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h i g h l i g h t s

� Toxicity of laser ablated silver nanoparticles (AgNPs) on the aquatic macrophyte Lemna minor is evaluated.
� Low doses of AgNPs significantly hinder L. minor growth. Growth inhibition reaches a plateau at around 32 lg L�1.
� L. minor is a capable bioremediation agent of AgNPs, but is surpassed by unicellular organisms.
� AgNP biosorption most closely matches the Langmuir–Freundlich model; most other models are found to be unsatisfactory.
� FT-IR results suggest that carbonyl groups play a role in AgNP biosorption.
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a b s t r a c t

The present study investigates and models the effect of laser ablated silver nanoparticles (AgNPs) on the
development of the aquatic macrophyte Lemna minor. Toxic effects of five different AgNP concentrations
(8, 16, 32, 96 and 128 lg L�1) on L. minor were recorded over seven days under simulated natural condi-
tions. Biosorption of AgNPs by L. minor was modeled using four sorption isotherms, and the sorption
behavior was found to agree most closely with the Langmuir–Freundlich model (R2 = 0.997). While toxic
effects of AgNPs could be observed in all models and concentrations, the greatest increase in toxicity was
in the 8–32 lg L�1 range. Dry weight- and frond number-based inhibition experiments suggest that
growth inhibition does not necessarily scale with AgNP concentration, and that slight fluctuations in inhi-
bition rates exist over certain concentration ranges. Very close fits (R2 = 0.999) were obtained for all
removal models, suggesting that the fluctuations are not caused by experimental variation. In addition,
L. minor was found to be a successful bioremediation agent for AgNPs, and displayed higher removal rates
for increasing AgNP doses. FT-IR spectroscopy suggests that carbonyl groups are involved in AgNP
remediation.

� 2014 Elsevier Ltd. All rights reserved.
1. Introduction

Recent developments in nanotechnology have resulted in the
large-scale production of a wide array of nanoscale materials, the
effects of which on the environment are still largely unknown.
Nanoparticles may demonstrate vastly different properties com-
pared to their bulk equivalents, and their small (1–100 nm) sizes,
corresponding to high specific surface areas and mobilities, are
thought to render them potentially hazardous to human and envi-
ronmental health (Wiesner et al., 2006). Extensive production and
use of nanoparticles may result in their accidental release in aqua-
tic ecosystems, where they may have detrimental effects on a wide
spectrum of organisms (Navarro et al., 2008). However, the deter-
mination of nanoparticle toxicities has received little attention un-
til recent times, and thorough ecological and toxicological
evaluations are necessary to fully understand the potential impact
that nanoscale contaminants may have on the environment.

https://core.ac.uk/display/52923375?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://crossmark.crossref.org/dialog/?doi=10.1016/j.chemosphere.2014.01.049&domain=pdf
http://dx.doi.org/10.1016/j.chemosphere.2014.01.049
mailto:ttekinay@gmail.com
mailto:evren_tunca@yahoo.com
http://dx.doi.org/10.1016/j.chemosphere.2014.01.049
http://www.sciencedirect.com/science/journal/00456535
http://www.elsevier.com/locate/chemosphere


252 E. Üçüncü et al. / Chemosphere 108 (2014) 251–257
Due to their wide-spectrum antibiotic activity, Ag nanoparticles
(AgNPs) have been commonly incorporated into textiles, cosmet-
ics, paints and food additives (He et al., 2012). AgNPs are conven-
tionally synthesized by the treatment of an Ag salt with a
reducing agent, but can also be produced by a diverse array of
alternative synthesis methods, including electrolysis, photoreduc-
tion, pyrolysis, sol–gel methods and biological material-mediated
reduction (Evanoff and Chumanov, 2005; Pingali et al., 2005;
Reisfeld et al., 2008). Laser ablation in particular has drawn consid-
erable attention as a potent method for the generation of nanopar-
ticles from bulk silver or other metals, as this technique does not
require the long reaction times, high temperatures, purity-compro-
mising reduction agents or other toxic materials associated with
competing synthesis methods (Semaltianos, 2010).

