
Lot Sizing with Piecewise Concave Production Costs

Esra Koca

ekoca@bilkent.edu.tr

Hande Yaman∗

hyaman@bilkent.edu.tr

M. Selim Aktürk

akturk@bilkent.edu.tr

Department of Industrial Engineering, Bilkent University

February 14, 2013

Abstract

We study the lot-sizing problem with piecewise concave production costs and con-

cave holding costs. This problem is a generalization of the lot-sizing problem with

quantity discounts, minimum order quantities, capacities, overloading, subcontracting

or a combination of these. We develop a dynamic programming (DP) algorithm to

solve this problem and answer an open question in the literature: we show that the

problem is polynomially solvable when the breakpoints of the production cost function

are time invariant and the number of breakpoints is fixed. For the special cases with

capacities and subcontracting, the time complexity of our DP algorithm is as good as

the complexity of algorithms available in the literature. We report the results of a

computational experiment where the DP is able to solve instances that are hard for

a mixed-integer programming (MIP) solver. We enhance the MIP formulation with

valid inequalities based on mixing sets and use a cut-and-branch algorithm to compute

better bounds. We propose a state space reduction based heuristic algorithm for large

∗Corresponding author

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Bilkent University Institutional Repository

https://core.ac.uk/display/52923306?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

instances and show that the solutions are of good quality by comparing them with the

bounds obtained from the cut-and-branch.

Keywords: lot sizing; piecewise concave production cost; quantity discounts; sub-

contracting; dynamic programming.

1 Introduction

Lot-sizing problems arise in production, procurement and transportation systems under

different cost and capacity settings. Given a planning horizon, demand, production (or

procurement/shipment) and inventory holding costs, the aim of the lot-sizing problem

is to propose a minimum cost production plan to satisfy the demand (see, e.g., the

seminal works by Wagner and Whitin (1958) and Zangwill (1966) and the book by

Pochet and Wolsey (2006)). In this paper, we study the lot-sizing problem where

the inventory holding cost function is concave and the production cost function is a

piecewise concave function. We call this problem the “lot-sizing problem with piecewise

concave production costs” and abbreviate it with LS-PC.

A continuous piecewise concave function is the maximum of a finite sequence of

continuous concave functions and therefore, it may not be concave. A piecewise con-

cave function is more general as it can be discontinuous on the boundaries and its

breakpoints (Zangwill, 1967). If p is a piecewise concave function with breakpoints

at b0 < b1 < . . . < bm, then p is concave in each of the m intervals [bj−1, bj] for

j = 1, . . . ,m. Note that concavity of p in each of the intervals implies that it is lower

semi-continuous.

Examples of piecewise concave production costs are depicted in Figures 1 and 2.

In Figure 1, the first two functions represent common quantity discounts known as

incremental discount and all units discount. Federgruen and Lee (1990) study the

lot-sizing problem with these two types of discounts. They assume that the produc-

tion cost function has two pieces and propose dynamic programming algorithms of

complexity O(n3) and O(n2) for the problems with all units discount and incremental

discount, respectively, where n is the number of periods. Chan et al. (2002) consider

2

the modified all units discount depicted in Figure 1c. They prove that the lot-sizing

problem with this cost structure is NP-hard when either the production cost functions

vary from period to period or the number of breakpoints is not bounded by a constant.

Li et al. (2012) study the lot sizing problem with all-units discount and resales un-

der the assumptions that the breakpoints of the cost function are time-invariant, the

number of breakpoints is fixed and there is no capacity constraint. They develop an

O(nm+3) time algorithm to solve this problem, where m is the number of breakpoints.

Archetti et al. (2011) present polynomial time algorithms to solve special cases of the

lot-sizing problem with modified all units discount and incremental discount when the

cost functions are time-invariant.

Atamtürk and Hochbaum (2001) study the lot-sizing problem with subcontracting

where the production and subcontracting costs are concave nondecreasing functions

and the inventory holding cost is a linear function. The overall production cost func-

tion is depicted in Figure 1d: the first piece of the function corresponds to regular

production and the second piece corresponds to subcontracting or overloading. The

authors develop an O(n5) time dynamic programming algorithm for the case where the

regular production capacities (the breakpoint of the cost function) are the same for all

periods.

The production cost function given in Figure 1e models constraints on minimum

production (order) quantities as studied by Hellion et al. (2012). In this setting, if

there is a production at a given period, then the production amount should not be less

than a minimum level b1 and should not exceed the capacity b2. The authors assume

that the production and inventory holding cost functions are concave and propose a

dynamic programming algorithm for this problem. The time complexity reported in

Hellion et al. (2012) was corrected and reported as O(n6) (Hellion, 2013).

As seen above, piecewise concave functions can be used to represent discounts,

subcontracting, capacity acquisition, overloading, as well as minimum quantity re-

quirements and capacities. In addition, one can represent any combination of these

using piecewise concave functions. In Figure 2a, we model a setting with discounts

and overloading. The unit cost, c0, up to the first breakpoint b1 can be viewed as

3

Figure 1: Some special cases of piecewise concave functions

4

the regular unit purchasing cost. Then a quantity discount applies and the unit cost

becomes c1 < c0 up to the second breakpoint b2, which is the capacity of the supplier.

Afterwards, the supplier requires use of overtime (or subcontracting) in order to fulfill

the additional orders and hence the unit cost is c2 > c0. Note that the resulting cost

function is neither convex nor concave.

Figure 2: Examples of piecewise concave functions

Now consider the case where several suppliers give offers (possibly with discounts)

for a product and the company purchases its products from at most one supplier in

each period. Then the production cost is the minimum of the purchasing costs over

all suppliers and is a piecewise concave function if the cost function of each supplier is

concave. An example is given in Figure 2b in which each segment of the cost function

represents a supplier. The second supplier offers the most attractive price but has

a lower bound for procurement, b1 units, and has a capacity of b2 units. It is more

beneficial to buy from the first supplier up to b1 units and from the third supplier

after b2 units. Accordingly, decisions on the purchasing amounts in each period will

also determine the supplier of each period. Therefore, this problem can be seen as a

supplier selection and lot sizing problem.

As the lot-sizing problem with modified all units discount studied by Chan et al.

(2002) is a special case of LS-PC, LS-PC is NP-hard unless the breakpoints are time-

invariant and the number of breakpoints is bounded above by a constant.

Swoveland (1975) presents characteristics of an optimal solution when inventory

5

holding and production cost functions are piecewise concave functions. He proposes

a pseudo-polynomial dynamic programming algorithm to solve this problem. Shaw

and Wagelmans (1998) present an algorithm for the capacitated lot-sizing problem

with piecewise linear production costs (not necessarily convex or concave) and general

inventory holding costs. Their algorithm is also pseudo-polynomial. VanHoesel and

Wagelmans (1996) show that if the production cost function is piecewise concave and

monotone and the number of pieces is polynomially bounded in the size of the problem,

then there exists a fully polynomial approximation scheme.

The special cases of LS-PC with cost functions depicted in Figure 1 are polynomially

solvable. However, to the best of our knowledge, there is no polynomial time algorithm

to solve the problem with cost functions like those in Figure 2. Indeed, the complexity

of the problem is open for the case where the number of breakpoints is fixed and the

breakpoints are time-invariant. In this study, we show that in this case, the problem can

be solved in polynomial time by proposing a dynamic programming (DP) algorithm.

This algorithm generalizes the algorithm of Florian and Klein (1971) for the constant

capacity lot-sizing problem, which corresponds to the special case with one breakpoint.

