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Analysis is presented for conjugate heat transfer in a parallel-plate microchannel. Axial conduction in the fluid

and in the adjacent wall is included. The fluid is a constant property gas with a slip-flow velocity distribution. The

microchannel is heated by a small region on the channel wall. The analytic solution is given in the form of integrals by

themethodofGreen’s functions.Quadrature is used to obtainnumerical results for the temperature andheat transfer

coefficient on the heated region for various Peclet number, Knudsen number, and wall materials. A region

downstream of the heater is also explored. These results have application in the optimal design of small-scale heat

transfer devices for biomedical applications, electronic cooling, and advanced fuel cells.

Nomenclature

a = size of heated region along the channel, m
B0 = effect of internal heating
G = steady Green’s function
g = volume energy generation, Wm−3

h = heat transfer coefficient, W∕�m2 K�
j = imaginary number,

������
−1
p

k = thermal conductivity,Wm−1 K−1

Kn = Knudsen number, λ∕L
L = channel height, m
Li = thickness of layer i, m
N = number of layers in fluid flow
Pe = Peclet number, UL∕α1
p0 = introduced heat flux, Wm−2

qij = heat flux, layer i to j, Wm−2

r = contact parameter
R0 = contact resistance, m2 KW−1

T = temperature, K
U = average velocity, m∕s
u = local velocity, m∕s
w = wall thickness, also L0, m
α = thermal diffusivity, m2 s−1

β = wave number, Eq. (8), m−1

δ = Dirac delta function
λ = mean free path, m
ω = frequency, s−1

Superscripts

� = dimensionless quantity
− = spatial Fourier transform, Eq. (9)

Subscripts

av = average
i = within layer i
0 = wall value
1 = fluid value

I. Introduction

A S FLUID flow and heat transfer take place at the microscale,
many additional effects such as rarefaction, electroviscous ef-

fects, viscous dissipation, axial conduction, etc. need to be consid-
ered, which can be neglected at the macroscale.
From the heat transport point of view, the characteristic time for

convection and conduction become comparable at the microscale,
and the convection term no longer dominates the conduction term in
the longitudinal direction. This is defined by flow forwhich the Peclet
number is not too large. Under this condition, axial conduction in the
fluid cannot be neglected, as in the case of macrochannel flow. The
effect of the axial conduction in the fluid becomes more pronounced
asPe decreases. The effect of axial conduction in the fluid on the heat
transfer has been studied for both parallel-plate microchannel [1] and
microtube [2,3] for boundary conditions defined by constant wall
temperature [1,2] and constant wall heat flux [1,3].
In conventional applications involving channels, the channel wall

thickness is very small compared to the hydraulic diameter of the
channel; hence, the heat transferred by conduction in the wall can be
neglected compared to the convective heat transfer in many macro-
scale flows. However, in microchannels, the thickness of the channel
wall is never negligible compared to the channel size because of
rigidity and fabrication concerns. Therefore, the heat transferred in
the wall by conduction cannot be neglected, especially for gas flows.
The effect of axial conduction in the wall has been studied for
macrochannel flows [4,5]. In these studies, corresponding Pe values
are high and, as a consequence, the axial conduction in the fluid was
neglected. Maranzana et al. [6], Kroeker et al. [7], Li et al. [8], Kim
and Kim [9,10] studied the effect of axial conduction at the wall for
the microchannel heat sinks for both circular [7] and rectangular
[6,8,9,10] channel geometries. Maranzana et al. [6] studied the
influence of axial conduction for parallel-plate geometry. Some of
these studies [6,9,10] had an assumption of constant convective heat
transfer coefficient at the channel wall, that is, the linkage between
the channel wall and the fluid flow was treated approximately. In
contrast, Nonino et al. [11] analyzed the circular microtube using
conjugate heat transfer, for which no approximation was introduced
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at the fluid-wall boundary. Recently,Kosar [12] analyzed the effect of
the wall thickness and the wall material on heat transfer mechanism
for a rectangular geometry with a fixed size, that is, only one
geometry was studied. Although the results are presented in terms of
nondimensional quantities, the analysis was dimensional. Moreover,
the thermal boundary condition at the exit of the microchannel was
specified convective flux, which was appropriate for the high Pe
range and high Re range (100 < Re < 1800) to which the work was
restricted.
Rarefaction is important for small dimensions compared to the

