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COMPLEMENTARITIES AND THE EXISTENCE
OF STRONG BERGE EQUILIBRIUM
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Abstract. This paper studies the existence and the order structure of
strong Berge equilibrium, a refinement of Nash equilibrium, for games
with strategic complementarities à la strong Berge. It is shown that the
equilibrium set is a nonempty complete lattice. Moreover, we provide
a monotone comparative statics result such that the greatest and the
lowest equilibria are increasing.
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1. Introduction

In this paper, we analyze the existence and the order structure of strong Berge
equilibrium (hereafter, SBE) [1] in non-cooperative games with strategic comple-
mentarities.

SBE induces a refinement of Nash equilibrium [2] as it is immune not only to
unilateral deviations, but also to the deviations of certain coalitions. According to
the definition, only the complementary coalitions −defined for each player as the
set of remaining players− are essential. This is where SBE differs from strong Nash
equilibrium [3]; a well-known equilibrium notion satisfying coalitional stability. In
addition, SBE requires the members of each complementary coalition to select
a strategy profile that maximizes every members’ well-being at the same time.
This ensures a stronger stability than that of strong Nash equilibrium, but does
not necessarily imply Pareto optimality since SBE does not consider the grand
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coalition. Indeed, any SBE which is Pareto efficient is also a strong Nash equilib-
rium (see [4]). It is also clear that in a two-person non-cooperative game, SBE is
equivalent to Nash equilibrium.

Earlier contributions on the existence of SBE are based on topologically oriented
approaches that generally require convexity and compactness of strategy sets, and
quasi-concavity of each payoff function in own action (see [4–7]). We instead resort
to games with strategic complementarities (GSC) in which the strategy space is a
complete lattice and the joint best response correspondence2 is Veinott-increasing.
The class of GSC is arguably more convenient for studying SBE for the following
reasons: (i) emphasizing the coalitions of players, SBE induces more coordination
than pure competition; and (ii) SBE has much to offer as a refinement when
players’ potential to influence others’ payoffs is substantial.

Introducing the order and the monotonicity properties of GSC à la strong Berge,
we prove that the set of SBE is nonempty, and is indeed a complete lattice. Addi-
tional to the existence result which utilizes Zhou’s [8] fixed point theorem, we refer
to a constructive proof of Echenique [9] which indicates a method to compute the
extremal equilibria, i.e., the greatest SBE and the least SBE. Moreover, based on
Topkis [10], we provide a monotone comparative statics result on the equilibrium
set such that for a collection of games, the extremal equilibria are increasing.

This paper is structured as follows: In Section 2, we give the definitions and
theorems that are used throughout this study. Section 3 includes the results on
the set of strong Berge equilibrium. Section 4 concludes.

2. Definitions

We call a partially ordered set lattice, if it contains the supremum and the
infimum of all pairs of its elements. A lattice is complete if each nonempty subset
has a supremum and an infimum. A subset Y of a lattice X is a subcomplete
sublattice of X if for each nonempty subset Y ′ of Y ,

∨
X Y ′ and

∧
X Y ′ exist and

are contained in Y .
Let X be a lattice. A function f : X → R is supermodular in x if ∀x, x′ ∈ X :

f(x) + f(x′) ≤ f(x ∧ x′) + f(x ∨ x′).

Moreover, a function f defined on X × T has increasing differences in (x, t) if
f(x, t′)−f(x, t) is increasing in x for every t < t′. A correspondence F : X → X is
Veinott-increasing if for each x, y ∈ X with x < y, a ∈ F (x) and b ∈ F (y) implies
a ∧ b ∈ F (x) and a ∨ b ∈ F (y). Finally, x ∈ X is a fixed point of a correspondence
F : X → X , if x ∈ F (x).

In addition, below are the theorems we utilize throughout this paper:

Theorem 2.1 Zhou [8]. Let X be a nonempty complete lattice, and F : X → X
be a nonempty-valued correspondence. If F is Veinott-increasing and F (x) is a

2In this paper, best response correspondences are according to SBE unless otherwise stated.
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subcomplete sublattice of X for every x ∈ X, then the fixed point set of F is a
nonempty complete lattice.