For the special cases with regular production and subcontracting; and with minimum

production quantities and constant capacities, our DP has the same time complexity as

the one of Atamtürk and Hochbaum (2001) and Hellion (2013), respectively. We also

conduct a computational study to see if the DP is useful in practice. We derive a mixed-

integer programming (MIP) formulation and solve it with an off-the-shelf solver. Our

results show that the DP outperforms the MIP approach for some instances even when

we strengthen the formulation with valid inequalities. For larger instances, we propose

a heuristic method based on state space reduction. Our computational experiments

show that the heuristic provides good quality solutions in reasonable computation times

when the solver and the exact DP fail.

The rest of the paper is organized as follows. In Section 2, we formally define the

problem LS-PC and state some important properties of an optimal solution to the

problem. In Section 3, we present a polynomial time dynamic programming algorithm

for solving the problem when the number of breakpoints is fixed and the breakpoints are

6

time-invariant and show that the complexity of the DP is as good as the complexity

of algorithms available in the literature for some special cases of the problem. We

then report our computational experiments in Section 4, and propose a state space

reduction based heuristic algorithm for large instances in Section 5. Finally in Section

6 we present some concluding remarks.

2 Problem definition and properties of optimal

solutions

In the lot-sizing problem, we would like to find a minimum cost production plan over a

planning horizon of n periods. The demand dt, the production cost function pt and the

inventory holding cost function ht are given for each period t. Let xt be the amount

produced in period t and st be the stock on hand at the end of period t. Using these

variables, the lot-sizing problem can be modeled as

min
n∑
t=1

pt (xt) +
n∑
t=0

ht (st) (1)

s.t. st−1 + xt = dt + st t = 1, . . . , n, (2)

s0 = 0, (3)

s, x ≥ 0. (4)

Constraints (2) are inventory balance constraints. The assumption on the initial in-

ventory being zero is imposed by constraint (3) and is made without loss of generality.

Constraints (4) are variable restrictions. The objective function (1) is the sum of

production and inventory holding costs.

In LS-PC, the inventory holding cost function ht(.) is a concave function on [0,∞)

and pt(.) is a piecewise concave function on [0,∞) with mt finite breakpoints b1t , . . . , b
mt
t

such that b0t = 0 and bi−1t < bit for i = 1, . . . ,mt.

As typically done in the lot-sizing literature (see Pochet and Wolsey (2006)), we

will use the concepts of regeneration intervals and fractional periods in analyzing the

structure of optimal solutions. An interval [j, l] with 1 ≤ j ≤ l ≤ n, sj−1 = sl = 0

and st > 0 for j ≤ t < l is referred to as a regeneration interval and a period i

7

whose production level is not equal to any of the breakpoints of the production cost

function, i.e., xi ∈ [b0i ,∞)\{b0i , . . . , b
mi
i } is referred to as a fractional period. We define

bmi+1
i =∞ for all i.

If the production cost function is not monotone (see Figures 1e and 2b), we may have

positive ending inventory in all optimal solutions. Therefore, contrary to the case with

the classical lot sizing problems, we cannot say that there exists an optimal solution

that is composed of a series of successive regeneration intervals. However, for our

problem, there exists an optimal solution that is composed of a series of regeneration

intervals that cover the interval [1, j − 1] plus an interval [j, n] for some 1 ≤ j ≤ n+ 1.

We know the following properties for these intervals.

Theorem 2.1 [Swoveland (1975)] There exists an optimal solution to the problem

LS-PC such that in each regeneration interval [j, l], there exists at most one fractional

period.

Theorem 2.1 is a generalization of the “fractional period property” for the capaci-

tated lot-sizing problem. Note that if xi > bmi
i , then period i is a fractional period.

Theorem 2.2 If the ending inventory is positive in all optimal solutions to LS-PC,

then there exists an optimal solution that is composed of a series of regeneration inter-

vals that cover the interval [1, j − 1] plus an interval [j, n] for some 1 ≤ j ≤ n+ 1 with

no fractional period in the last interval [j, n].

Proof. Suppose that at all optimal solutions we have sn > 0. Let (x, s) be an optimal

solution with the largest j value such that sj−1 = 0 and st > 0 for t = j, . . . , n. Suppose

that there exists a fractional period with i ∈ [j, n] such that bki < xi < bk+1
i for some

k ∈ {0, . . . ,mi}. Define α = min{minnt=i st, xi − bki } and β = bk+1
i − xi if bk+1

i is finite

and β = α otherwise. Clearly, α and β are positive. Now consider the two solutions

(x1, s1) and (x2, s2) that are the same as (x, s) except that x1i = xi−α, s1t = st−α for

t = i, . . . , n, x2i = xi + β, and s2t = st + β for t = i, . . . , n. Both solutions are feasible.

Optimality of (x, s) implies that pi(xi−α)+
∑n

t=i ht(st−α)−pi(xi)−
∑n

t=i ht(st) ≥ 0 and

pi(xi+β)+
∑n

t=i ht(st+β)−pi(xi)−
∑n

t=i ht(st) ≥ 0. Since pi is concave on [bki , b
k+1
i] and

8

ht is concave on [0,∞) for each t = i, . . . , n, we also have β
α+βpi(xi−α)+ α

α+βpi(xi+β) ≤

pi(xi) and β
α+βht(st − α) + α

α+βht(st + β) ≤ ht(st) for t = i, . . . , n. Therefore, both

(x1, s1) and (x2, s2) are also optimal. Either bk+1
i is finite and (x2, s2) is an optimal

solution where the fractional period i is eliminated. Or k = mi and as (x, s) is an

optimal solution with the largest j value such that sj−1 = 0 (implying that s1t > 0

for t = i, . . . , n), (x1, s1) is an optimal solution in which i is not a fractional period

anymore. �

Due to Theorem 2.1, as it is done in the classical lot sizing problems, we can find the

minimum cost solution for each regeneration interval [j, l] by assuming that it consists

at most one fractional period. However, it is not sufficient for finding a minimum cost

solution for the problem since for the intervals [j, n] we need to consider the case where

it is not a regeneration interval. In this case, for the intervals [j, n], due to Theorem

2.2, we can search for a minimum cost solution by assuming that it does not consist any

fractional period. Consequently, we can find a minimum cost solution for each interval

[j, n] by picking the least cost solution among the cases that it is a regeneration interval

or not. In the next section, we develop a dynamic programming algorithm for finding

an optimal solution for LS-PC by using these results.

3 Dynamic programming algorithm

In this section, we propose a dynamic programming algorithm for the special case where

the breakpoints of the production cost function are time-invariant and the number of

breakpoints is fixed, i.e., bit = bi for all t = 1, . . . , n and i = 0, . . . ,m where mt = m for

all t = 1, . . . , n and m(≥ 1) is fixed.

This algorithm is a generalization of the algorithm given by Florian and Klein

(1971) for the constant capacity lot-sizing problem.

Let ei be a unit vector of size m in which the ith component is one and the other

components are zero for i = 1, . . . ,m and e0 be a zero vector of size m.

9

3.1 Minimum cost for an interval [j, l] with no fractional

period

First, we compute the minimum cost for a regeneration interval [j, l] with 1 ≤ j ≤

l ≤ n − 1 and for an interval [j, n] for 1 ≤ j ≤ n when there is no fractional period.

To this end, we define the following function. Let τ ∈ Zm+ and t ∈ {j, . . . , l}. If

l ≤ n− 1, let Fjl (t, τ) be the minimum cost for periods j up to t during which τi times

bi, for i = 1, . . . ,m, units are produced, no fractional production is done, given that

sj−1 = sl = 0 and su > 0 for u ∈ {j, . . . ,min{t, l − 1}}. If l = n, then we define the

same function by dropping the requirement that sl = 0. For j ≤ t, we let djt =
∑t

i=j di.

