emphasis lies, efforts have historically been
concentrated on the contact of metals, and the approaches developed therein have constituted a
basis for the modeling of friction among hard non-metallic surfaces as well [1]. While soft matter
friction shares similarities with friction among hard materials [2], notably through adhesion-type
contributions, a number of different challenges arise that are primarily associated with the material
response, and the addressing of which requires an efficient computational framework that is gov-
erned by contact detection and treatment. The development of such a framework in the context of
contact homogenization is the main goal of the present work.

For metals, the shearing of adhesive junctions across the rough interface and the plowing of one
of the paired surfaces by the asperities of the other are among the major mechanisms responsible
for the macroscopically observed frictional response, which is also strongly influenced by micro-
scopic wear and lubrication [3, 4]. Fundamental micromechanical models for friction are typically
amenable to an analytical contact homogenization treatment based on simplified geometric construc-
tions, such as a single rigid asperity indenting a deformable surface, combined with the modeling
of the plowing and adhesive forces [5]. These asperity-level interaction models may be comple-
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mented by numerical approaches that have the potential to resolve the complex material response
in the vicinity of a contact zone [6–8]. Numerical approaches also assist in the incorporation of
statistical models of multiscale random roughness toward a deeper understanding of the interfacial
topography influence on the homogenized response. Beginning with the influential work of [9], a
natural starting point for such investigations is to initially consider normal contact alone—see [10,
11] for reviews of the multiscale modeling of roughness and contact and [10, 12–14] for represen-
tative recent studies. A successful resolution of the microscopic contact area during normal loading
enables the subsequent analysis of the macroscopic tangential response and, hence, of friction—see
[15] for an early example and [16, 17] for further studies. Because of the complex molecular struc-
ture of soft matter, the domain of modeling often lies in continuum mechanics, and in view of the
highly nonlinear response (see below), the finite element method appears to be the most relevant
numerical technique. For hard materials such as metals, on the other hand, a wider range of mod-
eling and simulation choices are available for the multiscale analysis of contact in addition to the
finite element method [18, 19], such as molecular dynamics [20, 21], the discrete element method
[22, 23], and the boundary element method [24, 25], as well as semi-analytical methods [26, 27].

Driven by technological interest, over the past few years, significant experimental effort has also
been focused toward a better understanding of sliding (or kinetic) friction that is associated with
biological and synthetic soft matter. For instance, skin friction plays an important role in tactile
perception [28–31] while elastomeric friction governs traction [32–35]. In comparison with hard
materials, the major difference in the response of such soft matter is the intrinsic viscoelasticity of
the material and the very large deformations that the material can sustain without permanent strains.
The microscopic viscous dissipation resulting from the continuous and cyclic loading of the bound-
ary layers in the vicinity of the contact zone by the asperities of the rough surface has the potential
to significantly augment the macroscopically observed friction. This essentially leads to a character-
istically non-Amontons and non-Coulomb type behavior where the macroscopic friction depends,
respectively, on the contact pressure and the slip velocity. The early works by Schallamach [36]
and Grosch [37] had already highlighted this relation for rubber, a widely employed elastomeric
material, while subsequent work additionally noted the significance of adhesive contributions [38,
39], which also intrinsically depend on the surface topography [40, 41]. Although the viscous and
adhesive contributions may not always provide a complete basis for soft matter friction [42], they
highlight the tribological complexity as well as the central role that surface roughness plays in the
homogenized interface response. In order to numerically capture this response accurately, the micro-
scopic contact area must be resolved properly, which necessitates reaching a steady-state cyclic
viscoelastic response by ensuring sufficiently long sliding contact on the microscale. Assuming
linear viscoelasticity and a unilateral roughness that is assigned to a rigid surface, most of these chal-
lenges have been elegantly addressed for rubber friction across multiple length scales within a fractal
setting [43], possibly with anisotropy [44], and the developed approaches make fairly accurate pre-
dictions [45, 46]. While limited in number, extensions of the setup to a materially and geometrically
nonlinear finite element framework, but preserving unilateral roughness on a rigid surface, have also
been pursued in two-dimensional [47] and three-dimensional settings [48] as well as in the case
when the interface heterogeneities are mobile rigid third bodies rather than the asperities of a rough
rigid surface [49].

The common assumption of a unilateral roughness assigned to a rigid surface employed in the
aforementioned studies is often justified by the frictionless normal contact mechanics of two linearly
elastic bodies with rough surfaces. The primary step in the analysis of this problem is the calcu-
lation of an equivalent roughness, assigned to a rigid surface, and an equivalent elastic modulus,
assigned to an elastic body [50, 51]. However, the theoretical support for this reduction is invalid
under frictional sliding [52] and, in particular, in the nonlinear setting that is required for the treat-
ment of soft matter contact. Moreover, while the summarized approaches constitute a suitable first
step toward the characterization of friction among soft materials in general, the necessity to consider
two deformable surfaces in a kinematically and geometrically nonlinear setting places stringent
requirements on the contact algorithms employed, demanding a higher degree of simultaneous accu-
racy, efficiency, and robustness [53, 54], which poses a challenge. As an additional challenge, long
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dragging durations as well as the appropriate statistical sampling of roughness requires the con-
struction of large interface topographies, which is not a major issue with unilateral roughness where
the rough surface is not numerically discretized but can easily be prohibitive when both surfaces are
deformable if, for instance, the stationary surface is chosen to be sufficiently large so that the sliding
one never leaves its span. The construction of a computational contact homogenization framework
that is capable of addressing these two central and interactive challenges for soft matter friction is
the present goal.

The remainder of this work is organized as follows. In Section 2, a mixed variational framework
for mortar-based frictional contact is extended to the augmented Lagrangian (AL) setting in order
to improve accuracy, efficiency, and robustness. The framework benefits from an isogeometric set-
ting that allows using higher-order contact variable discretizations that emanate from the geometric
description of the micromechanical samples. Representative test cases demonstrate the satisfac-
tory performance of the contact algorithm in comparison with pure penalty or Uzawa-staggered
forms. Section 3 introduces the concept of periodic embedding that enables the construction of a
micromechanical contact test within which arbitrary samples sizes may be employed and arbitrarily
long durations of microscopic sliding contact can be achieved. Through geometric periodicity con-
straints and cell-periodic closest-point projection, a periodically replicated C1-continuous interface
topography will be realized across which not only pending but also ensuing contact among simula-
tion cells will be automatically captured. The emphasis of the work is on the construction and the
demonstration of the computational contact homogenization framework. Consequently, the numer-
ical examples in Section 4 will concentrate on how the microscale frictional response is reflected
to the macroscale after being altered by the interface topography rather than on the augmentation
of the frictional response through the accumulation of viscous bulk or adhesive interface dissipa-
tion across the scales. For this purpose, a purely elastic bulk response and an Amontons–Coulomb
type microscopic interface friction will be admitted. Here, following most studies on rubber friction,
dynamic effects in soft matter friction [39, 55, 56] will be omitted. Finally, an outlook toward a more
comprehensive computational tribology approach for soft matter contact is provided in Section 5.

