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The electronic structures of KNbO3 were calculated within the density functional theory,
and their evolution was analyzed as the crystal-field symmetry changes from cubic to
rhombohedral via tetragonal phase. We carried out electron-energy loss spectroscopy
experiments by using synchrotron radiation and compared the results with the theoretical
spectra calculated within Density Functional Theory. The dominant role of the NbO6

octahedra in the formation of the energy spectra of KNbO3 compound was demonstrated.
The anomalous behavior of plasmons in ferroelectrics was exhibited by the function
representing the characteristic energy loss in the region of phase transition.
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Introduction

Over the past decades, electron energy loss (EEL) spectroscopy has developed into a major
tool for the characterization of nonlinear structures and electronic structure of materials.
Most of these studies focus on the ionization edges, where the position of the edges and
their intensity provide a quantitative measure of the composition [1]. The low-loss energy
region of the EEL spectrum (<50 eV) can also provide information on the composition and
electronic structure, as well as optical properties [1, 2], although it has not found as wide
an application as the energy-loss near-edge structure. In this low-loss region, interband
transitions and plasmon losses are observed.

The plasmons hold a unique position among the quasiparticles in solids because of their
special features. The spectra of plasmons are described by the functions –Imε−1 (volume
plasmons) and –Im(ε+1)−1 (surface plasmons). Experimentally, they are determined by
measuring the characteristic electron energy losses (EEL) [2]. In general, the half-width of
the principal W peak typically exceeds 4.0 eV. The intensity of the W peak critically depends
on the orientation of the sample and the energy of the electron beam, their resolution being
not finer than 1.0 eV. This severely hampers the determination of true plasmon spectra. Of
great interest, in this connection, is a calculation procedure in which the experimental data
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100 S. Simsek et al.

on the reflection spectra and the Kramers-Kronig integral relations are used to determine
the plasmon spectra [3].

The aim of the present paper is to apply Density Functional Theory (DFT) band struc-
ture calculations of the electronic structure, dielectric functions, and spectra of plasmons
of both types to a wide variety of KNbO3 in order to explore how low-loss EEL spectra can
be predicted.

Our paper is organized as follows. In section 2, we describe the methodology, structure,
and computational details. In sections 3–4, we illustrate the validity of the formalism by
applying methodology and theory to KNbO3 ferroelectrics.

Computational Details

The optical properties of ABO3 type compounds were theoretically studied by means of
first principles calculations in the framework of density functional theory and based on the
local density approximation (LDA) as implemented in the ABINIT code [4, 5]. The self-
consistent norm-conserving pseudopotentials are generated using the Troullier-Martiens
scheme, which for the KNbO3, include the semicore s and p states of the K- and Nb- atoms
(see Table 1) [6] which is included in the Perdew-Wang [7] scheme as parameterized by
Ceperly and Alder [8]. For the calculations, the wave functions were expanded in plane
waves up to a kinetic-energy cutoff of 40 Ha (tetragonal and rhombohedral KNbO3). The
level of accuracy for the Kohn-Sham eigenvalues and eigenvectors is required to calculate
the response function. The Brillouin zone was sampled using an 8 × 8 × 8 the Monkhorst-
Pack [9] mesh of special k points. The coordinates of KNbO3 [10, 11] are reported in
Table 1. All the calculations of KNbO3 have been used with experimental lattice constants
and atomic positions. The lattice constants and atomic positions are given in Table 1. The
coordinates of the other atoms can easily be obtained by using the symmetry operations
of the space groups. These parameters were necessary to obtain converged results of the
optical properties.

Table 1
Atomic position and lattice parameters of KNbO3 [10, 11, 20]

Symmetry Lattice Atoms,
Crystals Class Parameters [Å] WPa Position

KNbO3 m3m a = b = c = 4.0214 K(1a) (0.0, 0.0, 0.0)
Nb(1b) (0.5, 0.5, 0.5)
O(3c) (0.5, 0.5, 0.0)

KNbO3 4mm a = b = 3.9970 K(1a) (0.0, 0.0, 0.023)
c = 4.0630 Nb(1b) (0.5, 0.5, 0.5)

O1(1b) (0.5, 0.5, 0.04)
O2(2c) (0.5, 0.0, 0.542)