No matter their source of origin, the high mobility of AgNPs al-
lows a portion of these nanoparticles to accumulate in aquatic
environments (Reidy et al., 2013). However, while it is known that
Ag cations are toxic to a number of organisms (Wood et al., 1996;
Ratte, 1999; Prasad et al., 2001), research performed on the effects
of Ag nanoparticles on aquatic life have been limited (Turner et al.,
2012). The characterization of Ag nanoparticle fates in aquatic
environments is therefore crucial.

Aquatic plants are the most prominent primary producers in
freshwater ecosystems, forming the base of aquatic food chains
and balancing the ecosystem by limiting or encouraging the spread
and proliferation of animal populations (Jiang et al., 2012). As such,
the aquatic macrophyte Lemna minor was chosen as the model
organism in this study. Due to its high reproductive rate, small size
and ease of cultivation and harvest, L. minor is an ideal model for
toxicology research and has been used extensively for the determi-
nation of heavy metal and nanoparticle toxicities (Rakhshaee et al.,
2009; Li et al., 2013; Üçüncü et al., 2013).

The present study aims to understand the effects of Ag nano-
particle toxicity on the environment by modeling the effects of
AgNPs on L. minor growth and development. Toxicities of five dif-
ferent AgNP concentrations on L. minor were modeled separately
in a dose- and time-dependent manner, FT-IR spectroscopy was
employed to identify the biochemical changes caused by interac-
tion with AgNPs, and nanoparticle biosorption rates were deter-
mined by kinetic modeling and sorption isotherms to evaluate
the extent of AgNP remediation from aquatic ecosystems by
L. minor.
2. Materials and methods

2.1. Production and characterization of AgNPs

A 0.25-inch cylindrical silver pellet (99.99% purity; Kurt J.
Lesker Company) in deionized water was used to produce AgNPs
(Deniz et al., 2011; Alkis et al., 2012a, b). Laser ablation was
performed using a commercial nanosecond pulsed ND:YLF laser
(Empower Q-Switched Laser, Spectra Physics) operating at
527 nm, with a pulse duration of 100 ns, average output power
of 16 W and pulse repetition rate of 1 kHz (corresponding to a
pulse energy of 16 mJ). The silver block was placed in a glass vessel
containing 20 mL deionized water; the height of the water layer
over the target was approximately 5 mm. The laser beam was fo-
cused on the target using a plano-convex lens with a focal length
of 50 mm. Laser ablation was performed for 5 min by scanning
the laser beam over the target surface, nanoparticle formation
was confirmed visually by the change of the medium color from
colorless to yellow.

The silver block was weighed before and after the ablation pro-
cess; the weight difference was used to calculate a final nanoparti-
cle concentration of 3.3 mg AgNP/25 mL deionized water. The
accuracy of this calculation, as well as the purity of the AgNP sam-
ple, was evaluated by the inductively coupled plasma mass spec-
trometry (ICP-MS) analysis of a 40 lg L�1 AgNP suspension (see
Section 2.3.1 for ICP-MS analysis conditions). The Ag concentration
in the sample was measured to be 37.570 ± 1.831 lg L�1, confirm-
ing the reliability of the weight difference analysis. The stability of
the AgNP suspension was determined by the ICP-MS analysis of the
same 40 lg L�1 sample after 19 d.

The morphology of AgNPs was determined by the use of a trans-
mission electron microscope (TEM) (FEI-Tecnai G2F30) alongside
Energy Dispersive X-ray (EDX) analysis. TEM samples were pre-
pared by dropcasting the AgNP solution onto a carbon-coated
TEM grid. UV–Vis–NIR spectrophotometer (Varian Cary 5000) anal-
ysis was performed to determine the absorbance spectrum of
AgNPs. In addition, the sizes and surface charges of the AgNPs were
measured using a dynamic light scattering (DLS) device (Malvern
Zetasizer Nano ZS).