Note that the amount of production between periods j and t is equal to
∑m

i=1 τib
i

and the number of periods in which production takes place is
∑m

i=1 τi. If t < l and∑m
i=1 τib

i ≤ djt, then we cannot have st > 0. Also, if t = l and
∑m

i=1 τib
i 6= djl, then

sl = 0 is not possible. If
∑m

i=1 τi > t− j + 1, the production schedule is infeasible.

For i = 0, . . . ,m, we let

Fjl (j, ei) =


pj
(
bi
)

+ hj
(
bi − dj

)
if dj < bi and (j < l or l = n),

pj(b
i) if dj = bi and j = l,

∞ otherwise,

and Fjl (j, τ) =∞ if
∑m

i=1 τi ≥ 2.

Let t ∈ {j + 1, . . . , l}, and τ ∈ Zm+ . If we produce bi units for some i ∈ {0, . . . ,m}

in period t, then the minimum cost for periods j to t−1 is Fjl(t−1, τ −ei). Therefore,

we compute Fjl(t, τ) as

Fjl(t, τ) =



∞ if
∑m

i=1 τi > t− j + 1 or

(
∑m

i=1 τib
i ≤ djt and t < l) or

(
∑m

i=1 τib
i 6= djl and t = l and l < n) or

(
∑m

i=1 τib
i < djl and t = l = n),

mini=0,...,m:τ≥ei
{
Fjl (t− 1, τ − ei) + pt

(
bi
)

+ ht
(∑m

i=1 τib
i − djt

)}
otherwise.

We evaluate the recursion for increasing values of t and all possible values of τ . For

given t and τ , Fjl(t, τ) can be computed in constant time since we assume that m is

10

fixed. As τi ≤ n for i = 1, . . . ,m, we have O(nm) possible τ vectors. As a result, the

function Fjl can be evaluated in O(nm+1) time for a given interval [j, l].

3.2 Minimum cost for an interval [j, l] with a fractional

period

Next, we compute the minimum cost for a regeneration interval [j, l] with 1 ≤ j ≤ n

when the interval contains a fractional period. Note that for an interval [j, n] that is

part of an optimal solution, when the interval contains a fractional period, there exists

an optimal solution with sn = 0. Hence, we only consider regeneration intervals in this

computation.

The minimum cost when a fractional period exists is computed for two separate

cases:

Case a. The fractional production amount is less than bm.

As we are interested in solutions with one fractional period, we know that there is

no production greater than bm.

Let τ ∈ Zm+ , π ∈ Zm−1+ and t ∈ {j, . . . , l}. If τi times bi, for i = 1, . . . ,m, units

are produced in periods j up to t − 1 and πi times bi, for i = 1, . . . ,m − 1, and⌊
djl−

∑m
i=1 τib

i−
∑m−1

i=1 πib
i

bm

⌋
times bm units are produced in periods t + 1 to l, then the

production amount in period t is equal to

ρjl (τ, π) = djl −
m∑
i=1

τib
i −

m−1∑
i=1

πib
i −

⌊
djl −

∑m
i=1 τib

i −
∑m−1

i=1 πib
i

bm

⌋
bm.

Now let Gjl (t, τ, π) be the minimum cost for periods j up to t during which τi times

bi units for i = 1, . . . ,m, are produced and one time a fractional production is done

given that πi times bi, for i = 1, . . . ,m−1, and
⌊
djl−

∑m
i=1 τib

i−
∑m−1

i=1 πib
i

bm

⌋
times bm units

are produced after period t, sj−1 = sl = 0 and su > 0 for u ∈ {j, . . . ,min{t, l − 1}}.

Let τ ∈ Zm+ and π ∈ Zm−1+ . If
∑m

i=1 τi ≥ 1 or djl ≤
∑m−1

i=1 πib
i or

∑m−1
i=1 πi +⌊

djl−
∑m−1

i=1 πib
i

bm

⌋
> l−j or ρjl (e0, π) ∈

{
0, b1, . . . , bm

}
∪(bm,∞), we set Gjl(j, τ, π) =∞.

11

For other values, we compute

Gjl(j, e0, π) =


pj (ρjl (e0, π)) + hj (ρjl (e0, π)− dj) if ρjl (e0, π) > dj and j < l,

pj (ρjl (e0, π)) if ρjl (e0, π) = dj and j = l,

∞ otherwise.

Now let t ∈ {j + 1, . . . , l}, τ ∈ Zm+ and π ∈ Zm−1+ . If
∑m

i=1 τi > t− j or
∑m−1

i=1 πi +⌊
djl−

∑m
i=1 τib

i−
∑m−1

i=1 πib
i

bm

⌋
> l−t, then we set Gjl (t, τ, π) =∞. If

∑m
i=1 τib

i+ρjl (τ, π) ≤

djt and t < l, then st ≤ 0 and if
∑m

i=1 τib
i + ρjl (τ, π) 6= djl and t = l, then sl 6= 0. If

djl <
∑m

i=1 τib
i+
∑m−1

i=1 πib
i, then sl cannot be zero. Moreover, we do not want to have

ρjl (τ, π) ∈
{

0, b1, . . . , bm
}
∪ (bm,∞). Hence, we set Gjl (t, τ, π) = ∞ in these cases.

For the remaining values, we compute

Gjl (t, τ, π) = ht

(
m∑
i=1

τib
i + ρjl (τ, π)− djt

)
+ min

{
Fjl (t− 1, τ) + pt (ρjl (τ, π)) ,

min
i=0,...,m:τ≥ei

{
Gjl (t− 1, τ − ei, π + ēi) + pt

(
bi
)}}

,

where ēi is the restriction of ei to the first m−1 entries. Here, we first add the inventory

holding cost. If the fractional production takes place at period t, then the production

cost is pt(ρjl(τ, π)) and the minimum cost for periods j to t − 1 is Fjl(t − 1, τ). If

we produce bi units in period t for some i ∈ {0, . . . ,m}, then the production cost is

pt(b
i) and the minimum cost for periods j to t− 1 is Gjl (t− 1, τ − ei, π + ēi) since the

fractional period is before period t.

For given t, τ and π, Gjl (t, τ, π) can be computed in constant time. Hence Gjl can

be evaluated in O(n2m) time.

Case b. The fractional production amount is greater than bm.

Let τ ∈ Zm+ , π̂ ∈ Zm+ , t ∈ {j, . . . , l} and Ĝjl (t, τ, π̂) be the minimum cost for periods

j up to t during which τi times bi units, for i = 1, . . . ,m, are produced and one time a

fractional production ρ̂jl(τ, π̂) = djl−
∑m

i=1 τib
i−
∑m

i=1 π̂ib
i > bm is done given that π̂i

times bi, for i = 1, . . . ,m, units are produced after period t, sj−1 = sl = 0 and su > 0

for u ∈ {j, . . . ,min{t, l − 1}}. The function Ĝjl can be computed in a similar way to

Gjl. As the dimension of the vector π̂ is one more than the one of π, computing Ĝjl

requires O(n2m+1) time.

12

3.3 Time complexity

Overall, we can find the minimum cost for interval [j, l] as

µjl = min
τ∈{0,...,n}m

{
Fjl (l, τ) , Gjl (l, τ, ē0) , Ĝjl (l, τ, e0)

}
.

Theorem 3.1 The lot-sizing problem with piecewise concave production costs is poly-

nomially solvable when the breakpoints of the production cost function are time-invariant

and when the number of breakpoints is fixed.