2. MIXED VARIATIONAL FRAMEWORK FOR ISOGEOMETRIC CONTACT

2.1. Mortar-based contact with friction

Two-dimensional and three-dimensional mortar-based isogeometric schemes for frictional contact
have been presented in [57] and [58], respectively, where the penalty method was employed for
enforcing the contact constraints. A mixed variational framework, based on the classical work [59],
that delivers such mortar-based schemes while benefiting from isogeometric discretizations has been
discussed in [60]. Therein, the AL method was employed for constraint enforcement in a staggered
setting via Uzawa iterations [61]. Presently, this variational framework is extended to the original
AL scheme [62, 63]. The presentation is compact, in particular omitting linearization, because this
extension follows mostly from the tangential contribution to the mixed contact functional in the
Uzawa setting and the framework in [63]. The procedure for normal contact is similar and, as a
special case, also delivers the isogeometric contact scheme of [64].

For a compact presentation, standard computational contact mechanics terminology is employed
[53, 54]. In particular, all contact integrals will be evaluated on the image �co of the potential contact
interface mapped to the reference configuration of the slave body via

h�i D

Z
�co

� dA: (2.1)

This choice is accompanied by the decomposition of the contact (Piola) traction acting on the slave
into normal and tangential parts such that the contact pressure is pN > 0 while pT˛ (˛ D 1; 2)
are the covariant components of the tangential traction. If the outward unit normal is � and the
contravariant basis vectors are a˛ at the closest-point projection y of a slave point x onto the master,

p D pN� � pT˛a
˛ (2.2)
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is the total traction acting on the slave. This kinetic construction is complemented by the kinematic
quantities of normal (gN ) and tangential (g˛T ) gap measures: gN D �.x�y/ �� and g˛T D �

˛;nC1�
�˛;n numerically represents the change in the convected curvilinear coordinates �˛ of y from time
step n to nC 1. With this setup, the contact contribution ıGc D ıGcN C ıGcT to the weak form of the
linear momentum balance has the normal and tangential parts

ıGcN D �hıgN pN i; ıGcT D �
˝
ıg˛T pT˛

˛
: (2.3)

An independent Lagrange multiplier contribution has a similar decomposition: ıLc D ıLcN C ıLcT .
In order to discretize the contact contributions, the approach pursued will particularly benefit

from the mortar schemes advocated in [65, 66] and from the idea of choosing the integration surface
coincident with the slave [67] instead of carrying out segmentation for accurate integration. The
choice of the integration surface delivers implementation convenience for the class of problems
considered but sacrifices machine precision accuracy for the flat interface patch test. However, this
is not a significant shortcoming because Temizer [60] demonstrates that patch tests can be passed
to very good accuracy even for inclined and curved interfaces. Sacrificing machine precision is
acceptable because segmentation approaches applied to the types of non-flat NURBS discretizations
encountered in this work also deliver high accuracy but not machine precision [68, 69]. For frictional
mortar contact approaches employing alternative interface variable discretizations and constraint
enforcement algorithms, the reader is referred to recent works [70–72] and reviews [73, 74]. See
also [75, 76] for non-mortar isogeometric contact.

2.2. Normal contact functional

A mixed kinematic variable �N and a normal Lagrange multiplier �N are introduced and, together
with pN , assigned an interface discretization using the shape functions N I of the slave surface:

pN D
X
I

N IpIN ; �N D
X
I

N I�IN ; �N D
X
I

N I�IN : (2.4)

In terms of the normal contact variables, one may introduce the functional

CN ŒgN ; pN ; �N ; �N � D �
1

2
�N
˝
�2N
˛
C hpN .�N � gN /i � h�N �N i (2.5)

where �N is the normal penalty parameter. For notational compactness, it is useful to define

gIN D
˝
N IgN

˛
; ˆIJ D

˝
N IN J

˛
; wI D

˝
N I

˛
: (2.6)

Now, upon making use of the mortar-based discretization (2.4), CN takes the discrete form

CN D
X
I

´
�
1

2
�N �

I
N

X
J

ˆIJ �JN C p
I
N

 X
J

ˆIJ �JN � g
I
N

!
� �IN

X
J

ˆIJ �JN

μ
: (2.7)

Clearly, only the projected normal gap gIN is a known input to CN . For numerical purposes, although
not required [60], it is advantageous to eliminate the coupling among the contact DOFs induced by
the overlap matrix ˆIJ through row-sum lumping, following similar ideas for the treatment of the
mass matrix ([77], p.444), thereby obtaining

CN D
X
I

²
�
1

2
�N �

I
Nw

I�IN C p
I
N

�
wI�IN � g

I
N

�
� �INw

I�IN

³
: (2.8)

The variation of CN with respect to gIN delivers the contribution ıGcN to ıGc while the remaining
variations with respect to pIN , �IN and �IN induce, respectively, the contact equalities

�IN D g
I
N =w

I ; pIN D �
I
N C �N �

I
N ; ıLcN D

X
I

ı�IN
®
�wI�IN

¯
D 0: (2.9)

ıLcN is the weak form contribution associated with the multiplier variations and indicates the
weak enforcement of gN D 0 on �co , satisfied at convergence. It is emphasized that the mixed
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kinematic variables only serve to establish a link between the actual interface geometry and this
weak constraint enforcement. They do not appear in the system of equations: the only unknowns
are the displacement and Lagrange multiplier DOFs. Overall, this approach benefits from the
underlying isogeometric discretization that guarantees N I > 0, thereby allowing the applica-
tion of the same contact algorithm independent of the discretization order [58]. Higher-order
Lagrange discretizations do not display this property and hence require special mortar-based
treatment [71, 78].

CN and, therefore, ıLcN are incomplete in their present forms because the discrete functional (2.8)
is only applicable to I belonging to the active set A: pIN > 0. The following modification expli-
citly takes into account the active set and resets a Lagrange multiplier to zero upon contact loss
while ensuring the continuity of the contributions to the finite element residual through the active-
to-inactive transition, that is, as the contact state switches between active and inactive [63, 79]:

CN D
X
I2A

²
�
1

2
�N �

I
Nw

I�IN C p
I
N

�
wI�IN � g

I
N

�
� �INw

I�IN

³
C
X
I…A

²
1

2
�–1
N �

I
Nw

I�IN

³
:

(2.10)

2.3. Tangential contact functional

The tangential contribution introduces the mixed kinematic variables �˛T and tangential Lagrange
multipliers �T˛ in addition to pT˛ . The relevant tangential contact functional is

CT Œg˛T ; pT˛; �˛T ; �T˛� D �
1

2
�T

D
�˛T a˛ˇ�

ˇ
T

E
C
˝
pT˛.�

˛
T � g

˛
T /
˛
�
˝
�T˛�

˛
T

˛
; (2.11)

where �T is the tangential penalty parameter and a˛ˇ are the covariant metric components on the
master. The tangential contact variables are subject to an interface discretization similar to that of
their normal counterparts in (2.4). In addition to (2.6), the definitions

g
˛;I
T D

˝
N Ig˛T

˛
; aIJ˛ˇ D

˝
N Ia˛ˇN

J
˛
; mI˛ˇ D

˝
N Ia˛ˇ

˛
wI

; kvIk2 D vI˛m
˛ˇ;IvIˇ

(2.12)

are introduced where m˛ˇ;I is associated with the inverse of mI
˛ˇ

and vI symbolically indicates a
tangential vector with covariant components vI˛ . The discrete form of CT is then

CT D
X
I

´
�
1

2
�T �

˛;I
T

X
J

aIJ˛ˇ �
ˇ;J
T C pIT˛

 X
J

ˆIJ �JT˛ � g
˛;I
T

!
� �IT˛

X
J

ˆIJ �
˛;J
T

μ
(2.13)

while the final lumped form that is convenient for numerical purposes is

CT D
X
I

²
�
1

2
�T �

˛;I
T wImI˛ˇ�

ˇ;I
T C pIT˛

�
wI�IT˛ � g

˛;I
T

�
� �IT˛w

I�
˛;I
T

³
: (2.14)