Theorem 2.2 Topkis [10]. Let X be a nonempty complete lattice, T be a partially
ordered set, and Y : X×T → X×T be a correspondence. If Y is Veinott-increasing
and Y (x, t) is a nonempty subcomplete sublattice of X × T for each (x, t), then

(i) ∀t ∈ T , there exists a greatest (least) fixed point of Y (x, t);
(ii) the greatest (least) fixed point of Y (x, t) is increasing in t on T .

We define the notion of SBE as follows. Let Γ = (N, (Xi)i∈N , (ui)i∈N ) where N
is the player set, Xi is the strategy set for agent i, and ui : X → R is the utility
function of agent i.

Definition 2.3. In a game Γ , a strategy profile x ∈ X is a strong Berge equilib-
rium (SBE) if ∀i ∈ N , ∀j ∈ N \ {i}: uj(x) ≥ uj(xi, y−i) for every y−i ∈ X−i.

Finally, for every i ∈ N , the coalitional best response correspondence B−i :
X → X of the complementary coalition −i is defined as follows:

B−i(x) = {y ∈ X | ∀j ∈ N \ {i}, ∀y′ ∈ X : uj(xi, y−i) ≥ uj(xi, y
′
−i)}. (2.1)

We follow the definition of Deghdak and Florenzano [7] for the joint best response
correspondence, B : X → X :

B(x) =
⋂

i∈N

B−i(x). (2.2)

3. On the set of strong berge equilibrium

In this section, we study a certain class of games, namely games with strategic
complementarities (GSC) à la strong Berge. Notice that the following definition is
similar to GSC à la Nash (see [11]),3 but is essentially different since corresponding
best response correspondences are different.

Definition 3.1. A game has strategic complementarities à la strong Berge (or, is
a GSC à la strong Berge) if (i) ∀i ∈ N , Xi is a nonempty complete lattice; (ii) B
is nonempty-valued and Veinott-increasing in x on X ; and (iii) ∀x ∈ X ; B(x) is a
subcomplete sublattice of X .

A curious question that arises here is whether a GSC à la strong Berge is also
a GSC à la Nash. Although this seems to be a valid statement which can follow
from the fact that SBE is a refinement of Nash equilibrium, it turns out that one
set does not contain the other. This fact will also lead to an interpretation that
our existence result implies the existence of Nash equilibrium outside GSC à la
Nash.

3In fact, these are called GSC in the literature, but we prefer “GSC à la Nash” to avoid
confusion.
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Remark 3.2. There exist games Γ and Γ ′, where Γ is a GSC à la Nash but Γ ′

is not, and Γ is not a GSC à la strong Berge but Γ ′ is.

Proof. First note that B−i and B denote the coalitional best response correspon-
dence and the joint best response correspondence, respectively. Moreover, let Bi

and BN denote the individual best response correspondence according to Nash
equilibrium and the joint best response correspondence according to Nash equilib-
rium, respectively. Let Γ be a three-player game which can be represented by the
following game matrix.

x3

x2 y2

x1 5, 5, 0 1, 1, 0
y1 1, 1, 0 7, 7, 0

y3

x2 y2

x1 7, 7, 0 1, 1, 0
y1 1, 1, 0 5, 5, 0

For this game, B1(·, x2, x3) = (x1, ·, ·), B1(·, y2, x3) = (y1, ·, ·), B1(·, x2, y3) =
(x1, ·, ·), B1(·, y2, y3) = (y1, ·, ·), B2(x1, ·, x3) = (·, x2, ·), B2(y1, ·, x3) = (·, y2, ·),
B2(x1, ·, y3) = (·, x2, ·) and B2(y1, ·, y3) = (·, y2, ·). Moreover, B3 is obvious. Let-
ting xi < yi for every i ∈ N , every Bi is Veinott-increasing, and so is BN . However,
B(x1, y2, x3) = ∅. Then, Γ is a GSC à la Nash, but not a GSC à la strong Berge.

