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HIGHLIGHTS

« All element regimes, except S deprivation, were associated with decrease in total biovolume.
« Macro- and microelement composition of C. reinhardtii greatly differed.

« Overall TAG output under N, Mg, S or P deprivation was most pronounced.

« FAME profiles of N, S and P deprived cells reflect the requirements of EN 14214.

« Dramatic morphological changes were observed under different element regimes.
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In this study, impacts of different element absence (nitrogen, sulfur, phosphorus and magnesium) and
supplementation (nitrogen and zinc) on element uptake and triacylglycerol production was followed
in wild type Chlamydomonas reinhardtii CC-124 strain. Macro- and microelement composition of C. rein-
hardtii greatly differed under element regimes studied. In particular, heavy metal quotas of the microal-
gae increased strikingly under zinc supplementation. Growth was suppressed, cell biovolume,
carbohydrate, total neutral lipid and triacylglycerol levels increased when microalgae were incubated

Ié;{m);gz%onas reinhardtii under these element regimes. Most of the intracellular space was occupied by lipid bodies under all nutri-
Jonome ent starvations, as observed by confocal microscopy and transmission electron micrographs. Results sug-
Nutrient regime gest that sulfur, magnesium and phosphorus deprivations are superior to nitrogen deprivation for the
Neutral lipid induction triacylglycerol production in C. reinhardtii. On the other hand, FAME profiles of the nitrogen,
Triacylglycerol sulfur and phosphorus deprived cells were found to meet the requirements of international standards

for biodiesel.
Crown Copyright © 2013 Published by Elsevier Ltd. All rights reserved.

1. Introduction of long chain fatty acids, and transesterification with alcohols is a
widely used method to convert lipid molecules into their alkyl-es-
ters (Tsai et al., 2013). While oil crops such as soybean, jatropha

and oil palm are particularly suitable for use in biodiesel produc-

Recent increases in oil prices have encouraged much research
into the use of alternative sources to accommodate the fuel

requirements of modern civilization, and various organisms and
organic wastes have been proposed as sustainable and environ-
mentally friendly sources for the production of usable forms of en-
ergy such as biohydrogen, biodiesel and bioethanol. Among the
liquid biofuels, biodiesels are typically formed from alkyl-esters
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tion, unicellular algae have received considerable attention in the
recent decade as rapidly proliferating, oil-rich biofuel sources with
sufficient biomass output to fully replace petroleum-derived fuels
(Chisti, 2007). Microalgae derived biodiesel is a second generation
biofuel and does not require arable land for stock production,
which prevents potential conflicts between biodiesel production
and the cultivation of edible plants. In addition, microalgae possess
several advantages over land crops, such as year-round growth and
harvesting capacity, substantially higher biomass per area and li-
pid content maxima, and resistance to pests and pathogens that
commonly infest crop plants (Chisti, 2007).
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Various microalgal species have been proposed for enhanced
biodiesel production, including Scenedesmus obliquus, Nannochlor-
opsis oculata, Chlorella sp., Neochloris oleoabundans (Breuer et al.,
2012). In addition, common laboratory species are widely utilized
as a platform for developing new strategies that would assist in
reaching higher yields. Chlamydomonas reinhardtii is one of the
most frequently used model organisms and has long been the cen-
ter of physiological, biochemical and genetic studies for division
Chlorophyta. As methods of gene transfer were developed fairly
early for C. reinhardtii, several genetic studies have already been
conducted to increase the biomass and biodiesel production of this
species (Rosales-Mendoza et al., 2012). While C. reinhardtii is not
widely regarded as the most suitable organism for biodiesel pro-
duction at large scales, this species is nonetheless preferred in this
field due to its ease of handling and capacity for non-photosyn-
thetic growth (Rupprecht, 2009).