mean free path of the fluid (less than 5 μm at atmospheric condi-
tions), and is common for gas flows inmicrochannels. Electroviscous
effects are due to the interaction of the ions in the fluid with the
electrical double layer near the nonconducting channel wall [13], and
are significant for liquid flow in microchannels with dimensions less
than 5 μm for deionized water. Viscous dissipation is the heating of
the fluid due to thework done against the viscous forces. The effect of
viscous dissipation can be important for flowswith Reynolds number
greater than 100 for microchannels [14]. A recent review paper by
Colin [15] is focused specifically on gas microflows for which slip
flow is present. Colin identifies several areas of active research in the
slip-flow regime, including viscous dissipation, entrance effects, and
the effect of shearwork at thewall. However, Colin’s review is limited
to gas flow with specified boundary temperature or specified bound-
ary flux, that is, that heat transfer in the adjacent wall is not discussed.
For gas flows, and especially for short heating in the axial direction,
the effect of the wall can play a significant role in defining the heat
transfer.
In this study, the heat transfer to a gas flow inside a parallel-plate

microchannel for lowPe number flow is analyzed. The effect of axial
conduction in both the gas and thewall is considered. Exact analytical
solutions for the temperature distribution in the fluid and the wall are
obtained by using the Green’s function method. The solution has the
form of integrals and quadrature is used to obtain numerical values.
Local and average values of the fluid temperature are determined for
a range of fluid flow values and for several wall materials. This
information is expected to be useful in the analysis and design of
microscale heat transfer devices.
The unique contributions of this paper are the following: gas flow

in the slip-flow regime is studied over a range of Peclet numbers such
that fluid axial conduction is included; wall effects (also called
conjugate heat transfer) are included; a short heated region along the
wall is investigated and the convection effects downstream are inves-
tigated; the analytic solution provides high precision, if desired; and a
wide range of results is explored because the quadrature may be
evaluated rapidly compared to a fully numeric solution.

II. Temperature Equations

The equations describing the temperature in the parallel-plate flow
and in the adjacent wall are given in this section. The geometry is
shown in Fig. 1. A heater is embedded in the channel wall heated and
the flow between parallel plates is fully developed laminar. The plate
spacing is L and the wall thickness is L0. The theoretical discussion
given next is similar to that developed previously [16], so only a brief
outline is given. The discussion is limited to steady-periodic heating
and steady periodic temperature. The temperature satisfies the fol-
lowing equations

∂2T0

∂x2
�∂2T0

∂y20
�−

g�x;y0;ω�
k0

� jω
α0
T0; 0< y0 <L0; −∞< x<∞

(1)

∂2T1

∂x2
�∂2T1

∂y21
�u�y1�

α1

∂T1

∂x
�jω

α1
T1; 0<y1<L∕2; −∞<x<∞ (2)

∂T0

∂y0

����
y0�0
� 0;

∂T1

∂y1

����
y1�L∕2

� 0 T�x→ �∞�is bounded (3)

Here, complex-valued temperature Ti�x; y;ω� is interpreted to be
the steady-periodic temperature in the ith body at single frequencyω.
Later in the paper, results will be discussed as the amplitude of this
temperature. The specified volumetric heating g�x; y0;ω� represents
heating introduced inside the channel wall at frequency ω. The outer
surface of the channel wall is insulated, and the centerline of the fluid
flow is a zero-flux boundary to represent a channel that is heated
symmetrically.
In this paper, the specific case of slip flow is treated. The fully

developed velocity distribution for slip flowbetween parallel plates is
given by

u

U
� 6

y∕L − �y∕L�2 � 12Kn

1� 12Kn
(4)

whereU is the mean velocity andKn � λ∕L is the Knudsen number
[17]. The velocity field is shown in Fig. 2. Note that for Kn � 0, the
velocity reduces to simple laminar flow and for Kn � 0.08, the
velocity jump at the wall is 50% of the average-flow velocity.
The preceding differential equations for the temperature will next

be recast as integral equations in each region (solid, fluid) with the
method of Green’s functions.

III. Green’s Function Solution

In this section, Green’s function method will be used to seek the
temperature distribution in the fluid and the adjacent wall. The
Green’s function in each region is a solution to the same equations
and boundary conditions as those satisfied by the temperature, except
that the distributed heat source is replaced by a point heat source.
The temperature solution is assembled by adding together many
Green’s functions in such a way that the heating distribution g�x; y0�
is reconstructed from point sources. This adding together takes the
form of a superposition integral, as shown next.