Proof. For an interval [j, l] with 1 ≤ j ≤ l ≤ n, as evaluating the functions Fjl,

Gjl and Ĝjl take O(nm+1), O(n2m) and O(n2m+1) time, respectively, the minimum

cost µjl can be computed in O(n2m+1) time. Once these costs are computed, we

can solve the problem by solving a shortest path problem as done for the classical

lot-sizing problem. Let G = (V,A) be a directed graph for V = {1, . . . , n + 1} and

A = {(j, l+ 1) : 1 ≤ j ≤ l ≤ n}. The shortest path problem from node 1 to node n+ 1

in the graph G with cost µjl on arc (j, l + 1) with djl > 0 and cost 0 on arc (j, l + 1)

with djl = 0, solves our problem. As µjl can be computed in O(n2m+1) time and there

are O(n2) intervals, we require O(n2m+3) time to construct the graph. This dominates

the time to compute a shortest path. Therefore, the overall complexity is O(n2m+3)

and is polynomial for fixed m. �

3.4 Special cases

Now we discuss some special cases. Suppose that the production amount in any period

cannot exceed a given capacity C. This can be modeled by setting bm = C and

pt(x) =∞ for x ∈ (bm,∞) and t = 1, . . . , n. In this case Ĝjl =∞ for all intervals [j, l].

Then the overall complexity of the algorithm decreases to O(n2m+2). The constant

capacity lot-sizing problem is the special case with m = 1. For this special case our

algorithm runs in O(n4) time, and hence has the same time complexity as the one of

Florian and Klein (1971).

Hellion et al. (2012) study the capacitated lot sizing problem with concave costs,

minimum order quantities (L) and constant capacities (C). In order to model this

13

special case, we let pt(x) = ∞ if x ∈ (0, L) ∪ (C,∞), so we assume that m = 2. In

this case, again, Ĝjl =∞ for all intervals [j, l]. Therefore, our DP algorithm can solve

this special case of the problem in O(n6) time, which is equal to the computational

complexity of the algorithm of Hellion (2013).

Atamtürk and Hochbaum (2001) propose an O(n5) algorithm for the special case

where the production cost function has two pieces; the first piece corresponds to regular

work and the second piece represents subcontracting. As m = 1, our DP algorithm

can also solve this problem in O(n5) time.

Finally, if we assume that backordering is allowed, we can redefine ht (st) as the cost

of holding st units of inventory during period t if st > 0 and as the cost of backordering

st units during period t if st < 0. We assume that ht(.) is a concave function on both

(−∞, 0] and [0,∞), and consequently ht(.) is a piecewise concave function on R. If

we change the condition st > 0 to st 6= 0 in the definition of regeneration intervals,

Theorem 2.1 and Theorem 2.2 still hold true in the case of backlogging. We can use the

DP given in this section in order to solve the problem with some small modifications

without changing the computational complexity.

In conclusion, for the special cases discussed above, our algorithm’s performance is

as good as the performance of algorithms in the literature.

4 Computational Results

In this section, we will examine the computational efficiency of our algorithm. Although

our algorithm can solve the lot-sizing problem with any piecewise concave function,

in order to compare the algorithm’s performance with a mixed-integer programming

(MIP) solver, we use piecewise linear production cost functions and linear holding costs

in our computational study.

We tested three well known linearizations of piecewise linear functions: multiple

choice, incremental and convex combination formulations (see, e.g., Croxton et al.

(2003)). Our preliminary tests showed that the multiple choice linearization outper-

formed the other two linearizations. For the capacitated lot-sizing problem, this lin-

14

Table 1: Experimental factors when m = 2

Factors # Experimental Settings

levels 1 2 3 4

Fixed Costs (f1, f2) 3 (3000,6000) (3000,4000) (3000,7500)

Variable Costs (c1, c2) 4 (0,0) (0.5,1) (1,0.5) (1,1)

Breakpoints (b1, b2) 3 (800,1600) (900,1800) (1000,2000)

earization is as follows.

min
n∑
t=1

m∑
j=1

(f jt y
j
t + cjtx

j
t) +

n∑
t=1

htst (5)

s.t. st−1 +
∑m

j=1 x
j
t = dt + st t = 1, . . . , n, (6)

MC bj−1yjt ≤ x
j
t ≤ bjy

j
t t = 1, . . . , n, j = 1, . . . ,m, (7)∑m

j=1 y
j
t ≤ 1 t = 1, . . . , n, (8)

s0 = 0, (9)

s, x ≥ 0, y binary. (10)

In this formulation, if the production amount is in the jth piece of the cost function,

then there is a fixed cost f jt and a variable cost cjt (see Figure 3). We assume that the

production cost function is lower semicontinuous. The inventory holding cost function

is a linear function and ht is the cost of holding one unit of inventory during period

t. The variable yjt is equal to one if the production amount in period t lies in the

segment [bj−1, bj]. Constraints (8) ensure that at most one of the yjt variables is one

in period t. Consequently, constraints (7) guarantee that xjt should be in the segment

[bj−1, bj] if yjt = 1, and at most one of the production variables xjt will be nonzero for

t. Constraints (6) are inventory balance constraints and the objective function (5) is

the sum of production and inventory holding costs. By constraints (9), we impose the

requirement that the initial inventory is zero.

We implemented the formulation MC in Xpress 1.22 and the DP in Java (JDK 7)

and run them on a 2.53 GHz Intel Core 2 Duo Machine with 4GB memory running

Windows 7. We let the solver run for 1000 seconds.

In our computational study, we only consider the capacitated problem and ignore

15

Figure 3: Production cost function for MC

the last piece of the cost function since we assume that it has a very large cost. We

first analyze two cost segment instances, i.e., m = 2, and create randomly generated

problems with different cost parameters, all time-invariant, as summarized in Table

1. Furthermore, for 40 and 50 period cases we assume that the demand has the same

distribution and the holding cost is the same such that the inventory holding cost to be

0.05 and the demand to be an integer drawn from a uniform distribution, U [400, 500].

Consequently, for each case there are 36 randomly generated test problems.

For 20 periods and 3 cost segments instances, we consider different cost structures as

summarized in Table 2. For example, increasing unit costs (1.3, 1.5, 1.8) may represent

a system with subcontracting, or decreasing unit costs (1.8, 1.5, 1.3) may represent

quantity discounts. Also, note that unit costs (1.5, 1.3, 1.8) can be seen as a combination

of these two systems (Figure 2a). We now generate 42 randomly generated problems

for which we assume that the inventory holding cost to be 0.05 and the demand is an

integer drawn from a uniform distribution, U [500, 600].

As the linear programming relaxations have large gaps, valid inequalities could be

used to compute better bounds. We use the valid inequalities recently developed by

Sanjeevi and Kianfar (2012) for the multi-module lot-sizing problem. These inequalities

are based on mixing set relaxations. We briefly describe these inequalities. Let k < l

be two periods and S ⊆ {k, . . . , l}. For each i ∈ S, define Si = S ∩ {k, . . . , i} and

16

Table 2: Experimental factors when m = 3

Factors # Experimental Settings

levels 1 2 3

(f1, f2, f3) 3 (3000,6000,9000) (3000,5000,6500) (3000,3500,5000)

(b1, b2, b3) 2 (500,1000,1500) (600,1200,1800)

Experimental Settings

1 2 3 4 5 6 7

(c1, c2, c3) 7 (0,0,0) (1.3,1.5,1.8) (1.3,1.8,1.5) (1.5,1.3,1.8) (1.5,1.8,1.3) (1.8,1.3,1.5) (1.8,1.5,1.3)

compute

ni =

 min{t : t ∈ S \ Si} if S \ Si 6= ∅,

l + 1 if S \ Si = ∅.