2.2. Cultivation of L. minor

Specimens of L. minor were procured from Ankara University,
Faculty of Science greenhouse cultures and acclimated to labora-
tory conditions for 4 weeks. Cultures were grown in water native
to the greenhouse, and were not externally supplied with water
throughout the experimental period. Water aliquots taken from
culture samples were filtrated with a 0.22 lm filtration unit
(Nalgene filter unit, Fisher Scientific, USA) prior to testing. All
experiments were carried out in alkaline conditions, initial pH val-
ues were found to be in the 8.80–9.20 range. Other parameters of
test groups are listed as follows: Temperature: 23.8–24.2 �C, TDS
(mg L�1): 254–291, EC (SPC) (lS cm�1): 392–448, EC(C) (lS cm�1):
386–446, Salinity (ppt): 0.16–0.22, DO2 (mg L�1): 4.80–5.08 and
NO3 (Nmg L�1

): 1.15–2.50. Initial metal concentrations of samples
were measured by ICP-MS (see Section 2.3.1 for analysis details)
and are as follows: Cr: 1.84–4.37, Mn: 0.09–0.56, Fe: 350–631,
Co: 0.23–0.33, Ni: 4.19–5.92, Cu: 2.78–7.17, As: 3.3–4.38, Ag:
ND-0.1, Cd: 0.01–0.05, Pb: 0.04–0.6 (all values lg L�1). The detec-
tion limit for Ag was found to be 0.02 lg L�1. Samples were con-
stantly exposed to fluorescent lamps (24 h light/0 h dark cycles)
(Sekomo et al., 2012)

2.3. Silver exposure and removal studies

All experiments were conducted using 100 mL filtered green-
house water in 200 mL plastic containers. Containers were cleaned
by 10% HNO3 and washed thrice with ddH2O prior to use. Tops of
the test containers were covered in order to prevent evaporation
and accidental contamination.

A 3.3 mg/25 mL (132 mg L�1) silver nanoparticle stock solution
was utilized for all experiments. L. minor samples were exposed to
five different nanoparticle concentrations (8, 16, 32, 96 and
128 lg L�1) and controls lacking nanoparticle spiking (0 lg L�1).
Nanoparticle removal and toxicity tests were run for seven days
and conducted in triplicate. L. minor specimens with two to three
fronds per specimen were utilized for all tests; each sample group
consisted of 21 fronds in total. Starting from the 24th hour, the
physical condition of L. minor fronds were observed and photo-
graphed throughout the test.

For AgNP uptake studies, 10 mL aliquots were taken from each
container at the end of the seven-day experimental period, filtered,
and analyzed in a 2% nitric acid matrix using an X-Series II ICP-MS
(Thermo Fisher Scientific Advanced Mass Spectrometry, Bremen,
Germany).

Frond numbers were counted every 24 h to determine plant
growth. The average specific growth rate of L. minor was calculated
using the following formula (OECD, 2002):
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li�j ¼
lnðNjÞ � lnðNiÞ

tj � ti
ð1Þ

li–j is the average specific growth rate between times i and j; Nj the
number of fronds observed in the test or control vessel at time j; Ni

the number of fronds observed in the test or control vessel at time i;
ti the time of experiment initiation; tj is the time of experiment
closure.
Fig. 1. Imaging and physical characterization of laser-ablated AgNPs. (a) TEM and HR-TE
grid utilized for TEM imaging is responsible for the C- and Cu-associated peaks).

Fig. 2. Spectrometric characterization of laser-ablated AgNPs. (a) UV–Vis absorpt
To eliminate potential issues with unequal frond sizes, develop-
ing fronds were given coefficient values of 0.25, 0.50 or 0.75,
depending on their surface areas. Mature fronds were given area
coefficients of 1.0. Growth rates were determined by frond
numbers and dry weights at the end of the experiment period.
Frond dry weights were also utilized to calculate biomass inhibi-
tion percentages, and were measured after washing day 7 samples
M images and (b) size distribution histogram of AgNPs. (c) EDX analysis results (the

ion spectrum of AgNPs. (b) Size distribution and (c) Zeta potential of AgNPs.
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with distilled water and oven-drying overnight at 105 �C. Growth
inhibition rates were calculated using the following formula
(OECD, 2002):

%Ib ¼
ðbc � bTÞ

bc
� 100 ð2Þ

%Ib is the percent inhibition in average specific growth rate; bc the
mean value of m in control; bT is the mean value of m in treatment
group.
Fig. 3. Frond development rate models for (a) control (0 lg L�1)
Regression analysis was performed for all models using SPSS 17
(IBM, Portsmouth, UK). In addition, the AgNP removal data was fit
to four sorption isotherm models (Freundlich, Langmuir, Lang-
muir–Freundlich and Toth) using the isotherm fitting tool IsoFit
(Matott and Rabideau, 2008).