For Γ ′, we preserve the above notation and order, and represent the game as
below:

x3

x2 y2

x1 2, 1, 2 0, 0, 0
y1 2, 2, 2 1, 1, 2

y3

x2 y2

x1 2, 1, 0 0, 0, 1
y1 2, 2, 1 1, 1, 2

The joint best response correspondence B′ is nonempty-valued and Veinott-
increasing since B′(·, ·, ·) = (y1, x2, x3) for every strategy profile. Moreover,
B′

3(x1, y2, ·) = (·, ·, y3) and B′
3(y1, y2, ·) = (·, ·, ·) which violates Veinott-

increasingness of B′
N . Then, although Γ ′ is a GSC à la strong Berge, it is not

a GSC à la Nash. �

In fact, the game Γ ′ of the above proof is a good example that shows how
strong Berge equilibrium refines the set of Nash equilibrium by considering coali-
tional stability. It is quite easy to verify that the game has two Nash equilibria,
(x1, x2, x3) and (y1, x2, x3), one of which is Pareto dominated by the other. Among
these profiles, (y1, x2, x3) is the one which is coalitionally stable according to strong
Berge equilibrium. The reason is that the coalition {1, 2} prefers (y1, x2) when the
strategy of agent 3 is fixed to x3. Hence, the Pareto dominated Nash equilibrium
gets eliminated. On the other hand, for this game, strong Nash equilibrium does
not have much to offer as a refinement, since the set of strong Nash equilibirum
coincides with the set of Nash equilibrium. For a more striking example to com-
pare strong Berge equilibirum and strong Nash equilibirum, consider the famous
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Prisoner’s Dilemma in which the set of strong Nash equilibrium turns out to be
empty whereas strong Berge equilibrium can still make predictions.

We now present the existence theorem for SBE.

Theorem 3.3. A GSC à la strong Berge has a SBE. In fact, the equilibrium set
is a complete lattice.

Proof. Noting that the set of fixed points of the joint best response correspondence
is the set of SBE, the result trivially follows from Zhou’s [8] theorem. �

There are two important results which follow from Theorem 3.3. The former
indicates that we show the existence of Nash equilibrium for GSC à la strong Berge
which are not necessarily GSC à la Nash. The latter remark utilizes Echenique’s [9]
constructive proof, and highlights an approach to obtain the least SBE and the
greatest SBE.

Remark 3.4. Nash equilibrium exists for GSC à la strong Berge.

Remark 3.5. The constructive proof of Echenique [9] directly applies here. Using
the approach in the proof, the least equilibrium and the greatest equilibrium can
be computed.

In the literature (see [11, 12] among others), sufficient conditions for games to
be GSC à la Nash are provided: For each i ∈ N , if the utility function ui is
supermodular in own strategies xi and has increasing differences in (xi, x−i), then
the conditions on the best response correspondences are satisfied. As a matter of
fact, since utility functions are already defined within the game form, providing
sufficient conditions on utility functions are considered to be more convenient.
In this sense, the existence result can also be stated with conditions on utility
functions.

For the following theorem, we borrow an assumption from Larbani and
Nessah [5] to ensure the nonemptiness of the best response correspondences. An-
other assumption which serves this purpose would be to directly assume the
nonempty-valuedness of the joint best response correspondence as it is done by
Deghdak and Florenzano [7].

Theorem 3.6. In a game Γ , let each Xi be a complete lattice. For every i ∈ N
and for every j ∈ N \ {i}, let ui be supermodular in x−j and have increasing
differences in (xj , x−j). Also assume that ∀x ∈ X, ∃y ∈ X such that ∀i ∈ N ,
∀j ∈ N \ {i}, ∀z−i ∈ X−i:

ui(xi, z−i) ≤ ui(xi, y−i).

Then the conditions of Definition 3.1 are satisfied.
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Proof. Since ∀x ∈ X , ∃y ∈ X such that ∀i ∈ N , ∀j ∈ N \ {i}, ∀z−i ∈ X−i:
ui(xi, z−i) ≤ ui(xi, y−i) by assumption, the joint bet response correspondence is
nonempty-valued.