A. Two-Layer Solution

This solution will be sought by treating the fluid and the wall
separately and by treating the heat flux flowing between the fluid and
the wall as unknown quantities to be determined from the solution.
Let region 0 be a stationary solid heated by a distributed heat source
g�x; y0�. Let region 1 be a flowing fluid that is heated by contact with

x

symmetry
plane of

slip velocity

1 − fluid

0 − wall

L/2

L

a

y
0 0heater

y
1

Fig. 1 Geometry of parallel plates and slip flowwith heating over a thin
layer at fluid–wall interface.
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Fig. 2 Velocity distribution showing slip velocity at wall for Kn > 0.
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region 0. Then the temperatures in each regionmay be formally stated
with the method of Green’s functions (GF), in terms of known GF
namedG1 andG0 and unknown interface heat fluxes q10 and q01, as
follows [18]

T1�x; y1� �
1

k1

Z
q10�x 0�G1�x − x 0; y1; y 01 � 0� dx 0 (5)

T0�x; y0� �
1

k0

Z
q01�x 0�G0�x − x 0; y0; y 00 � L0� dx 0 � B0�x; y0�

(6)

where

B0�x; y0� �
1

k0

Z Z
g�x 0; y 00�G0�x − x 0; y0; y 00� dx 0 dy 0

Here,B0 is the contribution to the temperature caused by the (known)
distributed heat source g�x; y0�. In the preceding equations, the inter-
face heat fluxes and the interface temperatures are unknown, but they
are related by matching conditions at the interface between the
regions. The heat flux entering region 1 leaves region 0

q01�x� � −q10�x� (7)

There is a temperature jump at the fluid–solid interface in slip flow,
given by

T0�x; L0� − T1�x; 0� � rλ
∂T1

∂y1

����
y1�0

(8)

where r � 2 − FT
FT

2γ

γ � 1

1

Pr

Here, FT is the thermal accommodation factor, γ is the specific heat
ratio, and Pr is the Prandtl number of the fluid [3]. For Kn � 0, the
jump in wall temperature vanishes.
Next, the Fourier transformwill be used to strip away the integrals.

The Fourier transform is defined by the following transform pair

�T�β� �
Z

∞

−∞
T�x�e−jβx dx (9)

T�x� � 1

2π

Z
∞

−∞
�T�β�ejβx dβ (10)

Apply the Fourier transform to Eqs. (5–8) to obtain

�T1�β; y1� �
1

k1
�q10�β� �G1�y1; y 01 � 0� (11)

�T0�β; y0� �
1

k0
�q01�β� �G0�y0; y 00 � L0� � �B0�β; y0� (12)

�q01�β� � − �q10�β� (13)

�T0�x; L0� − �T1�x; 0� � rλ
∂ �T1

∂y1

����
y1�0

(14)

If the GF are known in Fourier space, then an algebraic solution can
be obtained for the unknown interface temperatures and heat fluxes.
In the next section, the GF for the fluid flow is found from a layered
description of the fluid flow.

B. Multiple-Layer Solution

It is possible to define one GF to describe the temperature in a
channel with a continuously varying velocity distribution. This
approach requires use of a series involving the hypergeometric func-
tion with challenging series convergence behavior [16]. In contrast,
the layered approach given here involves a closed-form GF in each
layer combined with a simple matrix solution. The smooth velocity
distribution in the fluid will be replaced by a collection of flat layers,
each one sliding over its neighbors with piecewise constant velocity.
In each of these layers, application of the Fourier transform removes
the x coordinate, leaving heat conduction through layers along the y
direction. Thismethod has been previously applied to laminar flow in
liquids [19], and the presentwork is an extension of themethod to slip
flow in gases.
The layered geometry shown in Fig. 3 hasN � 1 layers, numbered

from0 toN, withN interfaces between the layers. If the zeroth layer is
taken to be thewall with zero velocity, then the description of thewall
can be included. Layers 1 throughN are located in the gas flow, with
uniform velocity in each layer set to a value to produce a piecewise
version of the slip-flow velocity distribution. Layer i has thicknessLi
and thermal properties ki and αi. Within layer i, the interfaces are at
local coordinates yi � 0 and yi � Li. At the interfaces between the
layers, let qnm represent the heat flux leaving layer n and entering
layerm. In the formulation given next, heating is introduced in layer 0
(the wall) and the dependence on Fourier parameter β is dropped to
streamline the development. Although in this formulation there is an
insulated condition provided at the top of layerN, another stationary
wall could easily be added with heating or cooling included at
that point.
Consider first the temperature in layer 0 evaluated at its interface

with layer 1

�T0�L0� �
1

k0
�G0�L0; L0� �q10 � �B0�L0� (15)

In layer i; i � 1; 2; : : : ; N: the interface temperatures are

�Ti�0� �
1

ki
�Gi�0; 0� �qi−1;i �

1

ki
�Gi�0; Li� �qi�1;i (16)

�Ti�Li� �
1

ki
�Gi�Li; 0� �qi−1;i �

1

ki
�Gi�Li; Li� �qi�1;i (17)

In the last layer (N), the temperatures at the interfaces are

�TN�0� �
1

kN
�GN�0; 0� �qN−1;N (18)

�TN�LN� �
1

kN
�GN�LN; 0� �qN−1;N (19)

Here, the Green’s function �Gi for the Fourier-space response of a
layer with slug flow is available in the form of complex-valued
exponentials [19] and is given in the Appendix.