2.3.1. ICP-MS analysis
An X-Series II ICP-MS (Thermo Fisher Scientific Advanced Mass

Spectrometry, Bremen, Germany), equipped with a Cetac Asx-260
autosampler accessory, was utilized for ICP-MS measurements.
and (b) 8, (c) 16, (d) 32, (e) 96 and (f) 128 lg L�1 samples.



Fig. 4. Dose-dependent model of AgNP removal at day 7.

Fig. 5. FT-IR spectra of control (0 lg L�1), 8 and 128 lg L�1 samples at day 7 in the
4000–400 cm�1 region.
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All standard curves were prepared using the QCS-27 series of ele-
ments (High Purity Standards, South Carolina, USA). Expected me-
tal concentration ranges in each test group were taken into account
in the construction of standard curves, and a correlation coefficient
over 0.990 was obtained for each curve. Bismuth was utilized as an
internal standard. Three runs were conducted for each sample;
sampling and washing times were 60 s each.

2.3.2. FT-IR spectroscopy
FT-IR spectra were recorded over the wavenumber range 4000–

400 cm�1 using a VERTEX 70 FT-IR spectrometer (Bruker, Massa-
chusetts, USA). Two frond samples from each group were frozen
in liquid nitrogen, homogenized by crushing, mixed with 100 mg
KBr and pressed prior to measurement. Spectra were baselined
prior to analysis.

3. Results and discussion

3.1. Nanoparticle characterization

A representative TEM image of AgNPs is presented in Fig. 1a.
AgNPs were observed to be spherical in shape and bore a uniform
dispersion pattern without significant aggregations. The TEM
image also suggests that the AgNPs are crystalline, which can be
deduced from the lattice fringes of the HR-TEM image of a single
isolated 13 nm AgNP (Fig. 1a, inset). Sizes of 150 particles were re-
corded to evaluate the uniformity of size distribution in laser ab-
lated AgNPs, the greatest number of particles were found to be in
the size range of 5–20 nm (Fig. 1b). While AgNPs with diameter
sizes of 20–50 nm were present in the solution, those particles
had abundances lower than 10% and were not included in the his-
togram. Barring carbon and copper signatures from TEM grids, EDX
analysis exclusively displayed peaks corresponding to silver
(Fig. 1c), suggesting that a pure AgNP solution was produced by
the nanosecond laser ablation method.

UV–Vis absorption spectroscopy was performed for the further
investigate the physical characteristics of AgNPs. The nanoparticles
displayed an absorption peak at 397 nm (Fig. 2a), which agrees
with previous reports on the UV–Vis spectra of laser-ablated AgNPs
(Akman et al., 2011). Contrary to TEM imaging, DLS measurements
indicate that the mean nanoparticle size is closer to 84.97 nm
(Fig. 2b), suggesting that larger nanoparticles dominate in total
mass despite their relative scarcity in number. The nanoparticles
were found to display a zeta potential of �34.9 mV (Fig. 2c), which
is sufficiently high to prevent aggregations over the time periods
required by the AgNP removal tests. The stability of the AgNP sus-
pension was further confirmed by the ICP-MS analysis of a
40 lg L�1 sample after 19 d; the sample retained an AgNP concen-
tration of 39.690 ± 1.205 lg L�1 following this time period. The
concentrations of 27Al, 47Ti, 52Cr, 55Mn, 57Fe, 59Co, 60Ni, 65Cu, 66Zn,
75As, 95Mo, 111Cd and 208Pb in a 40 lg L�1 suspension of AgNPs
were found to be 1.17 ± 0.002, 0.214 ± 0.030, 0.023 ± 0.004,
0.013 ± 0.003, 1.719 ± 0.325, 0.027 ± 0.047, 0.021 ± 0.001,
0.031 ± 0.002, 24.680 ± 0.396, 0.085 ± 0.008, 0.011 ± 0.001,
0.002 ± 0.002 and 0.028 ± 0.001 lg L�1, respectively.