In addition to delivering the contribution ıGcT to ıGc , the variations of CT effectively induce �˛;IT D

g
˛;I
T =wI and, thereby,

pIT˛ D �IT˛ C �Tm
I
˛ˇg

ˇ;I
T

.
wI ; ıLcT D

X
I

ı�IT˛

°
�g

˛;I
T

±
D 0: (2.15)

In the first iteration of step nC 1, �IT˛ inherits its value �I;nT˛ from step n.
Let S � A denote the set associated with stick. Above, I 2 S was implicitly assumed. To handle

active-to-inactive or stick-to-slip transitions, the functional CT must be extended [63, 79]:

(1) Active-to-Inactive: The inactive set contribution is
P
I…A

°
1
2
�T

–1wIk�IT k
2
±

. If contact is

reinitiated in a next iteration in step nC 1, �IT˛ must initially be reassigned �I;nT˛ .
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(2) Stick-to-Slip: The Coulomb criterion does not have a unique numerical expression in the
mortar setting because of different constructions of the mortar algorithms [60, 66]. Here,
�I D kpIT k � 	

I 6 0 is employed with k as the friction coefficient and 	I D kpIN (fixed

during variation).
P
I2AnS

°
1
2
�–1
T w

I
�
k�IT k

2 � 2	IkpIT k C 	
I	I

�±
is added when �I > 0,

effectively assigning �IT˛ its slip value 	I sI˛ with sI˛ D p
I
T˛=kp

I
T k as the trial slip direction.

To benefit from the standard tangential variable update algorithm [53, 54], the metric variation is
omitted from ıCT , leading to the well-known loss of symmetry in linearization—see [80] for an
improved update algorithm that preserves symmetry in stick. Additionally, the active-to-inactive
contribution to the weak form may be replaced by

P
I…A ı�

I
T˛¹�

–1
T w

I�IT˛º and the stick-to-slip
contribution to the ıLcT portion by

P
I2AnS ı�

I
T˛¹�

–1
T w

I .�IT˛ � 	
I sI˛ /º. While such a modification

would sacrifice the continuity of ıLcT through the transitions [63], the linearization of ıLcT D 0 is
simplified with no numerical reliability degradation for the class of problems investigated, which
will be justified by the numerical examples that follow.

2.4. Representative test case I: rotating frictional contact

In order to demonstrate the AL formulation outlined earlier and to highlight its advantages toward
the realization of the micromechanical investigations where persistent frictional sliding contact con-
ditions prevail, a representative test case is considered where an elastic body is compressed against
another in frictional contact, and subsequently, an increasing twisting torque is applied with dis-
placement control until sliding dominates at the interface. Instances from the simulation are provided
in Figure 1. The problem setup, including the loading/geometry parameters and the material model,
is borrowed from [60] and is not repeated. In this example, as well as in upcoming ones, the time
step size is refined/coarsened according to a basic adaptivity criterion such that it is halved upon
convergence failure and, whenever a refinement has been carried out, doubled after a preset number
of consecutively successful steps.

A number of numerical observations regarding this test case are summarized in Figure 2. An
appropriate mesh is chosen from three resolutions. The coarse resolution is represented in Figure 1
while the medium/fine resolution corresponds to two/three times the coarse one in each paramet-
ric direction. The twisting torque evolution is sufficiently accurately captured at a medium mesh
resolution, which is chosen as the default. When there is no friction, the twisting torque is zero,
apart from negligibly small oscillations about zero, which can be further reduced by knot refinement
or order elevation within an isogeometric setting [57, 58]. For small k, sliding conditions quickly
dominate the interface response, and hence, the twisting torque saturates quickly. The saturation is
delayed with increasing k. The default is chosen as k D 1. On the basis of these default choices,
two sets of investigations are carried out. First, the AL scheme is degraded to a pure penalty form
where �N is varied at a fixed �N =�T ratio. Second, the AL scheme is degraded to a staggered form
in which Uzawa iterations augment the Lagrange multipliers to a tolerance TOL where the error

Figure 1. Simulation instances from the rotating frictional contact problem of Section 2.4. The bodies
are discretized (coarse resolution) with quadratic NURBS in each parametric direction. The red spheres

represent the corresponding control points.
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Figure 2. (a and b) The mesh resolution and coefficient of friction effects are summarized for the AL scheme.
(c and d) Pure penalty and Uzawa-staggered forms of the AL scheme are assessed.

corresponds to the 2-norm of the multiplier updates scaled by that of the multipliers from the last
iteration. Well-known observations regarding these alternative approaches are briefly summarized:

(1) Pure penalty form: Choosing an appropriate penalty number is not straightforward, with too
small or too large values typically leading to convergence problems. Presently, the two small-
est choices fail to converge even with time step adaptivity while the largest choice only leads
to convergence after aggressive refinement such that the total number of calls to the linear
system solver exceeds twice that of the AL scheme for the same setup. The difficulties in
identifying appropriate penalty parameters lead to uncertainties in accuracy assessment.

(2) Uzawa-staggered form: These uncertainties may be alleviated by augmentation with a suffi-
ciently small Uzawa tolerance. Robustness is also enhanced because convergence may now
be achieved for previously unsuccessful pure penalty setups. A large tolerance (TOL D 10�1)
keeps the number of augmentations to a minimum but does not ensure an accurate result if
the penalty parameters are not sufficiently large, while a small tolerance (TOL D 10�3) well
approximates the AL solution but may lead to a large number of augmentations (> 10).

In view of these observations, the AL scheme provides a framework within which, independent of
the choices of the penalty parameters to a large extent, the solution is obtained with an optimal
combination of accuracy, efficiency, and robustness. Overall, it provides satisfactory numerical reli-
ability for the micromechanical contact investigations to be carried out in the upcoming sections.
It is remarked that algorithmically consistent linearization is carried out such that asymptotically
quadratic convergence rates are achieved. This is demonstrated in Appendix C, along with the
number of Uzawa iterations needed for the staggered form.

Copyright © 2014 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2014; 100:953–981
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2.5. Representative test case II: sliding frictional contact

In order to demonstrate the AL formulation further, the sliding contact of two thick-walled shells
is considered as a second test case. Similar to the first test case, the setup is borrowed from an
earlier work [81], so the details are not repeated. However, it is extended to include friction. In the
rotating contact problem, the active-to-inactive transitions occur only during the compression phase.
During rotation, significant stick-to-slip transitions take place. In the present problem, both types of
transitions take place simultaneously. The problem is very relevant to the goals of this work because
the geometry of contact is reminiscent of two highly deformable asperities in sliding contact.

Simulation instances in Figure 3 summarize the test case for k D 1:00. At this value of k,
Figure 4 first investigates the effect of mesh resolution by monitoring the normal and tangential
forces measured. The fine resolution represents sufficiently converged results. At this resolution, k
is varied to monitor its effect. By construction, the frictionless case gives rise to a contact problem

Figure 3. Simulation instances for the sliding frictional contact of Section 2.5 with k D 1:00. The bodies
are discretized (fine resolution) with quadratic NURBS in each parametric direction.