Despite having numerous advantages over crop plants, microal-
gae are associated with a number of technical, biological and eco-
nomical hindrances that prevent algal biodiesels from effectively
replacing petroleum-derived fuels (Chisti, 2007). The predominant
biological problem is the low lipid contents displayed by many
microalgal species. Under stress conditions, most microalgae direct
their metabolism to the production of non-polar lipids, and espe-
cially TAG, which are used as storage molecules and rapidly de-
graded for energy production when optimal conditions arise. One
of the most widely used stress conditions is nutrient starvation,
which strongly induces TAG production of microalgae (Bolling
and Fiehn, 2005). However, the exact mechanisms by which nutri-
ent deficiencies direct the Chlamydomonas metabolism towards in-
creased TAG production are not sufficiently explored. The present
study aims to decipher the biochemical response patterns associ-
ated with the deficiency or over supplementation of several vital
and trace elements by extensive quantitative and qualitative anal-
yses, with emphasis on lipid biosynthesis. Effects of nitrogen defi-
ciency on algal metabolism have previously been elucidated to
great detail, and are utilized as a point of comparison for the effects
of other element deficiencies and overabundances. Impacts of dif-
ferent element absences (N, S, P and Mg) and overabundances (N
and Zn) on the microalgal metabolism have been followed by the
evaluation of lipid quantities, time-based fluctuations in ion con-
centrations in the organism, alterations in synthesis pathways
and changes in cell morphology and growth rates.

2. Methods
2.1. Culturing conditions

The wild type mt(-) 137c strain CC-124 was obtained from the
Chlamydomonas Resource Center (www.chlamy.org). Cells were
grown at 23 °C under continuous light (150 pmoles photons m—2
s~ 1) in liquid cultures on a rotary shaker (120 rpm). Standard
Tris—Acetate-Phosphate (TAP) medium was prepared as described
previously. Starting cell densities were approximately 3 x 10*
cells ml~! in all groups. For N starvation studies, cells were centri-
fuged at 2500 rpm for 3 min at room temperature, and the pellets
were washed twice in TAP medium without N (TAP-N). The pellets
were then resuspended in TAP-N medium and the cells were
grown under constant light exposure on a rotary shaker. The same
procedure was applied for other element manipulations. Initial pH
values in all media were set to 7 prior to algal cell inoculation, pH
values of the media were checked every 24 h and found not to
deviate more than 8% from the initial throughout the 10-day incu-
bation period. Cell growth and size were monitored by haemocy-
tometer cell counts using Lugol’s solution (Sigma) and Image-] to
perform volumetric calculations (Collins, 2007). Total cell biovo-

lume was calculated using the equation “B=CV”, in which B is
the total biovolume, C is the number of cells, and V is cell volume.
For relative dry weight measurements, a volume of medium con-
taining 1 x 10° cells was centrifuged at 3000 rpm for 5 min; and
the pellet was air-dried for 5 min, weighed, incubated at 80 °C
for 48 h and re-weighed. Cells from all experimental groups were
harvested at the 1st, 3rd, 5th, 7th and 10th days.

2.2. Elemental analyses

To determine metal content in algae and media, ICP mass spec-
trometry was utilized. Approximately 5 x 107 cells were collected
for each treatment group, washed with 2 mM EDTA twice, ashed in
crucibles at 600 °C for 12 h and dissolved in HNOs. Samples were
filtered prior to analysis. Elemental analysis was performed by an
XSeries2 ICP-MS (Thermo Scientific, US-MA). All measurements
were performed using a fully-quantified calibration method. Corre-
lation coefficients were over R*=0.99 for each element. Plasma
power was set to 600 and 1400 W for cool and hot plasma applica-
tions, respectively. Isotopes with the fewest number of polyatomic
interferences were chosen for m/z detection in mass spectrometry.
An internal standard solution (10 ppb Bi) was used throughout the
measurement period, measurements were repeated when internal
standard concentration went beyond the tolerance range (+20%) or
an unaccountably high deviation was observed between two reads
of the same sample.

Concentrations of C, H, N, S and O were measured using a Flash
2000 organic elemental analyzer (Thermo Scientific, US-MA). 3-
4 mg of oven-dried algal biomass was analyzed in tin capsules,
vanadium pentoxide (V,0s5) was added as an oxidation catalyst
prior to sealing to increase the reliability of measurements. BBOT
(2,5-Bis[5-tert-butyl-benzoxazol-2yl] thiophene) was used as a
standard for all measurements. A manufacturer-provided protocol
for algae was utilized as the measurement method.

2.3. Quantification of total protein and neutral lipids

Frozen cell pellets were re-suspended in lysis buffer (50 mM
Tris—-HCl pH 8.0, 2% SDS, 10 mM EDTA, and protease inhibitor
mix), subjugated to sonication (3510E-DTH, Branson) for 1 min at
60% power (~7 W/pin) and centrifuged at 13,000g at 4 °C. The
supernatant was then used for protein determination with Brad-
ford method.