Adding up the equations (6) from t = k to t = ni − 1, we obtain

sk−1 +

ni−1∑
t=k

m∑
j=1

xjt = dk,ni−1 + sni−1.

As sni−1 ≥ 0 and xjt ≤ bjy
j
t , we have

sk−1 +
∑

t∈{k,...,ni−1}\Si

m∑
j=1

xjt +
m∑
j=1

∑
t∈Si

bjyjt ≥ dk,ni−1.

Now, let I ⊆ S. Then sk−1+
∑

t∈{k,...,n|I|−1}\S
∑m

j=1 x
j
t ≥ sk−1+

∑
t∈{k,...,ni−1}\Si

∑m
j=1 x

j
t

for all i ∈ I. By letting zji =
∑

t∈Si
yjt , one obtains the relaxation

sk−1 +
∑

t∈{k,...,n|I|−1}\S

m∑
j=1

xjt +
m∑
j=1

bjzji ≥ dk,ni−1 i ∈ I.

Note that sk−1 +
∑

t∈{k,...,n|I|−1}\S
∑m

j=1 x
j
t ∈ R+ and zji ∈ Z+ for all i ∈ I and

j = 1, . . . ,m. Sanjeevi and Kianfar (2012) generate mixed n-step MIR inequalities

based on this relaxation when the coefficients satisfy some conditions. Like Sanjeevi

and Kianfar (2012), we consider all possible pairs k and l. We let S = {k, . . . , l},

S = {t ∈ {k, . . . , l} : ȳjt > 0 for some j ∈ {1, . . . ,m}} and S = {t ∈ {k, . . . , l} : ȳjt <

1 for some j ∈ {1, . . . ,m}} where (x̄, ȳ, s̄) is the LP optimum. For these choices of

S, we consider all possible two-element subsets I, i.e., |I| = 2, and add the resulting

17

inequality if it is violated. We apply this cutting phase at the root node. Then we

drop the inactive cuts and give the strengthened formulation to the solver.

In Tables 3-5, we report the results for the formulation MC, the formulation MC

with valid inequalities (MC-CUTS) and our dynamic programming algorithm (DP).

Columns BUB, LPGap, FGap correspond to the best upper bound obtained by the

solver within the time limit, the percentage gap between the optimal value of the LP

relaxation and the optimal value of the integer problem and the percentage gap between

the best lower and upper bounds attained at the end of the time limit, respectively.

Some instances are solved to optimality by MC or MC-CUTS; in this case we report

the time spent to solve the formulation in parentheses in column (Time). Columns

OPT and Time under DP correspond to the optimal value of the problem and the

solution time of the dynamic programming algorithm.

We observe that none of the instances is solved to optimality using MC in 1000

seconds for 40 and 50 periods and 2 pieces instances and only 11 of the 42 instances

of the 20 periods and 3 pieces instances are solved to optimality. As expected, the

performance varies from one instance to another: the LPGap between 1 to 10% and

the final gap between 0 to 5%. MC-CUTS can solve some instances in a second, whereas

for others the final gap can be as large as 3-4%. Clearly, the DP has a stable solution

time. Moreover, as shown in Table 5, the proposed DP can handle all of these different

cost functions and solves the problems to optimality whereas the MC formulation in

Xpress may end up with an optimality gap of 3% at the end of the time limit of 1000

seconds.

It can be observed from Table 3 that for each setting of fixed and variable costs,

increasing breakpoint levels increases the final gaps of MC. However, we cannot gener-

alize this result since according to Table 4 for each combination of the fixed and variable

costs, MC ends up with the largest gap when (b1, b2) = (800, 1600), and with the min-

imum one when (b1, b2) = (900, 1800). Note that, all of the instances with (b1, b2) =

(900, 1800) in Table 4 are solved to optimality by MC-CUTS. Moreover, according to

the final gaps of MC given in Table 3, the instances with (f1, f2) = (3000, 4000) seem

like the hardest ones. However, interestingly, when the valid inequalities are added,

18

Table 3: Results for n = 40 and m = 2
instance MC MC-CUTS DP

(f1, f2) (c1, c2) (b1, b2) BUB LPGap FGap BUB LPGap FGap OPT Time

(Time)

1 1 1 69644.6 2.61 1.60 69737.1 1.37 1.22 69620.3 159.68

2 63556.1 5.05 3.96 63779.3 3.64 3.63 63474.5 161.31

3 57745.4 5.91 4.35 57888.0 4.02 3.90 57651.9 152.53

2 1 78676.3 2.31 1.29 78762.6 1.15 0.61 78660.8 162.50

2 72588.6 4.42 3.30 73285.9 3.10 1.92 72515.0 158.43

3 66835.4 5.11 3.72 66801.9 3.44 1.33 66692.4 158.39

3 1 79678.2 3.51 1.29 79707.4 1.51 0.76 79642.0 161.67

2 73610 5.71 3.22 73604.6 3.00 2.38 73504.9 150.65

3 67908.3 6.79 3.47 67967.6 3.54 2.64 67890.7 146.49

4 1 87701.3 2.07 1.24 87781.3 1.09 0.53 87701.3 162.23

2 81676.2 3.93 3.13 81786.8 2.83 2.72 81555.5 154.98

3 75872.8 4.50 3.37 75797.0 3.06 2.76 75732.9 147.92

2 1 1 48332.1 6.34 2.79 48260.3 1.29 (35) 48260.3 161.80

2 44261.8 9.22 4.67 44280.0 2.43 0.73 44261.8 152.92

3 40523.5 10.74 5.06 40519.3 2.97 0.81 40514.8 146.48

2 1 65963 4.03 1.31 65941.3 1.19 (315) 65941.3 161.30

2 61905.3 5.87 2.64 61924.1 2.35 1.41 61892.8 151.16

3 58118.9 6.64 2.72 58142.0 2.84 1.58 58098.0 144.96

3 1 57755 5.90 2.93 57642.0 0.78 (4) 57642.0 161.41

2 53595.3 8.01 4.27 53504.9 1.17 (3) 53504.9 153.65

3 49913.7 9.40 4.70 49890.7 1.48 (6) 49890.7 149.81

4 1 66363.1 4.61 1.91 66341.3 0.94 (13) 66341.3 161.61

2 62360.1 6.55 3.36 62346.6 1.73 0.43 62342.8 153.27

3 58616.1 7.43 3.53 58609.3 2.06 0.53 58595.8 146.49

3 1 1 69620.3 2.61 1.45 69620.3 1.30 (1) 69620.3 160.77

2 63491.7 5.05 3.61 63552.7 3.50 2.58 63474.5 150.25

3 57730.1 5.91 4.21 57810.7 3.98 3.42 57651.9 147.68

2 1 78660.8 2.31 1.22 78660.8 1.15 (1) 78660.8 158.88

2 72566.5 4.42 3.29 72626.0 3.06 2.50 72515.0 150.50

3 66721.5 5.11 3.57 66700.1 3.44 2.74 66692.4 145.53

3 1 87701.3 2.07 1.12 87701.3 1.03 (1) 87701.3 160.51

2 81618.3 3.93 2.93 82461.0 2.78 2.64 81555.5 151.99

3 75816.5 4.50 3.24 76412.7 3.04 2.56 75732.9 144.93

4 1 87722.5 2.07 1.18 87848.6 1.03 0.51 87701.3 161.59

2 81572.7 3.93 2.78 81679.4 2.72 2.30 81555.5 150.58

3 75831.3 4.50 3.25 75827.0 3.03 2.50 75732.9 145.36

19

Table 4: Results for n = 50 and m = 2
instance MC MC-CUTS DP

(f1, f2) (c1, c2) (b1, b2) BUB LPGap FGap BUB LPGap FGap OPT Time

(Time)