Figure 4. The mesh resolution and coefficient of friction effects are summarized for the problem of Figure 3
by monitoring the normal (FN ) and tangential (FT ) forces measured. The problem is solved only with the

AL scheme.
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Figure 5. Simulation instances for different values of k at 
 D 0:5 from the analysis of Figure 4. For all k
values, initial (
 D 0) and final (
 D 1) configurations are the same (see Figure 3).

that is symmetric about 
 D 0:5. With increasing k, the tangential resistance increases such that at
k D 1:00, a tangential force must continuously be applied all the way until separation. This increas-
ing tangential resistance is also observed from the simulation instances at 
 D 0:5 for different
k values, as summarized in Figure 5. In all cases, asymptotically quadratic convergence rates are
achieved (Appendix C).

3. COMPUTATIONAL CONTACT HOMOGENIZATION

3.1. Micromechanical testing procedure

Once a specific frictional interaction is admitted between the contacting asperities of rough surfaces,
the overall topography of the contact interface will alter the reflection of this microscale behavior
onto the macroscale. On the macroscale, one observes a homogenized response that can be extracted
via a micromechanical test. The testing procedure, summarized in Figure 6, reflects the mechanics
of contact on the macroscale both numerically and physically; the aspects of which are individually
addressed below.

3.1.1. Numerical setup. Numerically, the classical designation of slave and master [53, 54] will be
transferred to samples associated with the contacting surfaces (blue: slave; yellow: master). These
samples represent the interaction of thin layers of material in the vicinity of the contact inter-
face (boundary layers [82]). The material response outside the boundary layers is not expected
to affect the macroscopic interface response [52, 82]. The raw geometry of the samples exclude
surface roughness. In a first step, the dimensions of the samples in the plane of macroscopic con-
tact are chosen to represent the statistical characteristics of roughness, corresponding to the period
of roughness in the simplest scenario of periodicity. The height of the samples should likewise
be chosen appropriately, leading to height-sensitive results if not chosen sufficiently large—see
[82, 83] and Section 4.3.1. In a second step, the surface roughness is assigned to the potential con-
tact surfaces such that the raw surface corresponds to the mean plane of roughness (see Figure 6
and Section 3.2.1). Two types of surface roughness will be considered: (i) periodic (sinusoidal) and

Figure 6. The micromechanical testing procedure is summarized: (left) raw geometry before the assignment
of surface roughness and (right) the heterogeneous sample geometry on which the boundary conditions are

imposed (blue: slave; yellow: master).
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Figure 7. Linear Lagrange (L1) and quadratic NURBS (N 2) discretizations are compared at different
resolutions, demonstrating the ability of isogeometric discretizations to rapidly capture the underlying

smooth surface topography with an acceptable quality even at low resolutions.

(ii) Gaussian random (random-field model [84, 85]). Surfaces are characterized with respect to their
out-of-plane (spatial) and in-plane (spectral) properties [86]. Among the out-of-plane statistical
properties, only the root-mean-square (RMS) roughness will be controlled, following the generation
procedure in [87]. With respect to the in-plane ones, it is noted that the employed periodic surfaces
will be anisotropic while the random ones can display both isotropy and anisotropy. Only isotropic
random surfaces will be employed in this work. In this case, an important consequence is that the
macroscopic frictional response will be isotropic provided the surfaces are not subjected to macro-
scopic in-plane deformation (Section 3.1.2). However, macroscopic anisotropy can also be observed
in the case of statistical anisotropy (Section 4.4.1).

The computational framework will benefit from three advantages associated with isogeometric
NURBS-based discretizations [88]. As noted in Section 2.2, one advantage is the non-negativity
of isogeometric basis functions, which enables the uniform applicability of the contact algorithm
to higher-order discretizations while most mortar-based approaches are based on linear Lagrange
polynomials. A second advantage is the additional underlying smoothness of isogeometric dis-
cretizations that will be further employed in Section 3.2.1. This leads to the third advantage, namely,
that the topography of the rough surface can be represented with high accuracy even at coarse dis-
cretizations (Figure 7). While the overall computational framework is to a large extent suitable for
employing NURBS discretizations of arbitrary order, numerical examples are based on quadratic
and cubic NURBS with unit weights (i.e., quadratic/cubic B-splines [89]) and a uniform knot vector
because such a structure is favorable for enforcing geometric periodicity (Section 3.2.1).

3.1.2. Physical parameters. Physically, the macroscopic contact conditions will be projected onto
the samples by imposing them as boundary conditions (BCs) on their outer surfaces. Specifically,
the master will be held fixed while the slave is subjected to the macroscopic contact pressure pN and
slip velocity vT (Figure 6). Because a classical Amontons–Coulomb frictional response is admitted
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and the boundary layers are elastic, there is no rate-dependent dissipation mechanism so that kvT k
does not affect the homogenized response [90].

The rough surfaces are subject to frictional contact conditions (Section 2) while periodic BCs will
be imposed on the remaining inner surfaces (Figure 6):

xC � x� D F c
�
XC �X�

�
; pC C p� D 0: (3.1)

Here, x/X denotes the current/reference configuration position vector, F c represents the surfacial
(in-plane) deformation of the macroscopic contact interface [8, 82, 87], and pC=� indicates values
of the Piola traction on periodically linked points (Figures 6 and 10). Explicitly,

F c D e˛ ˝E
˛ C � ˝ � (3.2)

where � is the unit normal to the master at the macroscopic point of contact (Figure 6) and E˛

(˛ D 1; 2) are tangential unit vectors, constituting an orthonormal basis together with �, while

e˛ D F
c
˛ˇE

ˇ (3.3)

are tangential (non-unit) vectors on the deformed configuration (Figure 10). F c alters the statistical
properties of the interface in two ways: (i) if F c

˛ˇ
D � ı˛ˇ , then the RMS roughness will decrease

(increase), and the period will increase (decrease) if the stretch � is greater (less) than unity and (ii)
if F c D IC�E1˝E2, as a specific example, then the surfaces are sheared such that a surface that
initially responds isotropically will display a deformation-induced anisotropy. The former will affect
the macroscopic frictional response only quantitatively while the latter will also cause a qualitative
change. It is noted that, for numerical convenience, the macroscopic deformations of the slave and
master surfaces are presently assumed to be the same although they can be significantly different in
general. Figure 10 employs surfacial deformation with F c

˛ˇ
D ı˛ˇ C 0:25.

3.2. Periodic embedding

The micromechanical test will be decomposed into three phases: (1) deformation phase where F c

is imposed; (2) compression phase where pN is imposed and maintained throughout the simulation;
and (3) dragging phase where macroscopic slip is imposed on the slave sample. Figure 6 already
depicts the embedding of the original samples among their periodic images throughout the microme-
chanical test, the need for which is highlighted in a sample computation summarized in Figure 8.
The projection of the slave rough surface coincides perfectly with the master at the beginning of the
simulation but not after the compression phase starts. Moreover, the slave sample must continuously
interact with the master surface for a sufficiently long dragging duration in order to ensure an accu-
rate characterization of the macroscopic frictional response. For both periodic and random surfaces,
one numerical approach to enable continuous interaction is to choose the master surface sufficiently
large so that the slave never leaves its span. However, this is inconvenient, particularly when both
surfaces are deformable or if the generation of a large random master surface is required. Moreover,
the determination of an appropriate size for the master surface is not straightforward because one

Figure 8. Cell-periodic sliding contact conditions are summarized in a two-dimensional setting.
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typically monitors the macroscopic frictional response until a suitable moving time average con-
verges (Section 4.2). Periodic embedding, which requires more than just imposing periodic BCs
on the deformation, circumvents these difficulties by facilitating continuous slave–master sample
interaction for arbitrarily long durations while enabling the use of arbitrarily sized samples—see
[91] for an early example with rigid periodic samples. In order to achieve periodic embedding, the
C1-continuity of the surfaces is advantageous for smooth contact interactions as well as for the pro-
jection algorithm used in detecting contact. The projection of a slave point onto the periodic images
of the master is realized by cell periodicity and benefits from the continuity across the images that
are enforced by geometric periodicity, which are discussed next.