Neutral lipid staining was performed using Nile Red as de-
scribed by Elsey et al. (2007). Approximately 29.3 x 10* cells ml~!
were stained with 22 pl of 7.8 x 10~ M Nile Red (Invitrogen) dis-
solved in acetone, left to incubate on a shaker for 15 min under
darkness and washed twice. Relative fluorescence intensity of Nile
Red staining was quantified on a fluorescence spectrometer (Spec-
traMax M5, MDS Analytical Technologies) using 490 nm excitation
and 585 nm emission wavelengths. Total lipid levels were also con-
firmed gravimetrically.

2.4. Fourier transform infrared spectroscopy (FTIR)

A 1.3 ml sample was concentrated and 30 pl of which was then
deposited on a 96 well silicon microplate and oven-dried for
45 min to form homogeneous thin films (Dean et al., 2010). FTIR
spectra were recorded using a Nicolet 6700 Research FT-IR Spec-
trometer (Thermo Scientific). The bands were assigned to specific
molecular groups on the basis of biochemical standards and pub-
lished studies as previously described (Movasaghi et al., 2008).
FTIR peak values were of particular interest which were attributed
to ester group (C=0) vibration of triglycerides (1744 cm™!), carbo-
hydrate bands (1200-950cm™!) and amide 1 absorption
(1652 cm™!). FTIR spectra levels of amide I band obtained from
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control cells did not deviate more than 12% therefore the amide |
band was chosen for normalization of the FTIR spectra and ratio
determination. Relative TAG and carbohydrate contents were
determined by calculating the ratio of TAG and carbohydrate bands
to the amide I band (1652 cm™!). Fold changes and standard errors
were estimated by fitting a linear model for each time point and
empirical Bayes smoothing was applied to the standard errors for
all samples studied. All measurements were performed in tripli-
cate. Spectra were baseline corrected using the automatic baseline
correction algorithm and scaled to the amide I peak. The potential
influence of differing cell concentrations on the changes in band
intensities was eliminated by analyzing the information obtained
on a per cell level.

2.5. FAME quantitation

FAME quantitation was performed as suggested by Praveenkumar
et al. (2012) with some modifications. A 300 pl extraction buffer
(MeOH containing 2% H,SO4 v/v) was added on approximately
8 mg lyophilized algal sample including 30 pg nonadecanoic acid
as internal standard. Samples were incubated for 2 h at 80 °C and
750 rpm. After incubation, samples were cooled and then 300 pl
NaCl and 300 pl hexane were added. After centrifugation, upper
hexane layer was transferred into a glass insert vial and used for
GC-MS (Agilent, 5975B) analysis. One microliter of each sample
was injected into FAMEWAX column (Restek, USA) (30 m x 32 mm
ID x 25 pm film thickness). The temperature program was as fol-
lows: initial 120°C with 10 min hold; 5°C increment up to
230°C with a 5 min hold. Column flow was set at 22.2 ml/min.
The instrument condition was as follows: carrier gas nitrogen;
FID set at 260, and split ratio of 10:1. Each sample was analyzed
in triplicates, and FAME identification was done by comparison
with standard certificate, Supelco FAME mix C4-C24 (Bellefonte,
PA, USA).

2.6. Imaging

Confocal imaging of live cells was achieved as follows. Cells
were stained with Nile Red (5 pg/ml final concentration; Invitro-
gen). Images were acquired using an LSM 510 confocal microscope
(Carl Zeiss) and a Plan Apo 63 oil immersion objective lens with a
numerical aperture of 1.40-0.60. The Nile Red signal was captured
using a laser excitation line at 488 nm, and the emission was col-
lected between 560 and 600 nm. Chlorophyll fluorescence was
captured using a laser excitation line at 633 nm, and the emission
was collected at 650 nm. Images were merged and pseudo-colored.

TEM imaging was performed as follows. Chemicals for TEM
imaging were obtained from Electron Microscopy Sciences (PA,
US). 10-15 mg of algal pellet was suspended in 1% paraformalde-
hyde-1% glutaraldehyde in sodium phosphate buffer (Na,HPO4—
NaH,PO4, 1 M, pH = 7) and incubated for 24 h. Samples were then
washed with 0.1 M sodium phosphate buffer, stained with 1% of
osmium tetroxide and incubated at 4 °C. Excess 0OsO,4 was rinsed
with deionized water and the samples were dehydrated in a series
of alcohol solutions (70%, 80%, 90%, 96% and 100% EtOH). Samples
were then infiltrated with a 1:1 solution of 100% ethanol and
embedding mixture (EMBED-812 resin), followed by 100% embed-
ding mixture. Samples were placed in embedding molds and poly-
merized at 65 °C for 48 h. Ultrathin (70-80 nm) slices were taken
by an ultramicrotome, and stained with lead citrate and uranyl
acetate. Images were taken by a FEI Tecnai G2 Spirit BioTwin CTEM
with average electron energy of 80 KeV.