LN

L2

L1

L 0y
0

y
1

y

y

2
u

2

N uN

u1

wall  u = 0 slip velocity

Fig. 3 Multilayer model with spatially uniform fluid velocity in each of
N fluid layers and with zero velocity in the stationary wall (layer 0).
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In the preceding temperature expressions, all of the interface heat
fluxes are initially unknown. The heat flux leaving one layer enters
the adjacent layer, �qi−1;i � − �qi;i−1 and the temperature in adjacent
layers is equal at each interface internal to the fluid

�Ti�0� � �Ti−1�Li−1�; i � 2; 3 : : : ; N (20)

The temperature jump condition associated with slip flow at the
fluid–solid interface may be written as

�T1�0� − �T0�L0� � R0 �q10 (21)

where R0 � r KnL∕k1 is the contact resistance (m2 K∕W). Next,
Eqs. (15–19) are combined with Eq. (20) to eliminate temperature.
The result is a set of N linear algebraic equations for the unknown
heat fluxes between the layers, which may be stated in matrix form

2
66666666664

C0 � C1 � R0 −D1 0 · · · 0

−D1 C1 � C2 −D2 · · · 0

0 −D2 C2 � C3
..
.

..

. ..
. . .

.
−DN−1

0 0 : : : −DN−1 CN−1 � CN

3
77777777775

×

2
666666664

�q10

�q21

�q32

..

.

�qN;N−1

3
777777775
�

2
666666664

− �B0�L0�
0

0

..

.

0

3
777777775

(22)

Symbols Ci and Di used in the preceding expression are given next

Ci �
1

ki
�Gi�0; 0� �

1

ki
�Gi�Li; Li� (23)

Di �
1

ki
�Gi�0; Li� �

1

ki
�Gi�Li; 0� (24)

For any multilayered system, it is now possible to calculate the N
unknown heat fluxes �qij through all interfaces in the system. Cramer’s
rulemay be used to solve forq for a slip flow and adjacentwall approx-
imated by two or three layers. However, for four or more layers, the
well-known tridiagonal algorithm may be used. Once the heat fluxes
are found, the temperature at any interface is given by Eq. (15–19).
In the present work, the heat transfer is caused by heating in the

wall and is manifest in the preceding matrix equation as term �B0�L0�
on the right-hand side. The specific form of heating function �B0�L0�
is given in the Appendix. Viscous dissipation, not present in the
preceding formulation, could be easily added by including a heating
term for viscous dissipation for each fluid layer into the right-hand
side of the preceding matrix equation.

C. Spatial Average Temperature

The preceding temperature expression for the temperature at a
point is valuable for understanding the thermal mechanisms present
in microchannel flow. However, the average temperature over a finite
region on the interface is important in microchannels to represent a
finite-sized temperature sensor, either at the heating location or in a
region immediately downstream. Such a heated region and its down-
stream neighbor region could represent two neighboring electronic
circuit elements, one introducing heat and one subject to that heat.
Of interest is the spatial average temperature on a region

(ξ < x < ξ� a) of the fluid–solid interface. This average temperature
may be computed from the wall temperature by

Tav�ξ;ω� �
1

a

Z
ξ�a

ξ
T0�x; L0;ω� dx

� 1

a

Z
ξ�a

ξ

�
1

2π

Z
∞

−∞
�T0�β; L0;ω�ejβx dβ

�
dx

� 1

2π

Z
∞

−∞
�T1�β; L0;ω�

�
ejβξ�ejβa − 1�

jβa

�
dβ (25)

Here, the spatial integral over x has been carried out in closed form.
Quantity Tav is actually easier to evaluate numerically, compared
to T1, because of the introduction of factor 1∕β, which causes the
integrand to vanish more rapidly as β → �∞. Average temperatures
computed from the preceding expression will be reported later in this
paper for the heater �ξ � 0� and for a region located downstream of
the heater �ξ > a�.