3.2.1. Geometric periodicity. The mapping of the rough surfaces onto the raw geometry (Figure 6)
is realized by a least-squares fit. Considering the slave surface as an example and recalling the
discretization X D

P
I N

IXI (2.4), the minimization is carried out with respect to control point
positions XI :

1

2

Z
�co

.X � � � �/2dA �! min: (3.4)

Here, � is the desired vertical position at X , which is an input from the underlying periodic or ran-
dom surface generation algorithm. Although not pursued in this work, a more accurate fit can be
obtained by optimizing additionally with respect to control point weights of the underlying NURBS
description [92], assumed to be unity throughout this work. Once the surface mesh fitting is com-
pleted, the displacements of the raw surface control points with respect to the mean plane are applied
to the remaining bulk control points with a weight that decreases with the distance from the mean
plane (Figure 6).

A direct application of this minimization delivers incorrect geometric periodicity because the pro-
cedure does not even guarantee C0-continuity. Such results are compared with the desired correct
geometric periodicity for periodic and random surfaces in Figure 9. C1-continuous geometric peri-
odicity is achieved on the basis of the setting depicted in Figure 10 by adding penalization terms to

Figure 9. Two-dimensional periodic and random surface topography generation examples are provided,
without (incorrect) and with (correct) the imposition of geometric BCs that ensure C1-continuity across the

boundaries among the periodic images of the central cell.

Copyright © 2014 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2014; 100:953–981
DOI: 10.1002/nme



COMPUTATIONAL HOMOGENIZATION OF SOFT MATTER FRICTION 965

Figure 10. The variables employed in the enforcement of geometry-periodic and cell-periodic sliding contact
conditions are summarized on undeformed and deformed master surfaces. Here, F c

˛ˇ
D ı˛ˇ C 0:25.

the minimization problem (3.4) that are associated with continuity constraints. Considering a sample
set of points along a given axis with position vectors A (or, B), the first constraint enforces

C0-continuity:
�
AC �A�

�
� � D 0: (3.5)

Only the out-of-plane components, with respect to the mean plane, are considered because the in-
plane periodicity is satisfied by the construction of the raw geometry (Figure 6). The C0-continuity of
the resulting geometry is maintained throughout the deformation of the micromechanical samples by
the periodicity condition (3.1). Similarly, employing the out-of-plane components only, the second
constraint enforces

C1-continuity:
®�
AC �ACo

�
C
�
A� �A�o

�¯
� � D 0: (3.6)

Here, the subscript .�/o refers to the control point that is adjacent to the one on the boundary with
respect to the perpendicular parametric direction [89]. Along the vertical edges in Figure 10, as
well as within a surface, horizontal C1-continuity is ensured by the B-spline construction. The con-
straint stated earlier additionally ensures C1-continuity across the edge, that is, across patches. A
similar constraint in terms of the point set B ensures C1-continuity across the horizontal edges.
Using the notation introduced in Figure 10, C1-continuity across the sample boundaries is main-
tained throughout the deformations by complementing (3.1) with the enforcement of the generalized
condition �

xC � xCo
�
C
�
x� � x�o

�
D 0 (3.7)

which is an adaptation of the method employed in [93]—see [94, 95] for alternative schemes for
shells and membranes. These methods employ non-periodic (or, open) knot vectors [89] that render
the control points on the boundary interpolatory. Geometric periodicity can also be ensured by using
periodic knot vectors with which a k-th order discretization automatically ensures Ck�1-continuity
not only within the cell mesh but also across the cell images [96].

The reference configurations of three-dimensional samples generated via geometric periodicity
are provided in Figure 11 for periodic and random surface topographies.
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Figure 11. Three-dimensional periodic and random surface topographies with geometric periodicity.

3.2.2. Cell periodicity. As the slave sample slides over the master, the computation of the contact
contributions to the weak form requires the determination of the closest-point projection of a slave
point in a first step. Because it is not known beforehand on which image of the master the pro-
jection lies in, it is necessary to search an appropriate set of images and subsequently carry out
coupling between the moving slave and the stationary central master cell. Such cell-periodic pro-
jection is carried out on the basis of the setting depicted in Figure 10, independent of whether or
not there is macroscopic surfacial deformation. The starting point is the use of a global parametriza-
tion of the master surface. The central master cell is a NURBS patch with parametric convected
coordinates �˛ 2 Œ0; 1�. Periodic images of the master cell therefore generate a master surface such
that the addition of each image along a direction increases (or decreases) the parametric span by
unity. Hence, a master point y is a function of the parametric position � D .�1; �2/ such that the
closest-point projection minimizes the distance of the slave point to the master on the basis of the
standard criterion

f˛.�/ D a˛ � .x � y/ D 0 (3.8)

where a˛ are covariant basis vectors on the master. It is convenient to determine the parametric
coordinates �˛ for the origin of a master image cell within which the point � lies, such that �˛ D 0
corresponds to the central cell’s origin. Using b�c as the floor function, these are

�˛ D b�˛c: (3.9)

On the basis of this setting, the algorithmic procedure for locating the projection point �nC1 with
global minimum distance at time step nC 1 is as follows:

(1) Last projection cell: The last projection cell’s origin from step n is recorded: �˛;n D b�˛;nc.
(2) Genetic search: In particular, for random rough surfaces, the direct application of a Newton–

Raphson algorithm to (3.8) is not desirable because it is unlikely to converge to the global
minimum. Instead, a genetic search (Appendix A) that only evaluates the cost function f˛ is
carried out in a preliminary step by sampling the parametric domain �˛ 2 Œ�˛;n�1; �˛;nC2�,
that is, the one-cell neighborhood of the last projection cell. The algorithm delivers an updated
initial guess �˛;nC

1
2 . Within the algorithm, the evaluation of all master quantities (such as

a˛ or y) requires the parametric coordinate to lie within the knot span Œ0; 1� of the master
NURBS patch. This is realized with a two-stage algorithmic shift:

(a) Shift-to-span: The original coordinates are shifted to the central master cell span, with
which all quantities are evaluated using the central master cell mesh: �˛shift D �

˛ � �˛ .
(b) Shift-to-image: Among the master quantities, one obtains the projection point yshift on

the central mesh, which must be shifted back to the original image cell in order to evalu-
ate the residual (3.8): y D yshift C Lo�

˛e˛ . Here, Lo denotes the undeformed in-plane
dimension of the master, assumed equal in both directions without loss of generality, so
that kLoe˛k is indicative of the new length of the edge along E˛ .
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Figure 12. Cell-periodic sliding contact conditions are summarized in a three-dimensional setting. The
images of the slave cell, appearing in Figure 8, are not displayed for clarity. The slave sample does not slide

directly upwards but rather at an angle of 30ı.

(3) Gradient search: Using the updated guess �˛;nC
1
2 as the starting point and making use of

the shifting algorithm, the classical Newton–Raphson algorithm is applied to (3.8) where the
continuity across the boundaries of the master cells is crucial, ensured by geometric period-
icity. Within the algorithm, the iteration error is checked with respect to the update ��˛ for
�˛ , which converges to �˛;nC1. Quantities evaluated at the projection point, required for the
residual and the tangent associated with the contact algorithm in Section 2, which lead to
coupling among the slave and master meshes, are then evaluated at �˛;nC1shift .