1 1 1 87849.5 3.97 3.17 87831.3 2.77 2.69 87727.0 719.77

2 76621.0 1.88 0.99 76313.5 0.24 (6) 76313.5 677.49

3 70052.2 3.65 2.20 70300.4 1.64 1.74 69943.9 653.19

2 1 99074.2 3.52 2.76 99044.9 2.40 1.26 98959.0 744.83

2 87718.0 1.64 0.50 87545.5 0.19 (2) 87545.5 689.00

3 81292.8 3.14 1.86 81254.1 1.40 0.95 81175.9 658.82

3 1 100021.0 4.52 2.57 100401.1 2.73 2.39 99990.3 741.92

2 89027.8 3.27 0.42 89026.0 0.96 (10) 89026.0 696.00

3 82740.4 4.92 1.76 82695.7 2.21 0.42 82695.1 658.40

1 1 110270.0 3.16 2.49 110245.6 2.21 2.04 110191.0 720.37

2 99265.0 1.45 0.98 98777.5 0.19 (11) 98777.5 685.54

3 92473.8 2.76 1.56 92574.75 1.24 1.06 92407.9 653.36

2 1 1 60591.9 7.23 4.01 60598.8 2.80 1.16 60537.6 737.28

2 53386.0 6.43 1.88 53348.5 1.49 (5) 53348.5 688.72

3 49067.8 8.38 3.02 49035.6 2.81 (114) 49035.6 660.97

2 1 82665.6 4.82 2.46 82684.0 2.31 1.31 82601.6 735.74

2 75490.0 3.95 0.76 75362.5 1.08 (8) 75362.5 682.21

3 71027.8 5.08 1.37 70999.6 2.13 (735) 70999.6 648.44

3 1 72014.6 6.39 3.61 71990.3 2.45 (523) 71990.3 744.03

2 64885.8 5.72 1.94 64862.9 1.26 (7) 64862.9 671.57

3 60748.9 7.47 3.05 60695.1 2.49 (12) 60695.1 642.07

4 1 83054.9 5.27 2.92 83001.6 2.04 0.77 83001.6 737.10

2 75850.0 4.52 1.29 75812.5 1.05 (8) 75812.5 674.39

3 71511.3 5.74 1.98 71499.6 1.88 (84) 71499.6 650.80

3 1 1 87801.8 3.97 3.04 87781.6 2.68 0.59 87727.0 727.36

2 76440.4 1.88 0.48 76313.5 0.22 (1) 76313.5 676.49

3 70020.4 3.65 2.06 70044.4 1.63 1.07 69943.8 642.60

2 1 98989.1 3.52 2.62 98959.0 2.37 (24) 98959.0 732.44

2 87725.5 1.64 0.52 87545.5 0.19 (2) 87545.5 680.33

3 81269.5 3.14 1.76 81391.1 1.40 1.07 81175.9 636.95

3 1 110247.0 3.16 2.41 111020.9 2.16 1.99 110191.0 720.73

2 98905.0 1.45 0.40 98777.5 0.17 (2) 98777.5 681.56

3 92543.1 2.76 1.66 92529.1 1.23 0.84 92407.9 639.65

4 1 110341.0 3.16 2.46 111865.6 2.13 2.02 110191.0 725.70

2 98867.5 1.45 0.35 98777.5 0.17 (2) 98777.5 677.62

3 92483.4 2.76 1.55 92588.8 1.23 0.94 92407.9 645.63

20

Table 5: Results for n = 20 and m = 3
instance MC MC-CUTS DP

(f1, f2, f3) (c1, c2, c3) (b1, b2, b3) BUB LPGap FGap BUB LPGap FGap OPT Time

(Time) (Time)

1 1 1 69160.1 3.85 3.40 69160.2 3.81 3.42 69159.7 172.7

2 57167 3.01 2.37 57164.1 2.99 2.40 57137 149.5

2 1 84084.2 3.26 2.35 84084.2 3.12 2.37 84084.2 173.8

2 71544.9 2.41 0.94 71544.9 2.39 0.86 71544.9 150.3

3 1 84216.4 3.55 2.26 84216.4 3.18 2.27 84216.3 171.8

2 71544.9 2.41 0.42 71544.9 2.39 0.46 71544.9 150.7

4 1 83842.1 3.50 2.62 83866.6 3.37 2.65 83836.2 171.4

2 71902.8 2.89 1.62 71929.0 2.75 1.65 71902.8 150.7

5 1 84107.3 3.81 2.57 84132.8 3.02 2.49 84107.2 171.1

2 72194.2 3.28 1.47 72194.2 2.66 1.46 72194.1 150.8

6 1 83913.8 3.57 2.56 83908.3 3.44 2.53 83901.2 176.8

2 72017.5 3.05 1.52 72017.5 2.90 1.56 72017.5 155.4

7 1 84153.1 3.86 2.45 84152.0 3.01 2.38 84151.9 172.5

2 72307.4 3.44 1.31 72307.4 2.54 1.15 72307.4 154.4

2 1 1 51062.9 5.95 2.64 51063.6 2.87 1.38 51062.9 174.5

2 42680.2 6.23 (181.7) 42680.2 3.00 (33) 42680.2 153.5

2 1 70712.2 3.87 1.85 70712.3 2.42 1.57 70712.2 172.4

2 62329.6 3.78 0.84 62329.6 2.36 0.57 62329.6 151.3

3 1 67942.4 4.84 1.93 67942.4 1.72 (993) 67942.4 173.1

2 59184.7 4.29 (27.8) 59184.7 2.21 (6) 59184.7 151.6

4 1 70527.8 3.60 1.95 70512.2 2.67 1.89 70512.2 173.8

2 61893.9 3.11 1.13 61899.6 2.59 1.18 61893.9 151.2

5 1 65874.8 5.21 1.91 65865.5 1.43 (42) 65865.5 171.9

1 57194.1 4.83 (19.8) 57194.1 2.16 (3) 57194.1 152.7

6 1 67488.1 4.20 1.72 67488.1 2.42 1.25 67487.3 172.6

2 59282.2 4.45 (984.1) 59282.2 2.36 (350) 59282.1 152.2

7 1 65653.1 4.90 1.37 65652 1.95 0.33 65651.9 172.7

2 57307.4 5.02 (116.4) 57307.4 1.95 (3) 57307.4 155.4

3 1 1 39063.6 5.43 2.22 39062.9 3.75 2.09 39062.9 174.4

2 32633.1 5.66 (718.2) 32633.1 3.89 (410) 32633.1 149.8

2 1 57392.8 3.45 1.80 57394.5 3.26 1.70 57392.8 173.2

2 50557.0 3.18 (382.2) 50557.0 2.97 (624) 50557.0 153.1

3 1 55942.4 4.24 0.76 55942.5 2.09 0.53 55942.4 171.9

2 49926.6 5.04 (126.8) 49926.6 2.05 (14) 49926.6 154.3

4 1 55409.6 3.99 1.88 55409.6 3.80 1.70 55409.6 172.3

2 48651.2 3.94 (311.2) 48651.2 3.73 (360) 48651.2 151.3

5 1 53865.5 4.67 (515.5) 53865.5 1.75 (40) 53865.5 172.0

2 48132.8 6.11 (144.5) 48132.8 1.84 (3) 48132.8 151.4

6 1 55050.8 3.36 1.96 55064.1 3.17 1.99 55050.8 174.8

2 48190.1 3.01 0.50 48181.7 2.79 0.41 48181.6 150.1

7 1 53652.0 4.29 1.09 53652.0 2.38 0.78 53652.0 171.6

2 47492.5 4.84 (95.4) 47492.5 2.34 (9) 47492.5 151.3

21

50% of these instances are solved to optimality and for the other ones with positive

gaps the final gaps are relatively small compared to the other instances. A similar

result can be obtained from Table 4.