D. Nusselt Number

In this section, the development of the Nusselt number is given.
The Nusselt number is the dimensionless heat transfer coefficient,
defined by

Nu�x� � h�x�L∕k1; h�x� � q0
Tw�x� − Tm�x�

(26)

Here, q0 is the heater-supplied heat flux, Tw is the local temperature
on the heater, and Tm is the fluid mean temperature. It is important to
note that the supplied heat flux q0 is used to define h because it is
experimentally measurable. Traditional definitions of h involve the
local flux into the fluid, which is difficult to observe at themicroscale,
particularly when wall conduction is present.
The fluid mean temperature is found from a velocity-weighted

average temperature in the fluid. For the parallel-plate channel, the
mean temperature is defined in Fourier space by

�Tm�β� �
2

UL

Z
L∕2

y�0
u�y� �T�β; y� dy (27)

where u�y� is the local velocity, U is the average velocity in the
channel, and the half-channel height is L∕2. For the layered descrip-
tion of the fluid used here, the single integral across the channel may
be replaced by a series of integrals over each layer

�Tm�β� �
2

UL

XN
i�1

ui

Z
Li

yi�0
�Ti�β; yi� dyi (28)

where �Ti is the temperature and ui is the uniform velocity in layer i. If
the layers are sufficiently small, then the integral across each layer
may be replaced, to good approximation, with the simple average of
the temperatures at the two boundaries of each layer. That is

�Tm�β� �
2

UL

XN
i�1

uiLi
1

2
� �Ti�β; 0� � �Ti�β; Li�� (29)

These layer-boundary temperatures are important because they may
be computed at little cost from already known quantities �qmn, Ci,
and Di.
The local Nusselt number must be computed from the real-space

temperature difference �Tw�x� − Tm�x��, and the average heat trans-
fer coefficient (or equivalently, the average Nusselt number) must be
computed from the following integral

Nuav �
1

a

Z
a

0

h�x�L
k1

dx � L

ak1

Z
a

0

q0
Tw�x� − Tm�x�

dx (30)

It is important to note that because the Fourier transform is a linear
operator applied to temperature, the Nusselt number cannot be com-
puted in transform space and then inverse transformed. Numerical
values for the local and average Nusselt number are reported later.
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IV. Numerical Considerations

Some carewas needed to obtain efficient evaluation of the Fourier-
inversion integral in Eq. (9), which is an improper integral (limits at
infinity). The improper integral on 0 < β < ∞ was replaced by a
summation of proper integrals, each of width π, beginning at β � 0.
Additional terms of this series were added until the fractional change
in the magnitude of the running sum was less than a tolerance to
provide five-digit precision. The integral over −∞ < β < 0 was
handled in a similar way. All coding was carried out with variables of
type double-precision complex in FORTRAN 95.
The precision associated with number of layers in the fluid was

investigated by computing the average Nusselt on the heater for a
single specific geometry with 10, 20, 40, and 60 layers in the fluid.
The specific geometry isKn � 0,a∕L � 20,w∕L � 200 for airflow
over a glass wall (refer to Table 1). The percentage change in thewall
temperature shows that 10 fluid layers give precision within 0.74%,
compared to the 60-layer calculation at a flow value ofPe � 100 and
within 0.70% at Pe � 1. Based on this information, 10 fluid layers
were used for all the numerical results presented in this paper.
Nonuniform spacing of the fluid layers was used, with thicker layers
farther from the wall, according to Li∕L ≈ i1.5, in order to equalize
the velocity jump across successive layers. The precision associated
with the discrete approximation to the velocity distribution was
computed at the worst case laminar flow condition of Kn � 0. The
precision will improve for Kn > 0 because there is less velocity
variation across the channel when slip flow is present.

V. Results

The normalized temperature discussed in this section is normal-
ized amplitude of temperature, in the form T� � �T�x; y;ω� − T0� ·
k1∕�q0a�, where T0 is the ambient temperature, k1 is the fluid
conductivity,q0 is the introduced heat flux, anda is the axial length of
the heated region. In the following sections, the temperature in the
microchannel is explored for various gas-flow rates, varying slip-
flow effects, and different wall materials. The base case chosen for
analysis is in amicrochannelwith a thin heater sizea∕L � 20 located
on the interface between the airflow and a glass (or ceramic) wall of
thicknessw∕L � 200. This geometry could represent, as one exam-
ple, a flow channel 2.5 μm in height with a heater of streamwise
extent 50 μm on a wall of 500-μm thickness. Thermal properties of
the gas andwall materials are given in Table 2. The temperature-jump
parameter, Eq. (8), is r � 1.667, which is a typical value for air [3].
The heating frequency is ω� � 1.0.