A sample three-dimensional cell-periodic sliding contact computation is shown in Figure 12.
As in the two-dimensional version (Figure 8), the central slave cell is continuously shifted to the
one-cell neighborhood of the central master cell for visual clarity (Appendix B).

4. ELASTIC BOUNDARY LAYERS

4.1. Material model

On the basis of the mortar framework of Section 2 for handling frictional contact and on the peri-
odic embedding approach of Section 3 to model and detect the persistent sliding contact between
the micromechanical test samples, the macroscopic contact response of rough boundary layers will
be investigated next. The emphasis is on the ability of the computational framework to capture
the influence of the contact interface topography on the macroscopic frictional response, rather
than on demonstrating an ability to predict the tribologically complex contact response of soft
materials (cf. [90]). As such, the constitutive response of the boundary layers is limited to finite
elasticity so that the only source of microscopic dissipation is due to friction. Consequently, the
macroscopic frictional response is expected to retain the Coulomb character of the microscopic fric-
tion although it will possibly display a non-Amontons response, depending on the details of the
interface topography.

The hyperelastic response is modeled according to the isotropic Ogden material model, with the
specific parameters reported in [97]. The controlling parameters in this model are the linear elasticity
variables of the two bodies, namely, the shear (.I /) and bulk (	.I /) moduli.
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4.2. Macroscopic frictional response

Periodic and isotropic random rough surfaces will be employed (Figure 11), both of which display
an isotropic macroscopic frictional response in the absence of macroscopic surfacial deformation.
In this case, as well as in two dimensions, it is convenient to characterize the macroscopic frictional
response via an instantaneous macroscopic coefficient of friction

kI D
kf T k

fN
(4.1)

where fN (constant for a given pN ) and f T are the normal and tangential (with respect to �) forces
measured on the outer surface of the slave (Figure 6). Whenever there are significant oscillations
in f T , the macroscopic coefficient of friction is identified as the time average of its instantaneous
counterpart, starting at a time to to exclude the initial transition to macroscopic slip and carried out
for a sufficiently long duration Tavg to ensure saturation to a limit:

k D
1

Tavg

toCTavgZ
to

kIdt : (4.2)

In the case of anisotropy, without attempting a rigorous characterization of the anisotropic frictional
response [98–100], k will represent the magnitude of frictional resistance with direction dk D
cos.�k/E

1 C sin.�k/E
2 such that

f T D kfNdk (4.3)

where f T is the time average of f T . It is remarked that k does not necessarily align with the
macroscopic slip velocity

vT D vT dv (4.4)

where dv D cos.�v/E
1C sin.�v/E

2. An isotropic macroscopic friction implies a constant k inde-
pendent of �v D �k whereas k varying with �v ¤ �k implies anisotropy. Instead of generating
textures that display macroscopic anisotropy, the surfaces will be subjected to macroscopic surfacial
deformation, and the induced anisotropy will be monitored to highlight finite deformation effects.

4.3. Two-dimensional contact interfaces

4.3.1. Unilateral roughness with periodicity. In order to demonstrate the fundamental features of
the macroscopic response emanating from rough elastic boundary layers in frictional contact, two-
dimensional test cases are considered where periodic roughness will first be assigned to the slave
(upper) surface only. Initially, the material parameters are chosen as .I / D 5MPa and 	.I /=.I / D
2. The undeformed width (Lo) and height (Ho, with respect to the mean plane of roughness for the
rough side) of the samples are equal and set to 10 �m while the RMS roughness is set to �o D 1 �m.
The microscopic coefficient of friction is a constant at ko D 0:1. Contact at pN D 1MPa is initiated
in five normal steps after which the upper sample is displaced to the right in 20 tangential steps
through a distance Lo. The samples are initially coarsely discretized, with five quadratic NURBS
elements in the horizontal (H) and three in the vertical (V) direction.

Figure 13 summarizes a series of four investigations involving the variation of the initial choices
for the simulation parameters. First, the basic parameters are varied. It is observed that a cubic
discretization alleviates the strong oscillations observed with quadratic elements at coarse dis-
cretizations. To obtain more accurate results, the number of cubic elements along each direction
is additionally tripled, and the number of normal/tangential time steps is doubled. Second, on the
basis of these choices, the mismatch between the slave and master elastic properties is varied at
a constant 	.I /=.I / D 2 ratio. Depending on whether the properties of the rough or the smooth
surface is kept fixed, k either approaches the limit ko that represents contact with a smooth rigid
surface (mismatch > 1) or it reflects the indentation of a smooth soft surface with a rigid rough one
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Figure 13. Simulation parameter effects are summarized in a two-dimensional setting with unilateral rough-
ness. �to represents the time step size for 5/20 normal/tangential steps. Beyond slave/master mismatch
assessment, .2/=.1/ D 1=8 is employed, and beyond compressibility assessment, 	.I/=.I/ D 12

is employed.

(mismatch< 1). Clearly, in the large deformation regime considered, it does matter whether the soft
or the stiff surface is rough, unlike the equivalent roughness approach that is typically suitable in
the small deformation regime of contact mechanics [50]. In subsequent investigations, the mismatch
is set to .2/=.1/ D 1=8 such that the rough surface is slightly stiffer but far from being rigid.
So far, the observed effect of roughness on the macroscopic response is small. In the third case,
because biological or synthetic soft materials are nearly incompressible, the 	.I /=.I / ratio, which
represents the compressibility of the samples, is varied and a strong influence on k is observed.
Although the maximum value considered is not close to the incompressibility limit, possible lock-
ing effects are nevertheless checked for. For this purpose, quadratic discretizations are used on the
basis of the Q2P0 mixed formulation. The Q2P0 approach does not deliver optimal convergence but
successfully avoids locking [101]. Higher-order isogeometric discretizations can be handled with
similar mixed formulations [102]. In view of the satisfactory performance of the cubic discretiza-
tion, 	.I /=.I / D 12 will be employed in all subsequent investigations without the need for a mixed
approach. Finally, length scale effects are considered in the fourth case. If all dimensions of a sam-
ple are varied, the macroscopic frictional response remains invariant. This is the case that motivates
a contact homogenization approach based on the classical scale separation assumption. On the other
hand, if only the width of a sample is scaled, the spectral properties of the rough surface changes
while the spatial ones (e.g., �o) remain fixed such that k strongly varies. It is highlighted that for
most surfaces, there is no separation between the individual scales of roughness. However, what is
essential to contact homogenization is that there is a significant gap between the largest roughness
scale and the representative dimension associated with the macrostructure. It is often reasonable to
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Figure 14. Studies complementing Figure 13 are summarized. For the height variation, belowH=Ho D 0:6,
only the lower sample height is reduced. For the pressure variation, the mesh resolution is doubled to 30/18
(H/V) cubic elements below pN D 0:5 MPa to ensure converged results and further increased to 75/45

(H/V) cubic elements for pN < 0:05 MPa.

assume the existence of such a gap for practical applications, and such an assumption is implicit in
a significant portion of works on multiscale contact. It is this assumption that is made use of in this
work, not one regarding the scales of roughness.