3.2. Effect of AgNPs on L. minor

L. minor frond growth models are provided for all samples in
Fig. 3a–f. Daily frond growths appear to be logarithmic for all AgNP
concentrations. However, control samples display a linear-like
growth, and linear regression modeling yields a R2 value of 0.993
for this group. This result is roughly equal to the R2 value of
0.994 given by the cubic equation. The logarithmic growth
observed in AgNP-exposed L. minor fronds, in contrast to the linear
growth of control samples, can be explained by the decrease of
AgNP toxicity experienced over time. Higher AgNP concentrations
at experimental initiation may have led to a sharp decrease in
growth rate, which would later be alleviated either by remediation
of AgNPs by L. minor or the activation of stress tolerance mecha-
nisms in the plant. Consequently, frond growth is expected to be
slowed until such compensatory mechanisms can be activated,
which is supported by our observations. Removal of AgNPs has
been confirmed by the determination of Ag in water samples at
experiment initiation and closure. Increasing concentrations were
found to correlate with increasing AgNP removal, a result sup-
ported with very high confidence (R2 = 0.999) by our models
(Fig. 4). This trend is expected to continue until a certain concen-
tration, beyond which a decrease and eventual stop of AgNP re-
moval may occur due to the plants expiring too rapidly for
efficient removal to occur. Further research is needed to determine
the point at which AgNP removal is unfeasible.

Removal of AgNPs from the surrounding medium was modeled
using four isotherm models (Freundlich, Langmuir, Langmuir–Fre-
undlich and Toth) to evaluate the efficiency of L. minor as a poten-
tial remediation agent of AgNPs. Sorption models generally assume
that the total number of sorption sites remains constant over the
tested concentration range. This assumption may not hold for
growing Lemna fronds, since the plant may respond to higher doses
of AgNPs by activating compensatory mechanisms (e.g. stress re-
sponse genes). As such, predictive successes of the isotherms in
question were relatively low (R2 < 0.8 for most models). However,
the Langmuir–Freundlich model proved highly capable of predict-
ing removal values (R2 = 0.997) and yielded a maximum AgNP re-
moval (Qmax) value of 18.73 mg AgNP per gram Lemna tissue
(other values associated with this isotherm are Ka = 0.0346 and
1/n = 1.98, where Ka is an empirical constant and 1/n is the
Langmuir–Freundlich isotherm exponent). This value is lower than
those previously reported for silver nanoparticle removal by
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bacteria (e.g. 43.27 mg g�1 for Corynebacterium glutamicum active
biomass under the Langmuir model), likely because L. minor is
multicellular and therefore presents fewer sorption sites per unit
mass compared to single-celled organisms (Sneha et al., 2010).

FT-IR spectra of control (0 lg L�1), 8 lg L�1 and 128 lg L�1

fronds are provided in Fig. 5. Spectra of control and 8 lg L�1 sam-
ples were largely similar to each other, while the 128 lg L�1 sam-
ple displayed considerable differences. A significant intensity
increase in the 1040–1080 cm�1 region was noted in the latter
sample, corresponding to a carbonyl peak and suggesting that car-
bonyl groups may be involved in AgNP remediation. Likewise, the
amide I peak at 1650 cm�1 (which corresponds to protein carbonyl
groups) broadens in the 128 lg L�1 sample, supporting the idea
that carbonyl groups may facilitate AgNP removal. Carbonyl and
ionized carboxyl groups have previously been implicated in silver
adsorption, and L. minor specimens may be altering their metabolic
contents in order to better reduce or sequester AgNPs (Pethkar
et al., 2001; Zhang et al., 2005). We note that the changes in ques-
tion may in part be caused by differences in Lemna tissue masses in
the samples, since frond numbers were used as basis in place of to-
tal mass. However, above-mentioned differences remain when the
carbonyl peaks at 1075 cm�1 is normalized using other peaks (e.g.
the broad hydroxyl peak around 3450 cm�1 or the C–H stretching
peak at 2920 cm�1) as reference (Villaescusa et al., 2004).