A. Spatial Average Temperature on Heater

In this section, the average temperature on the heater is discussed,
starting with the base case of airflow over a glass wall of thickness
w∕L � 200, heater size a∕L � 20, for heating at frequencyω� � 1.
The temperature on the heater for this case is plotted vs Peclet number
(fluid flow rate) in Fig. 4.
Figure 4 shows the effect of different wall materials on the heater

temperature, specifically walls made of plastic, glass, and steel. Plas-
tic, with the lowest thermal conductivity, has the highest temperature,
and steel with the highest conductivity, has the lowest temperature
(normalized by the introduced heat flux). The temperature values are
almost completely flat, that is, little affected by convection, except for
the plastic wall case, which decreases slightly at the higher Peclet
values. The effect of slip flow on temperature is so slight as to be
nearly invisible in Fig. 4, and then only for plastic at higher Peclet
values. The temperature for the plastic wall case changes by 0.26%
from Kn � 0 to 0.04 at Pe � 500. Although the heater temperature
is insensitive to fluid flow, in the next section, the heat transfer
coefficient is shown to be strongly flow dependent.

B. Nusselt Number on Heater

In this section, results are presented for the Nusselt number. It is
important to note that the Nusselt number trend inmicrochannel flow
with wall conduction is very different from macroscale flow. In
microchannel flow, when the Peclet number is small, the heat con-
ducted through the channel wall (which moves in all directions)
dominates over the heat conducted by the fluid (which is in the
direction of fluid velocity). The wall conduction prewarms the fluid
upstream of the heater, which decreases the temperature difference
between the fluid and the wall [19]. As the Peclet number increases,
convection has more influence on the heat transfer so that the
temperature difference between the fluid and the wall increases,
which decreases theNusselt number. Another view of this behavior is
that the wall temperature shown in Fig. 4 is nearly constant as the
Peclet number changes, therefore all of the variation in Nusselt
number comes from changes in the fluid temperature.
Figure 5 shows the spatial averageNusselt number on the heater as

a function of Peclet number for airflow over three different wall
materials and the effect of slip flow is also included. Corresponding
numerical values of the average Nusselt number are given in Table 3.
The curves in Fig. 5 all have the same shape, starting at low Peclet
values with a small slope and with negative curvature (Nusselt
number decreases as Peclet increases). At slightly higher Peclet
values, theNusselt values begin to decreasemore rapidly and then the

Table 1 Percent change in average Nusselt
number on the heater caused by lowering the

number of fluid layersa

Peclet Nu (60 layer) % change

40 layer 20 layer 10 layer

1 2687.75 0.0249 0.1596 0.6987
10 2499.65 0.0252 0.1608 0.7037
100 689.63 0.0264 0.1685 0.7371

aFor geometry Kn � 0, a∕L � 20, w∕L � 200 for airflow

over glass at three Peclet values. The basis for comparison is

the Nusselt number for the 60-layer case, also listed.

Table 2 Thermal property ratios used in simulationsa

Material k0
�
W
mK

�
α0
�
m2

s

� k0
k1

α0
α1

�ρc�0
�ρc�1

Plastic 0.23 0.10�10−6� 8.75 0.00444 1984
Glass 1.38 0.83�10−6� 52.47 0.03688 1420
Stainless steel 13.00 3.40�10−6� 494.30 0.15111 3279

aValues for air are k1 � 0.0263 W∕m∕K, α1� 22.5�10−6� m2∕s, and

�ρc� � 1169 J∕m3∕K

Table 3 Spatial average heat transfer
coefficient (normalized) on the heated

region for airflow over three wall materials
at several airflow (Peclet) values, without
slip flow (Kn � 0) and with slip flow

(Kn � 0.04)

Wall Pe Kn � 0 Kn � 0.04

Plastic 20 1111.7 885.7
40 849.4 679.1
60 576.6 469.9
80 416.0 353.1
200 217.6 202.6
500 169.4 162.8

Glass 20 2282.0 1819.8
40 1734.5 1388.9
60 1180.5 965.9
80 859.9 731.1
200 450.8 419.7
500 349.5 336.2

Steel 20 10443.4 8344.7
40 7856.4 6316.2
60 5361.2 4415.9
80 3963.8 3391.9
200 2107.0 1960.3
500 1623.8 1526.7
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curvature passes through an inflection point aroundPe � 70 and the
rate of decrease slows.
The effect of wall material is in order of wall conductivity, with

high-conductivity steel having the highest Nusselt numbers, fol-
lowed by the glass and plastic wall. The effect of slip flow, shown in
Fig. 5, is that the Nusselt number on the heater is always lower when
slip flow is present. This is caused by the slip-flow temperature jump
at the wall producing a larger wall-fluid temperature difference.
Because the Nusselt number is proportional to the inverse of this
temperature difference, slip flow pushes the Nusselt number lower.
To further explore the interplay between convection and wall