Figure 14 summarizes a complementary set of four investigations. First, the strong effect of scal-
ing only the spatial surface properties is observed. In subsequent investigations, �o D 1:5 �m
will be employed. Second, it is observed that the height of the samples will affect the macroscopic
response unless they are chosen sufficiently large. Presently, Ho D 6 �m is found sufficient. The
microscopic friction is varied from the default 0.1 in a third case. For vanishing ko, the effect of
roughness approaches a supremum, and the effect significantly decreases with increasing friction.
On the other hand, the fourth case shows that the decreasing effect can be offset by increasing the
macroscopic contact pressure. In all remaining investigations, pN D 1 MPa will be employed.
However, with decreasing pressure, k rapidly approaches ko. This final observation suggests that
the observed deviation of k from ko is essentially due to the presence of large deformations and
would vanish in a contact regime where linear elasticity is applicable.

4.3.2. Randomness and bilateral roughness. The case with random surfaces shows similar trends.
Only the effect of randomness will be emphasized. The simulation parameters chosen from the pre-
ceding discussion are employed, except for the RMS roughness, which is chosen as �o D 0:75 �m.
Presently, the default width Lo D 10 �m will control the sample size: larger random samples will
be generated by choosing the width to be multiples of Lo. For any given size, different realizations
of the samples are possible because of randomness. This randomness reflects onto the frictional
response, as summarized in Figure 15. In particular, at small sample sizes, there is a significant
scatter in the macroscopic frictional response although this effect is spurious and can be allevi-
ated by choosing larger samples that more closely represent the expected value of k. This trend is
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Figure 15. Unilateral randomness effects are summarized. Ten samples were tested per sample size. The
averages are shown with the standard deviation, slightly offset along the x-axis for clarity. As in Figure 14,
roughness is assigned only to the upper sample. T represents the Cauchy stress (MPa), and the magnitude
kT k D

p
T � T of which is shown simply as an average over each isogeometic element only to highlight

randomness.

Figure 16. The macroscopic frictional response for bilateral roughness with periodicity (�.1/o D 1:5 �m,
�
.2/
o D 0:2 �m). Increasing friction hinders relaxation, leading to reduced oscillations. The dashed

lines indicate the instantaneous response (kI=ko) obtained with an initial phase shift imposed on the
upper surface.

reflected by the converging ensemble (arithmetic) average of individual sample responses from a
given sample size.

Periodic or random, the instantaneous macroscopic friction coefficient is a constant with unilateral
roughness once macroscopic sliding is initiated for sufficiently fine meshes (Figure 13). This behav-
ior is significantly altered in the presence of even a small roughness on the other surface (Figure 16).
The RMS roughness �.1/o on the upper surface will be retained from earlier investigations, and the
lower one is assigned �.2/o D �

.1/
o =7:5. Despite this small roughness, significant oscillations in the

instantaneous macroscopic coefficient of friction is observed, one period of oscillation correspond-
ing to the period of lateral transition of the upper body over the lower one. One possible approach
to identifying a unique k in this case is to compute a time average (Section 4.2). Another approach
is to simulate various realizations of periodicity with initial phase shifts. While not explicitly cal-
culated, it is observed that the average of these different responses at a given time will capture the
time average obtained from any of the curves. The attractive feature of this observation is that the
computation of the time average on large samples is not parallelizable while averaging among phase
shifts is amenable to parallelization. In all cases, the source of the strong oscillations is interface
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Figure 17. For random surfaces with bilateral roughness (�o.1/ D 0:75 �m, �.2/o D 0:1 �m), time aver-
aging, effect of different realizations for a given sample size and the effect of increasing sample size
are summarized. Except for time averaging, the samples are dragged through a distance 1:5Lo, which is

sufficient to traverse one period of oscillations. Larger samples display milder oscillations.

relaxation where the lower surface slides back to relieve the shear stresses. Consequently, increas-
ing microscopic friction arrests this relaxation so that the magnitude of the oscillations with respect
to ko decreases.

In the case of random bilateral roughness (Figure 17), significant oscillations can also be
observed, and there is still an inherent periodicity in the oscillation pattern because of periodic
embedding. Moreover, the magnitude and the frequency of the oscillations additionally significantly
depend on the particular realization for a given sample size. Some realizations induce excessive
shear loading due to conforming peaks and valleys while others show a lower degree of con-
formation. With increasing sample size, on the other hand, the influence of a single conforming
peak–valley combination on the instantaneous macroscopic response becomes more isolated and
less frequent such that the overall response looks smoother. This trend is already observed for vari-
ous realization choices from different sample sizes. Because the sample sizes tested are still limited
in size, different choices of realizations may not reveal as clear a trend. However, a comparison
of individual sample responses at the smallest and largest sample sizes tested clearly demonstrates
that larger sample sizes display significantly less scatter in the instantaneous macroscopic response.
This leads to the interesting observation that although random surfaces are computationally more
expensive to characterize, it may be possible to identify a time-independent instantaneous macro-
scopic coefficient of friction for a random interface topography with bilateral roughness while such
an identification is not possible for the case of periodicity.
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4.4. Three-dimensional contact interfaces

Two-dimensional investigations satisfactorily demonstrate the computational framework and the
nature of the macroscopic frictional response with unilateral/bilateral periodic/random roughness
on two elastic micromechanical samples. The three-dimensional investigations of this section
concentrate on the remaining aspect associated with macroscopic anisotropy.

4.4.1. Deformation-induced anisotropy. Macroscopic anisotropy can be induced by the imposition
of macroscopic surfacial deformation F c . For this purpose, it is sufficient to assign a unilateral
periodic roughness where the final set of parameters chosen earlier in the two-dimensional investi-
gations will be employed. The simulation instances in Figure 18 for this setting display the mesh
resolution, geometry, and deformation of the samples for the case when F c D I .

Two types of surfacial deformation are considered such that the macroscopic deformation is area-
preserving (det

�
F c
�
D 1): (i) axial, where F c D

P
˛ �˛E

˛ ˝ E˛ C � ˝ � with �1�2 D 1,
and (ii) shear, where F c D I C �E1 ˝ E2. In both cases, the direction �v of macroscopic
slip is varied in increments of 30 degrees from 0 to 330. The corresponding k is summarized in

Figure 18. Simulation instances from the investigations of Section 4.4.1 display the resolution, geometry,
and deformation of the samples. Only the central slave/master mesh is shown.

Figure 19. The anisotropic macroscopic frictional response (k=ko) under axial-type macroscopic surfacial
deformation is summarized. The first case employs �1 D �–1

2
D 1:2, whereas the second one employs

�2 D �
–1
1
D 1:2.
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Figure 20. The anisotropic macroscopic frictional response (k=ko) under shear-type macroscopic surfacial
deformation is summarized. The first case employs � D 0:2, whereas the second one employs � D 0:4.

the polar plots of figures 19 and 20 where the angular position indicates the direction �k of the
frictional resistance (Section 4.2). The macroscopic response of the undeformed samples signifi-
cantly differs from the microscopic friction coefficient but is isotropic. Axial and shear deformations
induce macroscopic anisotropy such that friction decreases along the direction of the principal
stretch exceeding unity because of increasing wavelength of periodicity and increases along the
other principal direction because of decreasing wavelength—(cf. Figure 13(d)). Non-matching
slip and frictional resistance directions are also reflected by �v ¤ �k. Clearly, larger deforma-
tions induce stronger anisotropy. A qualitatively similar situation is encountered in volumetric
homogenization. A periodic microstructure with isotropic phases displaying cubic symmetry is sta-

Figure 21. The macroscopic response (k=ko) for the case of unilateral random roughness without macro-
scopic surfacial deformation for the samples of Figure 22. Varying the mismatch ratio scales the response,
which is observed to display anisotropy because of the small sample size. Moreover, for different realizations

at the same sample size, the direction and magnitude of anisotropy also changes.
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Figure 22. Sample random surfaces generated and simulation instances from computations where they have
been used to model unilateral roughness. See Figure 21 for the macroscopic responses.

tistically anisotropic but displays macroscopic isotropy with respect to conduction ([85], p.320).
However, deformation destroys this isotropy [103]. Presently, statistical anisotropy for surfaces may
or may not lead to a macroscopically anisotropic response. Deformation acts as a parameter that
continuously varies the degree of macroscopic anisotropy by altering the statistical properties of
rough surfaces.