Final data in this article are the mean values of at least three
separate samples collected at two different times (n =6). Means
of averages are presented throughout the manuscript, and stan-

dard errors and t-tests (two tails, pair type) with the significance
criteria of 0.05, 0.01, or 0.001 are utilized to assess significance.

3. Results and discussion

3.1. Growth and total lipid production of C. reinhardtii under different
element regimes

All element regimes, except S deprivation, were associated with de-
creases in total biovolume.

In this study, C. reinhardtii CC-124 cells were grown for 10 days
inN, S, P, Mg, K, Ca, Fe or Zn deprived TAP media, or in TAP media
supplemented with each of these elements in concentrations five
times that of the base medium. All nutrient limitations studied, ex-
cept those of K and Zn had a negative impact on growth, while only
Zn and N over-supplementations elicited a significant decrease in
growth rate (Suppl. Fig. 1). In addition, the suppression of growth
was associated with an increase in neutral lipid content. (Suppl.
Figs. 1 and 2). Among the element deprivations and abundances
studied; N, S, P and Mg deprivations, as well as Zn and N abun-
dances, caused considerable decreases in growth and increases in
neutral lipid contents of microalgae (Suppl. Figs. 1 and 2). As such,
microalgae grown in control (TAP), N-deficient (TAP-N), S-deficient
(TAP-S), P-deficient (TAP-P), Mg-deficient (TAP-Mg), N-abundant
(TAP+N) and Zn-abundant (TAP+Zn) media were selected for fur-
ther characterization.

Suppression of the growth was most pronounced in N-deprived
microalgae, while other element regimes caused milder decreases
in growth (Fig. 1a). Cell growth rapidly decreased in N-starved cells
within the first 24 h, while all other samples continued proliferat-
ing at varying rates and entered stationary phase approximately on
day 5. Growth rates under N and Zn supplementations were
slightly higher than in other regimes. The control group reached
stationary phase with an OD750 value of around 0.96 on day 5,
while this value was 0.73 in TAP+N, 0.64 in TAP+Zn, 0.61 in TAP-
S, 034 in TAP-P, 0.24 in TAP-Mg and 0.06 in TAP-N media
(Fig. 1a). Nutrient limitation cause a steadily declining cell division
rate and most microalgae divert and deposit fatty acids into TAG as
there is no requirement for the synthesis of new membrane com-
pounds (Sharma et al., 2012). Thus, increase in cell biovolume is
an expected result and the increase in the volume of a microalga
might refer to increased cytoplasmic lipid amounts. However,
nitrogen deficiency was overall suboptimal for lipid production,
since the immediate cessation of cell division greatly limited the
total biomass attainable by N-deficient cultures. In this study, the
initial cell volume of microalgae was measured as 76.6 + 5.7 um>
per cell on average. Increase in cellular biovolume was higher in
N-starved microalgae relative to control group; however, highest
increase in cellular biovolume was reached in S-deprived cells on
5th day of incubation with a maximum value of 183.9+17.2
(Fig. 1b).

Total biovolume of each group was calculated by using data ob-
tained from changes in cell density and cellular volume. As shown
in Fig. 1c, only S starvation caused a considerable increase in total
biovolume of microalgae in a culture. Two major hindrances of
obtaining maximal biodiesel from microalgae strains are low
cellular lipid content and poor density. Stress conditions promote
neutral lipid concentration and cellular size while causing a de-
crease in cell concentration (Davis et al., 2011). Results in this
study showed that relative dry weights of microalgae either de-
creased (under N and S deprivation) or remained unaffected, while
total lipid levels increased dramatically under element limitation
(Fig. 2). Increases in total lipid levels were highest in microalgae
grown under P deprivation, while relative dry weight did not
change significantly in this group. Likewise, the relative dry weight
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Fig. 1. Changes in cell growth under different element regimes. Spectrofotometric measurement (a) and cell biovolumes (b) were used to calculate total biovolume values (c).
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Fig. 2. Changes in dry weight and total lipid levels (on a dry weight basis) of
microalgae at the end of the 10 days of incubation period under different element
regimes. Approximately 1 x 10° cells were used for each measurement. Each data
point is the mean (+SE) of at least three samples. Symbols (xxxx*xx) denote
significance evaluated across all experiments (P < 0.05%, 0.01* or 0.001***).

of microalgae grown under N and Zn supplementation remained
unchanged, but increase in total lipid levels were found statisti-
cally significant, albeit not as pronounced as lipid accumulations
caused by nutrient deprivation (Fig. 2).