conduction, Fig. 6 shows the spatial variation of the Nusselt number
along the heater (0 < x∕a < 1) for several values of the Peclet
number, for airflowwith andwithout the presence of slip flow, for the
base case of airflow over a glass wall. First, the effect of slip flow has
the same trend for all the curves shown in Fig. 5, which is to lower the
Nusselt number relative to continuum (Kn � 0) flow.Next, the shape
of the curves in Fig. 6will be examined. For all of the curves shown in
Fig. 6, there is a small region near x � 0 where Nu�x� falls from
about value 700 to a local minimum. This region is followed by an
increasing Nusselt region with uniform slope. The values of the
uniform slope vary inversely with Peclet number, with the larger
slope occurring for the smallest Peclet value. For the Pe � 10, 20,
and 40 curves, the uniform slope region is followed by a knee where

the rising trend is arrested and a plateau in Nusselt value is achieved;
note that the plateau Nusselt value is the about same for these three
Peclet values. For Pe � 10, the knee appears at about x∕a � 0.15,
forPe � 40 the knee has moved downstream to x∕a � 0.35, and for
Pe � 40 the knee hasmoved to x∕a � 0.7. In contrast, atPe � 100,
the knee is missing and the Nusselt value does not reach the plateau
value. For the largest Pe value shown in Fig. 6 (Pe � 500), the
uniform slope region extends across the heater, theNusselt value does
not reach the plateau value, and the knee is replaced by an upward
jump in the Nusselt value just at the end of the heater. Clearly, the
shape of the Nusselt curve shows large changes over this range of
Peclet number. Conduction in thewall provides an explanation for the
different trends at the downstream end of the heater. Briefly, there is a
transition in the temperature downstream of the heater that occurs
around Pe � 70, and wall conduction causes this downstream event
to be visible on the downstream end of the heater. In the next section,
the temperature downstream of the heater is given to provide a
window into this behavior.

C. Region Downstream of Heater

In this section, results for the temperature are presented at a
location downstream of the heater. This region could represent a
multicomponent electronic device with an unheated downstream
region affected by a heated upstream region. Alternately, this down-
stream region could represent a temperature sensor in a microfluidic
system.
Figure 7 shows the average temperature in the downstream region

1.15 < x∕a < 2.15 for a range ofPe values and for severalKn values.
Recall that the heater is located in region 0 < x∕a < 1.0. In Fig. 7, the
principal feature of the average temperature in the downstream
region, as Peclet rises, is that temperature rises up to some plateau.
Recall that for a fixed geometry, Pe is proportional to mean gas
velocity. The rising trend in temperaturewith Peclet number is caused
by convection carrying an increasing amount of heat from the
upstreamheater to this downstreamobservation location. In gas flows
for this range of Pe values, axial conduction in the wall is dominant
over convection. The extreme example is the steel wall curve that
starts out flat because it takes a great deal of gas flow to affect the steel
wall temperature. The plateau in temperature at higher Pe occurs
when the convection begins to overcome the wall conduction.
The effect of Kn on the downstream location, shown in Fig. 7, is

caused by the temperature jump at thewall that is present in slip flow.
AsKn rises, thewall temperature jump produces a different effect for
small Pe and large Pe. At small Pe values, as Kn rises, the average
wall temperature rises, because heat is moving from the wall to the
fluid across the slip-flow temperature jump. The wall is hotter than
the fluid because of wall conduction, again for small Pe values. This
is true for both the plastic and glass wall cases in Fig. 7; however, for
the steel wall, the effect is too small to be seen. At larger Pe values
(Pe > 70), the effect of rising Kn has the opposite effect on the wall
temperature. Here, the wall temperature falls as Kn rises because at
this downstream location, heat is flowing from the fluid to the wall
across the slip-flow temperature jump. The fluid is hotter than the
wall because of convection from the upstream heater.

Fig. 4 Average temperature on the heater (normalized) vs Pe for
airflow over plastic, glass, and steel walls.

Fig. 5 Average Nusselt number on the heater for airflow over plastic,
glass, and steel walls.

Fig. 6 Local Nusselt number version position on the heater for airflow
over a glass wall for several Peclet values.

Fig. 7 Average temperature over an unheated downstream region
1.15 < x∕a < 2.15 for airflow over plastic, glass, and steel walls.
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It is important to note that the shape of the temperature curves in
Fig. 7 are unique to wall-dominated heat transfer present in
microchannel flow. This shape is a consequence of a transition in the
shape of the spatial temperature distribution (not shown) in the near-
downstream region as Peclet rises. At low Peclet values, the spatial
temperature distribution is defined by wall conduction and is sym-
metric about the heater. As Peclet rises, the temperature transitions to
a convection-dominated shape with a downstream-biased thermal
footprint. This point is discussedmore fully in a previous paper by the
authors on liquid flow in microchannels [19].