For Veinott-increasingness, we need to show: for each x, y ∈ X with x < y, if
a ∈ B(x) and b ∈ B(y) then a ∧ b ∈ B(x) and a ∨ b ∈ B(y). Take any x, y ∈ X
such that x < y. Then, pick any a ∈ B(x) and b ∈ B(y). By definition, ∀i ∈ N :
a ∈ B−i(x) and b ∈ B−i(y). Assume that a ≤ b. We are trivially done. Now assume
otherwise. We either have a > b or we cannot compare a and b. In either case, for
a given i ∈ N , we have ∀j ∈ N \ {i}:

0 ≤ uj(xi, a−i) − uj(xi, a−i ∧ b−i) ≤ uj(xi, a−i ∨ b−i) − uj(xi, b−i)
≤ uj(yi, a−i ∨ b−i) − uj(yi, b−i) ≤ 0.

Here, the first and the last inequalities are implied by optimality. The second
inequality follows from supermodularity and the third inequality follows from in-
creasing differences. It is obvious that each term is 0 which means uj(xi, a−i) =
uj(xi, a−i ∧ b−i) and uj(yi, a−i ∨ b−i) = uj(yi, b−i). That is a ∧ b ∈ B−i(x) and
a ∨ b ∈ B−i(y). Since i is arbitrary, a ∧ b ∈ B(x) and a ∨ b ∈ B(y). Thus, B is
Veinott-increasing.

To show that B(x) is a subcomplete sublattice, take any x ∈ X and any a, b ∈
B(x). Consider any i ∈ N . Note that a, b ∈ B−i(x) as well. Then, by definition,
∀j ∈ N \ {i}:

uj(xi, a−i) = uj(xi, b−i) ≥ uj(xi, x
′
−i) ∀x′

−i ∈ X−i.

We now have uj(xi, a−i) + uj(xi, b−i) ≤ uj(xi, a−i ∧ b−i) + uj(xi, a−i ∨ b−i) by
supermodularity. And because of the optimality of a and b, it can be concluded
that a ∧ b and a ∨ b are also in B−i(x). Since i is arbitrary, a ∧ b and a ∨ b are in
B(x) as well. Thus, for every x ∈ X , B(x) is a subcomplete sublattice of X . �

The normal form game Γ ′′ represented by the following game matrix satisfies the
conditions given in Thereom 4. For this game, the unique strong Berge equilibrium
is (y1, x2, y3), whereas {(x1, x2, x3), (x1, x2, y3), (y1, x2, y3), (y1, y2, y3)} is the set of
Nash equilibria. Note that these strategy profiles are also strong Nash equilibria.

x3

x2 y2

x1 3, 2, 3 0, 0, 0
y1 3, 3, 2 2, 2, 1

y3

x2 y2

x1 3, 2, 3 0, 0, 1
y1 3, 3, 3 3, 3, 2

Finally, the following theorem provides a comparative statics result for the equi-
librium set. This result is important for us to better understand the characteristics
of SBE. For instance, the theorem indicates how SBE changes in a certain param-
eter for a collection of games.
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Theorem 3.7. Let T be a partially ordered set, and (Γ t)t∈T be a collection of
GSC à la strong Berge. Define B : X × T → X × T to be the joint best response
correspondence in Γ t such that for every (x, t), B(x, t) is the set of all (y, t) where
y ∈ B(x). If B is Veinott increasing in (x, t) on X×T and B(x, t) is a subcomplete
sublattice of X×T for every (x, t), then the extremal SBE are increasing in t on T .

Proof. Utilizing Topkis’s [10] theorem, one can conclude that the greatest (least)
fixed point of B is increasing in t on T . Thus, the greatest SBE and the least SBE
are both increasing in t on T . �

Consider a collection of GSC à la strong Berge characterized by normal form
games Γ ′ and Γ ′′ we have analyzed above. Let T = {1, 2}, Γ 1 = Γ ′ and Γ 2 = Γ ′′.
This collection satisfies the conditions of the theorem, therefore we can conclude
(even without analyzing the sets of equilibrium) that the extremal equilibria are
increasing in t.

4. Concluding remarks

In this paper, we prove the existence of SBE for GSC à la strong Berge. Our
results differ from the existence results available in the current literature in the
sense that we do not require convex and compact strategy sets, or any type of
continuity for utility functions. Moreover, we provide a monotone comparative
statics result on the equilibrium set such that for a collection of games, the extremal
equilibria are increasing.
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