3.2. Analysis of changes in element quotas of microalgae

There were quite abstruse changes in element content of
C. reinhardtii cells grown under Mg deficiency. Zinc concentration in
C. reinhardtii cells increased up to 92-fold under Zn supplementation.
Excess Zn uptake stimulated dramatic increments of other essential
microelements in microalgae.

In order to evaluate element uptake efficiency of microalgae
grown in described media, macro- (N, P, K, Ca, Mg and S) and
micronutrient (Zn, Fe, Co, Cu, Mn and Mo) levels in microalgae
was measured during ten days of incubation period. As expected,
N, S, P and Mg levels of microalgae decreased by time when

microalgae were grown in TAP-N TAP-S, TAP-P and TAP-Mg media
respectively (Fig. 3). Nitrogen and S content of microalgae rapidly
decreased starting from the first day of incubation under N or S
deprivation. It seems like presence or absence of N or S itself is a
limiting factor for uptake of one of these two macroelements. On
the other hand, even if there were gradual decreases starting from
the first day, a rapid decrease in N or S content of microalgae was
observed after 7 days of incubation under P deprivation implying
that intracellular phosphorus stocks were able to compensate for
the stress making phosphorus deficiency, in this perspective, not
a plausible choice for obtaining rapid stress condition (Fig. 3).
However, P concentration rapidly decreased starting from the first
day of incubation in the absence of all macronutrients studied
(Fig. 3). Results indicate that levels of three macronutrient syn-
chronize to preserve cellular homeostasis in C. reinhardtii. Magne-
sium plays a major role in the production of chlorophyll, synthesis
of amino acids and cell proteins, and resistance to unfavorable fac-
tors such as nutrient limitation (Finkle and Appleman, 1953). In
this study, P content of microalgae decreased and N content even
increased while S content of microalgae did not exhibit a signifi-
cant variance under Mg deprivation (Fig. 3). When compared to
control group, there was an increase in carbohydrate levels
(Fig. 4b), total and neutral lipid levels (Figs. 2 and 5a) and the de-
crease in protein concentration was not as high as observed under
other element deprivations studied (Fig 4a). Thus, microalgae
might utilize photosynthetic energy to produce storage com-
pounds and protein to trigger enzymatic responses for further
needs rather than keeping normal metabolism which necessitates
ATP production. Understanding ATP production and oxygen con-
sumption efficiency of microalgae under Mg deficiency would pro-
vide better insight into the use of Mg deprivation for increasing
TAG production of microalgae.

Potassium content increased in microalgae grown under all
element regimes studied (Fig. 3). Potassium activates enzymes, re-
duces water loss, reduces respiration, preventing energy losses and
builds cellulose and induce formation of starch in plants (Leigh and
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Jones, 1984). Increased carbohydrate formation was observed un-
der all element regimes presented (Fig. 4b). Calcium content in-
creased in microalgae grown in TAP-N and especially TAP-S
media while significant decreases were found in microalgae grown
under other element regimes. Calcium is mainly involved in deter-
mination of cell wall strength and thickness in plants (Taiz, 1984).
This indicates that calcium acceptance of cell wall is enhanced un-
der N and S deprivations that contributes to the biovolume.

Even if it would be important to understand the stoichiometry
mechanisms in aqueous solution to prepare a new medium for bio-
diesel or high-value added products from microalgae, few studies
have tested the interaction between nutrient manipulation and
trace metal concentrations in microalgae. Iron limitation was re-
ported to decrease the assimilation of nitrate and phosphate
(Sterner et al., 2004), whereas similar study states an increase in
Cd and Zn uptake under nitrate supplementation (Wang et al.,
2001). Recently Kropat et al. (2011) offered a revised trace-element
recipe for induction of TAG production from microalgae; however,
the interaction between metal levels of microalgae and possible ef-
fects of the interaction of heavy metal on microalgal lipid produc-
tion is in need for further detailed studies. In this study, Fe was
found as the most abundant heavy metal in C. reinhardetii cells, fol-
lowed by Mn, Zn, Cu, Co and Mo, respectively (Fig. 3). Heavy metal
concentrations of microalgae either increased or remained unef-
fected in response to different element regimes studied (Fig. 3).
These metals play important roles as cofactor of several enzymes
in plant and microalgae. Zinc content increased approximately
37-fold within the first 24 h and ended up with a value of 92-fold
increment in TAP+Zn media in 10 days (Fig. 3). In addition, Fe, Co
and Mn contents were higher in Zn supplemented microalgae from