4.4.2. Size-induced anisotropy. Macroscopic anisotropy may also be observed because of the
choice of the sample size in the case of randomness. In order to demonstrate the capability of the
numerical framework to address such sample size effects, unilateral random roughness is consid-
ered. Again, the final set of parameters chosen earlier in the two-dimensional investigations will
be employed.

The macroscopic frictional response is monitored for different mismatch ratios and for differ-
ent realizations (Figure 21). Because of the statistical properties of the generated random surfaces
(Section 3.1.1), the corresponding macroscopic response is expected to be isotropic for large sample
sizes. Consequently, the observed anisotropy should be attributed to the small sample size employed
(Figure 22). Analysis of the macroscopic frictional response for larger sample sizes and with more
realistic random roughness descriptions [10] is left for a future study.

5. CONCLUSION

The goal of this work was the establishment of a computational contact homogenization framework
for the modeling and simulation of soft matter friction. The crucial ingredients toward the realiza-
tion of this goal were (i) the establishment of a frictional contact algorithm that displays an optimal
combination of accuracy, efficiency, and robustness and plays a central role in (ii) the construction
of a micromechanical contact test within which samples of any size may be embedded and which is
not restricted to a single deformable body. The former was realized through the extension of mixed
variational formulations of contact mechanics to a mortar-based isogeometric setting where the aug-
mented Lagrangian approach serves as the constraint enforcement method. The reliable performance
of the resulting algorithm was highlighted through its comparison with pure penalty and Uzawa-
staggered versions. The latter was realized with periodic embedding, which ensures C1-continuous
geometric periodicity across computational cells in addition to capturing the contact interactions
among distant cells through cell periodicity.

The overall homogenization framework was demonstrated by characterizing the influence of
microscopic roughness on the macroscopic friction coefficient for elastic boundary layers. Two-
dimensional and three-dimensional samples with unilateral and bilateral roughness were considered
on the basis of the variation of material and interface properties, highlighting observations that
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are unique to finite deformations. As a particular case of interest, the numerical results indicated
that it may be possible to assign a well-defined macroscopic friction coefficient to a random inter-
face topography with bilateral roughness while this is not possible in the case of periodicity. This
observation is in contrast with the mechanics of random materials where periodicity facilitates the
identification of the homogenized response but is in convenient agreement with the engineering
demand for a uniquely identifiable friction coefficient.

Periodic embedding enables achieving arbitrarily long dragging durations for two rough sur-
faces in sliding contact independent of the micromechanical sample size. This is advantageous
for the macroscopic thermomechanical characterization of micro-rough soft contact interfaces,
which entails the homogenization analysis of both the friction coefficient and the thermal contact
parameters associated with frictional heating. The presented framework also allows the incor-
poration of microscopic lubrication and adhesion mechanisms in a numerical efficient manner,
thereby constituting a basis toward a comprehensive computational tribology characterization of
such interfaces.

APPENDIX A: GENETIC ALGORITHM FOR CLOSEST-POINT PROJECTION

A simple genetic search algorithm [104] is applied in order to approach the global minimum before
switching to a gradient search within the closest-point projection algorithm of Section 3.2.2:

(1) Initialize gene pool: A pool ofN random points with parametric positions �i are generated in
the one-cell neighborhood of the last projection cell: �˛i 2 Œ�

˛;n�1; �˛;nC2�, i D 1; : : : ; N .
(2) Fitness evaluation: The fitness of each point is evaluated using the projection distance as the

cost function: Fi D kx � y ik with y i as the physical position vector of point i .
(3) Create new generation: A new generation of guesses are generated:

(a) Selection: �i are sorted according to their fitness such that i D 1 corresponds to the
point with the minimum distance. Subsequently, the best gene is retained: �new

1 D �1.
(b) Crossover: Top n < N genes generate offspring, for example, �new

i D ˛i�i�1 C .1 �
˛i /�i where ˛i 2 Œ0; 1� is a random number for i D 2; : : : ; n.

(c) Resupply: Remaining genes are replaced by randomly generating �new
i for i D nC1;N .

(4) Convergence criterion: the genetic search is carried out for G generations or until the best
gene �1 does not significantly change among subsequent generations, whichever is met
earlier.

Alternatively, one can adapt contact search algorithms [105] to approach the global minimum.

APPENDIX B: VISUALIZATION OF PERIODIC EMBEDDING

While the slave mesh continuously moves away from the central master mesh and interacts with it
only through the images according to the algorithm of Section 3.2.2, it is advantageous to visualize
the slave mesh in the one-cell neighborhood of the central master. Denoting the dragging duration
with t , the slave control point positions with xI and the macroscopic slip velocity with vT , the
algorithm for this purpose sequentially checks ˛ D 1 to 2 (no sum over ˛; b�c is the floor function):

(1) Basis change: using m˛ˇ D e˛ � eˇ and with m˛ˇ as the components of its inverse, let
e˛ D m˛ˇeˇ . Then, v˛T D

p
m˛˛ vT �e

˛ are the components of vT with respect to e˛=ke˛k.
(2) Cell location: let �˛ D 2b¹v˛T t = kLoe˛k C 1º=2c and �˛ D ¹v˛T t = kLoe˛k C 1º � �

˛ 2
Œ0; 2/.

(3) Preliminary shift: the control points are shifted back to the central cell: xIo D x
I � vT t .

(4) Shift adjustment: the preliminary image is adjusted for each tangential direction to obtain the
final visualization positions: xIshift D x

I
o C Lo.�

˛ � 1/e˛ .

The one-cell neighborhood images of the slave, and similarly those of the master, are generated
from the shifted central mesh via xIimage D x

I
shift C Lo�

˛e˛ where �˛ D ˙1.
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Figure C.1. Number of Uzawa iterations required to achieve the results in Figure 2(d) for �N D 102. Closer
lines indicate time step size refinement. The average number of Newton–Raphson iterations per Uzawa

iteration is 5/4/3 for TOL D 10�1=10�2=10�3.

Figure C.2. Newton–Raphson iterations required for the AL scheme at different time instances: (a) iterations
for Figure 2(b) and (b) iterations for Figure 4(b).

APPENDIX C: ITERATIVE CONVERGENCE PERFORMANCE

Figure C.1 summarizes the Uzawa iterations required to achieve the results of Figure 2(d),
demonstrating the high cost of the Uzawa-staggered form of the AL scheme for small Uzawa
tolerances.

The Newton–Raphson iterations for the AL scheme in Figures 2(b) and 4(b) are summarized in
Figure C.2. Convergence is achieved when the error k�uk2=kuoldk2 decreases below a tolerance of
10�7. Here,�u denotes the update to the vector u of control point positions and uold is the value of u
from the last iteration. For both examples, asymptotically quadratic convergence rates are observed.
Note that the chosen time instances involve active-to-inactive and stick-to-slip transitions. Hence,
there appear to be no shortcomings that result from the simplifications introduced into the contact
algorithm in Section 2.3 to handle these transitions.
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