VI. Conclusions

In this paper, the analytical solution for the heat transfer in a
parallel-plate microchannel is given in the slip-flow regime with
thermally participating walls. Results are given for a wide range of
Pe, at several Kn values, for three wall materials in airflow. The
heater temperature is dominated by wall conduction for all but
the largest airflow values studied. The effect of slip flow is to raise the
heater temperature, caused primarily by the temperature jump at
the wall that is proportional to the Kn value. As the heat transfer
coefficient is proportional to the inverse of temperature, the addition
of slip flow reduces the average heat transfer coefficient on the heater.
The spatial distribution of the heat transfer coefficient changes from a
curved-downward shape to a curved-upward shape as the Peclet
number rises.
Downstream of the heater at low gas flows, the wall temperature is

larger than the fluid temperature similar to the trend on the heater, and
the range of Peclet values defining this behavior depends on the
interplay of axial wall conduction and fluid convection. The effect of
slip flow in the downstream region is to raise the wall temperature at
low gas flows, similar to that of the heater itself, because heat is
flowing from the wall into the fluid across the slip-flow temperature
jump. At higher gas flows, however, the near-downstream region
experiences a transition to where thewall temperature falls below the
fluid temperature and heat carried by the flow is entering the wall.
After this transition, which occurs around Pe � 70, the effect of slip
flow is to lower the wall temperature (relative to laminar flow), again
because heat flows across a temperature jump at the wall–fluid
interface. Application of these results includes thermal effects and
thermal processing in microfluidic systems.

Appendix: Distribution of Heat in the Wall

In this Appendix, the form of the volume heating term is discussed.
This term comes from applying the Fourier transform, Eq. (9), to the
real-space heating integral, Eq. (6), to find

�B0�y0� �
1

k0

Z
L0

y 00�0
�g�β; y 00� �G0�β; y0; y 00� dy 00 (A1)

Here, �g is the Fourier-space heating distribution in thewall and �G0

is the Fourier-space Green’s function for layer 0. The Fourier-space
Green’s function for a uniform velocity layerwith homogeneous type
2 boundaries is given by [20]

�G�y;y 0� � �e
−ν�2L−jy−y 0 j� �e−ν�2L−y−y 0��

2ν�1−e−2νL� ��e
−ν�jy−y 0 j� �e−ν�y�y 0��
2ν�1−e−2νL�

(A2)

Note that the subscript identifying the layer number has been
suppressed. Here, ν2 � β2 � jβu∕α and u is the velocity of the layer;
in the wall (layer 0), the velocity is simply zero. Next, the volume
heating function will be given for two heating geometries in the wall,
a thin heater at the fluid–wall interface, and heating distributed
through the wall thickness.

A1 Thin Heater at Fluid–Wall Interface

If the heating is confined to the surface of thewall at the fluid–wall
interface, then the heat distribution along a short axial region of the
wall has the form

g�x; y 00� � δ�y0 − L0� ×
�
q0 if 0 < x < a
0 otherwise

(A3)

Here, q0 is the introduced heat flux (W∕m2). Note that theDirac delta
function is nonzero only at boundary y0 � L0. Now apply the Fourier
transform, Eq. (9), to this heating function to obtain

�g�β; y 00� � δ�y0 − L0�
q0
jβ
�1 − e−jβa� (A4)

Now combine the preceding expression for the heating function with
the Green’s function, Eq. (A2), and the heating integral, Eq. (A1), to
obtain

�B0�L0� �
1

k0

q0
jβν
�1 − e−jβa� × 1� e−2νL0

1 − e−2νL0
(A5)

Note that the Dirac delta function has been used to eliminate the
integral on y 00, and that this expression has been evaluated at location
y0 � L0 as needed in the matrix solution, Eq. (22). The preceding
heating function for the thin heater has been studied previously for
laminar flow [19].

A2 Heating Distributed Through Wall Thickness

If the heating is uniform through the wall thickness, then the heat
distribution along a short axial region of the wall has the form

g�x; y 00� �
�
q0∕L0 if 0 < x < a
0 otherwise

(A6)

Here, q0 is the rate of heat introduced per unit area of wall so that
q0∕L0 is the rate of heat per unit volume. The Fourier transform of
this distribution is given by

�g�β; y 00� �
q0
jβL0

�
1 − e−jβa

	
(A7)

Replacing the preceding expression for the heating function and the
Green’s function, Eq. (A2), into the heating integral, Eq. (A1), and
upon evaluation of the integral, the heating function is given by

�B0�L0� �
1

k0

q0
jβL0

�1 − e−jβa� 1
ν2

(A8)

Note that the spatial integral of the Green’s function reduces to the
term 1∕ν2 [21].
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