Growth rates were generally observed to decrease with increas-
ing silver concentrations (Fig. 6a), and our results suggest that
Fig. 6. Dose-dependent models of (a) growth rate, (b) frond num
AgNP concentrations as low as 8 lg L�1 can have a toxic effect on
Lemna growth. This toxicity is observed as a pronounced repression
of growth in our frond number-based models. The effect of silver
nanoparticles on Lemna growth becomes more prominent as nano-
particle concentration increases. Similar results have been
obtained in a prior study investigating the toxicity of AgNPs on L.
minor under acidic conditions (pH = 5.5 ± 1.4), where lowest
growth rates were observed under the highest concentration
(128 lg L�1). Studies on other nanoparticles have yielded similar
results, e.g. Al nanoparticles were found to decrease frond numbers
with increasing concentrations over a 10–1000 mg L�1 range (Juhel
et al., 2011). While prior research on TiO2 reports an increase in
L. minor growth at low concentrations (<200 mg L�1), higher con-
centrations still result in growth inhibition (Song et al., 2012).

Despite the general increase in growth repression with increas-
ing AgNP concentrations, it is notable that the decrease in frond
growth between 8 lg L�1 and 32 lg L�1 samples is greater than
the decrease between 32 lg L�1 and 128 lg L�1 samples, suggest-
ing that the greatest impact is made over a lower concentration
range. No significant change in growth repression was observed
between 96 lg L�1 and 128 lg L�1 samples, which represent the
highest concentrations tested. However, our models suggest that
pronounced decreases in growth rates will continue to occur at
concentrations higher than 128 lg L�1.

Dry weight and frond number results appear not to correlate
directly with concentration increases, and slight fluctuations in
bers (c) frond weights, and (d) growth inhibition at day 7.



E. Üçüncü et al. / Chemosphere 108 (2014) 251–257 257
toxicity-concentration interactions are observed at certain concen-
trations (Fig. 6b and c). In a prior study by Gubbins et al., different
sizes of Ag nanoparticles were found to alter dry weight and frond
numbers in different manners (Gubbins et al., 2011). The present
study, however, does not distinguish between nanoparticle sizes.

Biomass inhibition models of all test groups are presented in
Fig. 6d. Our results suggest that the greatest inhibition rate occurs
at 32 lg L�1 (58%). A similar result was also observed by Gubbins
et al., who recorded a 100% inhibition rate at 40 lg L�1 for
Ag cations.

Overall, our results demonstrate that AgNPs can inhibit L. minor
growth even at the lowest doses tested. Nanoparticle toxicity
increases with higher concentrations, albeit with a slight decrease
at the 75–110 lg L�1 range for all models. Certain dose ranges are
known to be associated with fluctuations in toxicity for a number
of toxic materials (Juhel et al., 2011; Manzo et al., 2013;
Oukarroum et al., 2013). We propose that this change is due to po-
tential defensive measures by the plant and not the result of an
experimental artifact, as the aforementioned fluctuation in the
75�110 lg L�1 range was consistently observed in total frond num-
ber, frond weight, growth and biomass inhibition analyses.

4. Conclusion

While AgNPs are known to be environmental hazards, the pre-
cise extent of their toxic effects has seldom been demonstrated. In
this study, we evaluate the toxic effects of AgNPs on the environ-
ment by using the aquatic macrophyte L. minor. Dose- and time-
dependent toxicity models suggest that AgNP toxicity on L. minor
increases rapidly over low concentration ranges (8–32 lg L�1),
while concentration-dependent toxicity increases are much less
pronounced (and subject to more significant fluctuations) at higher
concentrations. In lower concentration ranges, slight increases in
AgNP concentrations correspond to dramatic increases in toxicity,
which may be ecologically significant as accidental introduction of
low amounts of AgNPs on freshwater environments may be greatly
detrimental to the ecosystem in general and aquatic macroflora in
particular. In addition, L. minor was found to be capable of AgNP
removal at a maximum capacity of 18.73 mg AgNP/g Lemna
dry biomass, suggesting that the plant may be utilized for the
bioremediation of silver nanoparticles.
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