the first day and remain same (Fig. 3). Several enzymes utilize Zn
as a cofactor, and up to 10% of all sequenced proteins from pro-
karyotes and eukaryotes contain Zn-binding domains (Andreini
et al., 2006). Except for Mg deprived ones, Fe content of microalgae
increased in all groups studied. Iron is an important substrate for
the photosynthesis since the active site of glutamyl-tRNA reduc-
tase, an enzyme needed for the formation of 5-aminolevulinic acid,
contains iron (Wang et al., 2001). Moreover, Fe is a cofactor of sev-
eral oxidoreductases such as hydrogen dehydrogenase, superoxide
dismutase and Nitrite reductases (Marschner, 1995). Thus, an in-
crease in iron bioaccumulation within microalgae grown in supple-
mented media may refer to the enhanced rate of metabolism. Since
growth was not enhanced in algae that are grown in supplemented
media, increased iron levels may reflect activation of possible
enzymatic antioxidants stemming from the increase of reactive
oxygen species production. On the other hand, a boost in Fe bioac-
cumulation in S, P and especially N deprivation may require further
studies to clarify this tendency. Manganese content increased up to
a maximum of 18.2-fold on 5th day and ended up with a value of
6.3-fold increase in microalgae grown under Mg deprivation. Man-
ganese is an essential redox cofactor for some enzymes including
some major antioxidant enzymes such as Superoxide dismutase
and Catalase (Yocum and Pecoraro, 1999).

3.3. Changes in protein, neutral lipid, TAG and carbohydrate levels
Increases in neutral lipid, TAG and carbohydrate levels, and a cor-

responding decrease in protein content, were observed to be the com-
mon responses of C. reinhardtii strain CC-124 to element deprivation.
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Table 1

FAME composition of microalgal lipids under different element regimes. Samples were collected at the end of 10 days of incubation period.

Fatty acid methyl esters Nature % composition under different element regimes (mean * SD)
C TAP-N TAP-S TAP-P TAP-Mg TAP+N(5x) TAP+Zn(5x)

Myristic acid 14;0 SFA 0.6+0.1 09+0.15 - - - - 0.2 £0.03
Pentadecanoic acid 15;0 SFA 0.6 +0.05 - 1.3+0.2 0.8+0.1 1.8+03 0.8+0.1 -
Palmitic acid 16;0 SFA 323+34 433+1.1 393+25 33.3+4.1 3133 32.7+5.1 323+4.1
Palmitoleic acid 16;2 PUFA - - - - 7.2+08 28+1.1 1+0.2
7 Hexadesenoic acid 16;1 MUFA 24+0.6 1.7+04 29+04 43+1.3 2.6+05 29+1.2 1.6+0.2
7,10-hexadecadienoic acid 16;2 PUFA 0.9 +£0.05 22+03 1102 1.1+0.2 1.1+0.1 1.1+0.2 31+03
7,10,13 Hexadecatrienoic acid 16;3 PUFA - - - - - 0.5+0.06 1.7+0.6
Hipogeic acid 16;1 MUFA - - - - 1.3+0.2 3.2+07 -
Stearic acid 18;0 SFA 29.2+6.4 129+1.2 33+58 245+58 15+2,1 179+24 16.3+3.1
Lignoseric acid 18;1 MUFA - - - - - - 34+06
7-Octadesenoic acid 18;1 MUFA - - - - - 33%1.1 -
Oleic acid 18;1 MUFA 83+2.1 19.3+0.5 11.6+2.7 149+2.7 52+1.2 104+1.4 95+23
Linoleic acid 18;2 PUFA 46+1.1 154102 7.2+09 9.7+1 58+0.8 63+1.2 9.1+19
Linolenic acid 18;3 PUFA 21.1+54 4.3+0.2 37+1 11.2£3.2 26.4+4.1 16.1£2.6 16.8£2.8
Arachidic acid 20;0 SFA - - - 0.2+0.01 - - -
11,14,17 Eicosatrienoic acid 20;3 PUFA - - - - 23+04 1.7+0.3 1.6+0.2
Eicosapentaenoic acid 20;5 PUFA - - - - - - 34+09
Nevronic acid 24;1 MUFA - - - - - 0.3 +0.04 -