Addition of valid inequalities to MC improves the LP gap in all of the instances.

This improvement depends on the instance: LP gap may be decreased from 10.7%

to 2.9% in one instance (in Table 3), but for another one the improvement may be

quite small, like from 2.5% to 2% (in Table 4). Moreover, in Tables 3 and 4, (for the

instances with positive final gap) none of the solutions found by MC-CUT at the end

of time limit is optimal since the value of the best solution (BUB) is greater than the

optimal value found by the DP.

For the instances with 3 pieces (Table 5), we can see that the difference between LP

gaps of MC and MC-CUTS may be negligible as the improvement may be from 3.01%

to 2.99% or from 2.41% to 2.39%. It can be observed from Table 5 that in 50% of the

instances with positive final gaps MC finds optimal solutions but it cannot prove the

optimality. Moreover, instances with smaller breakpoint levels and larger fixed costs

seem harder due to the final gaps obtained by MC and MC-CUTS. However, we cannot

generalize this result due to the result obtained for m = 2 instances; if we increase n

we may come up with a different case.

According to the results given in Table 5, we cannot specify harder and easier

instances with respect to the variable costs. For (c1, c2, c3) = (1.8, 1.5, 1.3), when

(f1, f2, f3) = (3000, 5000, 6500) and (b1, b2, b3) = (600, 1200, 1800) MC-CUTS solves

the problem in 3 seconds whereas when (f1, f2, f3) = (3000, 6000, 9000) it ends up

with 1.15% optimality gap.

From Tables 3, 4 and 5, we can see that for a given breakpoint level, for instances

with different fixed and variable cost settings the solution time of the DP is stable.

For different breakpoint levels the difference between solution times is also very small

(less than 100 seconds). On the other hand, it is hard to obtain a general result for

the MIP approach. The performance of the MIP approach strongly depends on the

data instance; by small changes in instances, we may come up with easier or harder

instances.

22

Table 6: Summary of the results
MC MC-CUTS DP

(n,m) LPGap FGap LPGap FGap Time

min avg max min avg max min avg max min avg max min avg max

(40,2) 2.07 5.08 10.74 1.12 2.94 5.06 0.78 2.31 4.02 0.00 1.43 3.90 144.9 154.2 162.5

(50,2) 1.45 4.04 8.38 0.35 1.91 4.01 0.17 1.60 2.81 0.00 0.68 2.69 637.0 687.8 744.8

(20,3) 2.41 4.08 6.23 0.00 1.27 3.40 1.43 2.70 3.89 0.00 1.10 3.42 149.5 162.4 176.8

A summary of the results is given in Table 6. In Table 6, columns named min, avg,

max show the maximum, average and minimum values of the corresponding columns.

As it can be observed from Table 6, when n or m increases, as expected, the solution

time of DP gets larger. On the other hand, the DP solves all of the instances in less

than 1000 seconds whereas Xpress may end up with positive optimality gaps even for

the strengthened formulation.

We can conclude that for the small or medium sized instances, the DP outperforms

the MIP approach. Furthermore, for solving larger instances of the problem we can

easily modify the DP for getting good quality solutions in reasonable computation

times as discussed below.

5 Heuristic for solving larger instances

The computational complexity of our dynamic programming algorithm strongly de-

pends on the number of different τ , π and π̂ vectors since we need to evaluate the

functions Fjl, Gjl and Ĝjl for all possible τ , π and π̂ vectors. As there are O(nm) pos-

sible τ and π̂ and O(nm−1) π vectors, for larger n and m it may not be a good choice to

use the DP directly. Moreover, as Xpress could not solve some medium sized instances

in our experiments, we expect its performance to get worse for larger instances.

In order to get a good solution for larger instances in a reasonable time, we develop

a heuristic method based on our dynamic programming algorithm. We heuristically

restrict the length of any regeneration interval (and also the final interval which may

not be a regeneration interval) of a solution. Let ν (1 ≤ ν ≤ n) be a given upper

bound on the length of any regeneration interval. We consider the interval [j, l], 1 ≤

23

Table 7: Experimental factors for the heuristic solution approach when m = 3
Factors # Experimental Settings

levels 1 2 3

(f1, f2, f3) 2 (3000,6000,9000) (3000,5000,6000)

(b1, b2, b3) 2 (800,1600,2400) (1000,2000,3000)

(c1, c2, c3) 3 (0,0,0) (1,0.5, 0.7) (1,0.5, 1)

j ≤ l ≤ n, and find the minimum cost µjl if l− j+ 1 ≤ ν. Consequently, we reduce the

number of intervals to be considered to O(νn). Moreover, for a given interval [j, l] the

number of possible τ , π and π̂ vectors becomeO(νm), O(νm−1) andO(νm), respectively.

Therefore, with this restriction we reduce the state space and consequently, the time

complexity of the DP.

Note that when ν = n, the restriction becomes redundant and the heuristic is the

same as the exact DP. If ν = 1, then the (trivial) solution is to produce in every

period as much as the demand of that period. Moreover, if we know the maximum

regeneration interval length in an optimal solution, say ν∗, then we can set ν = ν∗ and

obtain an optimal solution to the problem with the heuristic. The performance of this

heuristic depends on ν; we may obtain a better quality solution with larger ν but in

longer computation time.

In order to test this solution method, we consider different ν values and compare the

total cost of the solution obtained by this method with the lower bound obtained from

MC-CUTS. We use larger instances that are created the same way as the instances

used in the previous section. We have selected a representative set of instances to test

the solution quality of the proposed heuristic. The experimental factors are listed in

Table 7. For all of the instances, we assume that the inventory holding cost is 0.05

and the demand is an integer drawn from a uniform distribution, U [400, 500] for all

periods.

Tables 8 and 9 summarize the results of this experiment for m = 2 and m = 3,

respectively. Columns under MC-CUTS represent the results for the formulation MC

with valid inequalities, and the columns under DP-HEUR represent the results of our

heuristic method. For each instance, we consider different ν values in order to see the

trade-off between the solution quality and the solution time and we sign the rows with

24

the minimum optimality gap by bold. With MC-CUTS, we let Xpress run 1000 and

2000 seconds and we calculate the gap of the heuristic solution using the best lower

bound.

As it can be seen from Tables 8 and 9, letting Xpress run for an additional 1000

seconds results in very little improvement in the final gaps. When the cost function

has two pieces (Table 8), in all of the test instances, the heuristic finds better solutions

than MC-CUTS in less than 50 seconds. Moreover, as it can be revealed from the

table, when ν increases, the computation time increases (as expected) but the increase

is not too fast. Therefore, the user can select a higher ν value and may obtain better

solutions in reasonable computation times.

In Table 9, we report the results for the instances with 3 pieces. For 50 and 80

periods, the heuristic finds better solutions than MC-CUTS in very short computation

times. For 100 periods, we again find better solutions by the heuristic algorithm but the

computation time of the algorithm is about 2000 seconds. But note that for the second

instance of 100 periods solution found for ν = 18 (in less than 1000 seconds of time)

is also a better solution than that of MC-CUTS. Moreover, we believe that by letting

Xpress run for more than 2000 seconds we can only obtain slightly better optimality

gaps. Thus, when m = 3 the heuristic algorithm still reports better solutions compared

to the MIP approach in less computation times. Furthermore, according to Tables 8

and 9, similar to the exact DP, for given n, m and ν values, the computation time of

the heuristic algorithm is stable.