X SFA 62.7£0.2 57.1+0.2 73.6 £0.5 58.8+0.3 48.1+0.2 51.4+0.3 48.8+0.4

> MUFA 10.7 £ 0.1 21+0.1 14.5+0.2 19.2+0.2 9.1+0.1 20.1+0.2 145+0.2

3 PUFA 26.6+0.2 219+03 11.9+0.1 22+0.1 42.8+0.2 28.5+0.4 36.7+0.6

Of all nutrient starvation strategies, N-starvation is the most
widely studied approach and has been applied to a wide range of
microalgal species to induce lipid production (Sharma et al,,
2012). In this study, N-starved samples were used as a point of
comparison for other groups studied. Element deprivation regimes
generally stimulated higher increases in neutral lipid contents than
N and Zn supplementations (Fig 5a). As suggested by Nile Red
staining results, 10 days of P deprivation leads to the highest accu-
mulation of neutral lipid content in C. reinhardtii (Fig. 5a). This in-
crease in the intensity of neutral lipids was recorded as 35% on the
first day and increased up to 344% on 10th day of incubation. In-
creases in lipid contents in response to P deprivation were previ-
ously reported on a number of algal species (Reitan et al., 1994).
Nitrogen deprivation caused an increase of around 10% on the first
day of incubation, which was followed by a sharp increase on the
3rd day of incubation (98% over experiment initiation) and culmi-
nated in a 151% increase of neutral lipid content at the end of incu-
bation period. Sulfur and Mg deprivation caused approximately
35% and 39% increase in neutral lipid content on the first day,
and gradually reached up to 127% and 253% at the end of the 10-
day incubation period (Fig. 5a). The rate at which the neutral lipid
content increased in Mg and S deprivations was as high as in nitro-
gen deprivation, whereas the suppression of the growth was lower.
Nitrogen and Zn supplementation also caused notable changes in
the neutral lipid content of C. reinhardtii, starting with approxi-
mately 39% and 52% increments on the first day and reaching a
maximum of 61% and 89% on the 10th day (Fig. 5a). Recently
Huang et al. (2013) reported that increasing the N concentration
in the growth medium stimulates the growth and decreases the
neutral lipid levels of one chlorophyte, Tetraselmis subcordiformis,
and two chromophytes, N. oculata and Pavlova viridis. Results in
this study do not support the data reported by Huang et al.
(2013) may be due to the difference in species and the media
(especially nitrogen source) used. Total lipid results obtained from
Bligh and Dyer method were in concert with data obtained by Nile
Red staining (Figs. 2 and 5a).

In general, element deprivations caused decreases in protein
content (Fig. 4a) referring that photosynthetic energy is used more
for lipid and carbohydrate storage which is validated by neutral
lipid and carbohydrate measurements (Figs. 4b, 5). Decreases in
protein content in various microalgae grown under N, S, P and

Mg deprivation has previously been demonstrated by several re-
ports (Cakmak et al., 2012; Kilham et al., 1997). On the other hand,
nitrogen supplementation caused an increase in protein content
(Fig. 4a). However, the increase in protein content was not accom-
panied by an increase in growth, which implies that C. reinhardtii
may not be regarded as a promising candidate for nitrogen removal
studies.

Fourier Transform Infrared Spectroscopy (FTIR) measurement
was performed to detect changes in triacylglycerol (TAG) and car-
bohydrate levels of microalgae grown under different element re-
gimes. Carbohydrate (Fig. 4b) and TAG levels (Fig. 5b) increased
in all element regimes when compared to respective controls.
Starting with an initial increment of approximately 4.5-fold on first
day, relative TAG content reached its maximum at 5.8-fold in day
10 when microalgae were grown under N deprivation (Fig. 5b).
Under S deprivation, triacylglyceride level of microalgae showed
2.4-fold increases on first day and reached its maximum at 3.8-fold
in day 5 and gradually decreased back to 3.1-fold (Fig. 5b). Phos-
phorus and Magnesium deprivation caused similar responses.
TAG content of microalgae grown in N and Zn abundant medium
increased approximately 1.6 and 2.6-fold on first day and stayed
similar afterwards (Fig. 5b). A considerable difference between
FTIR and Nile Red fluorescence measurement of TAGs was emerged
as the sensitivity of signal intensity attributed to TAGs. In this
study, a 1.51-fold increase in neutral lipid levels with Nile-Red
measurement was recorded while the increase was found as
5.8-fold according to FTIR band attributed to TAGs (Fig. 5a, b).
Moreover, fluorescence intensity was found higher in 10-day Mg
deprived cells than N deprived ones; however, FTIR results showed
that N deprivation stimulates higher TAG production than Mg
deprivation. Considering variation in dye absorption and fluores-
cence intensity and artifactual effects related calibration issues
(Govender et al., 2012) FTIR measurement emerges as more
reliable and precise approach compared to Nile Red staining for
detection of biodiesel feedstock concentration in microalgae.

3.4. Fatty acid composition of microalgal lipids

FAME profiles of microalgae grown under N, S and P deprived con-
ditions reflect the requirements of European biodiesel standards.
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The important biodiesel properties such as cetane number, io-
dine number, heat of combustion, NOx emission, oxidative stabil-
ity, lubricity, viscosity and cold flow are solely dependent on the
FAME profile (Francisco et al., 2010; Saraf and Thomas, 2007).
Unsaturated fatty acids (UFA) in biodiesel lower cetane number
and increase NOx emission. Polyunsaturated fatty acids (PUFA)
are prone to oxidation which would also affect the lubricity and
shelf life of biodiesel (Saraf and Thomas, 2007). Hence, biodiesel
is desired to have high percent of SFA and UFA (Praveenkumar
et al.,, 2012). In the present study, different element regimes were
found to influence the fatty acid composition of C. reinhardetii is re-
vealed in their FAME profiles. The SFA ratio was found higher than
PUFA in all cases (Table 1). Moreover, SFA and monounsaturated
fatty acid (MUFA) to PUFA ratio under most of the conditions meet
the European standard EN 14214 requirements (European
standard EN 14214, 2008). The SFA and MUFA content together
accounted for more than 70% in most cases except for Mg deprived
and Zn supplemented conditions (Table 1). According to EN14214,
the level of C18:3 (linolenic acid) should be <12%. When microal-
gae grown under N, S or P deprived media, the linolenic acid con-
tents were determined as 4.3%, 3.7% and 11.2% where the total
PUFA ratios were found as 21.9%, 11.9% and 22% respectively.
The FAME profiles of microalgae grown under N, S and P deprived
conditions reflect the requirements of EN 14214.

3.5. Characterization of cell morphology

Formation of the cytoplasmic lipid bodies, loss of flagella and frag-
mentation of chlorophyll clusters were the most pronounced changes
of microalgae grown under element deprivation.

In order to detect changes in lipid body formation and cell mor-
phology, transmission electron microscopy (TEM) and confocal
microscopy images were taken at the 10th day following nutrient
manipulation (Suppl. Fig. 3). Most remarkable morphological
changes were the loss of flagella, larger and spherical cell forma-
tion especially in microalgae grown under element deprivation
and formation of cytoplasmic lipid droplets. Microalgae presum-
ably responded to element deprivations and supplementations by
increasing their organelle turnover rates, which resulted in the
accumulation of a considerable amount of macromolecules as lipid
droplets. Lipid bodies were observed to cluster and fuse into larger
droplets, which could occupy most of the intracellular space. Cyto-
plasmic lipid droplet sizes were larger in P and Mg deprived cells
than in N and S deprived cells. Lipid body formation was not
widely recognized in cells grown under N supplemented media.
However, confocal and TEM images suggest that the neutral lipid
production is extensively stimulated in cells grown under Zn sup-
plementation. Another noticeable change was degradation of chlo-
rophyll clusters normally surrounding nucleus in microalgae
grown under control conditions. Chlorophyll network was frag-
mentized extensively in N-deprived cells while it was damaged
to a lesser extent under S, P and Mg deprivations and fragmenta-
tion was altogether absent under N and Zn supplementation (Sup-
pl. Fig. 3).

4. Conclusion

As opposed to nitrogen starvation, growth is not suppressed en-
tirely when microalgae are grown under S, P and Mg deprivation
and chlorophyll fragmentation is not as severe as that in N depri-
vation. This study show that the lipid output of P, S- and Mg-
starved algae are comparable to N-starvation case. Besides, FAME
profiles of microalgae grown under N, S and P deprived conditions
reflect the requirement expected of biodiesel. Additionally,
increases in the intracellular Zn levels were found to stimulate
the uptake of other metals.
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