6 Conclusion

In this paper, we studied the lot-sizing problem with piecewise concave production

costs. A piecewise concave function can represent economies of scale, discounts, sub-

contracting, overloading, minimum order quantities and capacities. The computational

complexity of this problem was an open question in the literature. We developed a

dynamic programming algorithm and showed that the problem is polynomially solv-

able when the number of breakpoints of the production cost function is fixed and the

25

Table 8: Results of the heuristic for m = 2
instance MC-CUTS DP-HEUR

n (f1, f2) (c1, c2) (b1, b2) 1000 seconds 2000 seconds

BUB Gap BUB Gap ν BUB Gap Time

80 1 1 3 112847.2 2.20 112847.2 2.18 10 118080.8 6.53 0.7

12 112492.6 1.89 1.5

14 112488.3 1.88 3.2

16 112488.3 1.88 6.2

18 112488.3 1.88 11.4

20 112488.3 1.88 20.2

22 112488.3 1.88 31.9

1 4 1 175598.6 0.44 175543.3 0.40 10 175376.2 0.31 0.7

12 175351.3 0.30 1.6

14 175338.6 0.29 3.3

16 175338.6 0.29 6.6

18 175338.6 0.29 12.6

20 175323.8 0.28 21.0

22 175323.8 0.28 34.5

100 1 1 2 154649.65 1.12 154649.65 1.11 10 157515.1 2.92 0.9

12 157297.5 2.79 1.9

14 157277.4 2.78 4.1

16 157250.5 2.76 8.2

18 157250.5 2.76 15.6

20 154558.1 1.07 26.7

22 154498.1 1.03 44.1

1 4 1 218726.9 0.93 218646.95 0.89 10 220696.6 1.81 0.9

12 220694.2 1.81 2.0

14 220686.7 1.81 4.2

16 220686.7 1.81 8.4

18 220686.7 1.81 15.6

20 217918.7 0.56 27.2

22 217912.5 0.56 46.2

26

Table 9: Results of the heuristic for m = 3
instance MC-CUTS DP-HEUR

n (f1, f2, f3) (c1, c2, c3) (b1, b2, b3) 1000 seconds 2000 seconds

BUB Gap BUB Gap ν BUB Gap Time

50 1 1 2 70121.7 2.26 70096 2.21 10 72742.1 5.79 8.6

12 69948.1 2.02 27.3

14 69943.9 2.02 73.8

16 69943.9 2.02 175.5

18 69943.9 2.02 379.6

20 69943.9 2.02 763.1

22 69943.9 2.02 1448.1

2 3 1 83227.9 1.86 83183.4 1.77 10 83433.3 2.10 8.7

12 83433.3 2.10 27.6

14 83430.8 2.10 75.0

16 83041.3 1.64 179.9

18 83041.3 1.64 394.3

20 83041.3 1.64 806.2

22 83041.3 1.64 1507.7

80 2 2 2 105659.85 1.39 105560.35 1.27 10 110780.9 5.94 14.2

12 108169.7 3.67 46.1

14 105432.6 1.17 124.8

16 105432.6 1.17 306.2

18 105429.5 1.17 676.0

20 105429.5 1.17 1396.7

22 105429.5 1.17 2700.8

1 1 2 113043.35 2.81 113043.35 2.80 10 118080.8 6.96 14.0

12 112492.6 2.33 48.6

14 112488.3 2.33 124.6

16 112488.3 2.33 307.4

18 112488.3 2.33 682.2

20 112488.3 2.33 1402.4

22 112488.3 2.33 2729.4

100 1 1 1 173555.3 1.45 173555.3 1.45 10 175485.6 2.53 19.3

12 175483.2 2.53 59.6

14 175475.7 2.53 165.7

16 175475.7 2.53 414.0

18 175475.7 2.53 918.9

20 172707.7 0.96 1915.9

22 172701.5 0.96 3759.9

1 2 2 131323.4 0.97 131323.4 0.95 10 137834.9 5.65 17.6

12 135443.9 3.98 58.1

14 132401.3 1.78 160.4

16 132401.3 1.78 394.0

18 131275.1 0.93 883.4

20 131234.7 0.90 1827.2

22 131234.7 0.90 3575.9

27

breakpoints are time invariant. The algorithm performs well for small and medium

sized instances and can easily be modified to be used as a heuristic for larger instances.

In our computational studies, in order to strengthen the formulation we used ex-

isting valid inequalities in the literature for the multi-module capacitated lot sizing

problem. As a future research, we can develop stronger valid inequalities for the prob-

lem.

It may also be interesting to consider the problem when one of the pieces of the

production cost function is convex (but not linear), which means that the function

is not piecewise concave. A convex function can indicate increasing marginal costs,

therefore convex part of this function may represent overloading or cost of extra usage

of a resource.

Acknowledgments

This research is partially supported by TUBITAK grant number 112M220. The re-

search of the second author is supported by the Turkish Academy of Sciences.

References

C. Archetti, L. Bertazzi, and M.G. Speranza. Polynomial cases of the economic lot siz-

ing problem with quantity discounts. Technical report, Department of Quantitative

Methods, University of Brescia, 2011.

A. Atamtürk and D. S. Hochbaum. Capacity acquisition, subcontracting, and lot sizing.

Management Sci., 47(8):1081–1100, 2001.

L.M.A. Chan, A. Muriel, Z-J. Shen, and D. Simchi-Levi. On the effectiveness of zero-

inventory-ordering policies for economic lot sizing model with a class of piecewise

linear cost structures. Oper. Res., 50(6):1058–1067, 2002.

K. L. Croxton, B. Gendron, and T. L. Magnanti. A comparison of mixed-integer

28

programming models for nonconvex piecewise linear cost minimization problems.

Management Sci., 49(9):1268–1273, 2003.

A. Federgruen and C-Y. Lee. The dynamic lot size model with quantity discount. Naval

Res. Logist., 37:707–713, 1990.

M. Florian and M. Klein. Deterministic production planning with concave costs and

capacity constraints. Management Sci., 18:12 – 20, 1971.

B. Hellion. Personal communication, 2013.

B. Hellion, F. Mangione, and B. Penz. A polynomial time algorithm to solve the single-

item capacitated lot sizing problem with minimum order quantities and concave

costs. Eur. J. of Oper. Res., 222(1):10–16, 2012.

C-L. Li, J. Ou, and V.N. Hsu. Dynamic lot sizing with all-units discount and resales.

Naval Res. Logist., 59(3-4):230 – 243, 2012.

Y. Pochet and L. A. Wolsey. Production Planning by Mixed Integer Programming.

Springer, 2006.

S. Sanjeevi and K. Kianfar. Mixed n-step MIR inequalities: Facets for the n-mixing

set. Discrete Optim., 9(4):216 –235, 2012.

D.X. Shaw and A. P. M. Wagelmans. An algorithm for single-item capacitated economic

lot-sizing problem with piecewise linear production costs and general holding costs.

Management Sci., 44:831–838, 1998.

C. Swoveland. A deterministic multi-period production planning model with piecewise

concave production and holding-backorder costs. Management Sci., 21:1007–1013,

1975.

C. P. M. VanHoesel and A. P. M. Wagelmans. An O(T 3) algorithm for the economic

lot-sizing problem with constant capacities. Management Sci., 42:142 – 150, 1996.

H.M. Wagner and T.M. Whitin. Dynamic version of the economic lot size model.

Management Sci., 5(1):89 – 96, 1958.

29

I. W. Zangwill. A deterministic multi-period production scheduling model with back-

logging. Management Sci., 13:105–119, 1966.

I. W. Zangwill. The piecewise concave function. Management Sci., 13(11):900–912,

1967.

30