KNbO3 3m a = b = c = 4.016 K (0.0112, 0.0112, 0.0112)
Nb (0.5, 0.5, 0.5)
O1 (0.5295, 0.5295, 0.0308)
O2 (0.5295, 0.0308, 0.5295)
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Electron Spectroscopy and the Electronic Structure of KNbO3 101

Electronic Structure of the Valence and Conductions Bands

In this section, we describe the evolution of the electronic structure of KNbO3 in the
structural and ferroelectric phase transitions in relation with the evolution of the symmetry
of the crystal field. The results from vacuum ultraviolet (VUV) reflectivity experiments
are reported in the literature for some ABO3 compounds [12–19]. We furthermore give
a comparison of the theoretical band structure of the valence and conduction bands in
various phases. Last, we report our results for the theoretical energy gap, and the energy
gap values determined experimentally. Since ABO3 ferroelectrics have been widely studied
[12–19] we show in detail only the calculated band structures for KNbO3 in different
phases. The dispersion of the energy of the valence bands for the cubic (C), tetragonal (T)
and rhombohedral (R) phases at the equilibrium lattice parameters are reported in Fig. 1.
The top of the valence band is located at the R point in the cubic and tetragonal phases,
and in the Z point in the rhombohedral phase. The DOS reported for all phases in Fig.
1(a)–(c) show a much higher density of states at and near the top of the valence bands. The
valence bandwidth decreases by 0.3 eV between the different crystal fields, from 5.6 eV
in the cubic phase to 4.3 eV in the rhombohedral phase. The bandwidth of the tetragonal
phase is closer to the width of the cubic phase than to the rhombohedral one.

As we stated hereinabove, the electronic band structure of paraelectric cubic KNbO3

along the symmetry lines of the cubic Brillouin zone is shown on Fig. 1(a). Let us now
describe the electronic band structure of the KNbO3 in more detail. It is clear that the indirect
bad gap appears between the topmost valence band and at the R point and at the bottom
of conduction band at the � point. The overall profile of our band structure is qualitatively
like the band structure obtained by previous studies [13, 14], where the same compound
[14] was investigated in the cubic and tetragonal phases. It is observed that the conduction
band minimum goes from the � point through � to the X point and always remains nearly
flat in agreement with previous studies [14, 15, 18]. The calculated indirect band gap (R-�)
is equal to 1.54 eV while the smallest direct band gap (�V-�C) is 2.51 eV. These calculated
values are smaller than the experimental value of 3.1 eV for the indirect gap [16]. The
origin of this discrepancy could be the use of DFT, which generally underestimates the
band gap in semiconductors and insulators [3]. The band with the lowest energy in Fig. 1,
lying between −16.0 eV and −17.0 eV, correspond to a very large extent, to O 2s states.
The nine valence bands between −5.9 eV and the Fermi level (zero) are mainly due to the
oxygen O 2p states hybridized with Nb 4d states. These nine valence bands are split into
triple and double degenerate levels at the � point (�15,�25, �25) separated by energies of
1.64 eV (�15-�25), of 0.3 eV (�25, �15), and of 1.94 eV (�15-�25) due to the crystal field
and electrostatic interaction between mainly O 2p and Nb 4d orbitals. In the conduction
band, the one two triply (�12) degenerate levels represents Nb 4d t2g and Nb eg orbitals
separated by energy of 4.2 eV. The topmost valence bands are the oxygen 2px, 2py states
while the lowest valence bands are formed by the hybridization of Nb 4d eg and O 2pz

states. In the conduction band region, the first conduction band from approximately 1.59 eV
above the Fermi level to 5.6 eV arises from predominantly Nb t2g states with small O 2p
mixing. The bands in the conduction band that are shown in Fig. 1 belong to Nb 4d eg

states. In additions, some electrons from Nb 4d transform into the valence band and take
part in the interaction between Nb and O. This implies that there is hybridization between
Nb 4d and O 2p.

The agreement between our density of states (DOS) and the experimental spectrum is
good [12–19]. The dispersion curve of the conduction bands at the theoretical equilibrium
lattice parameters are reported in Fig. 1(a)–(c). The bottom of the conduction band is found

D
ow

nl
oa

de
d 

by
 [

B
ilk

en
t U

ni
ve

rs
ity

] 
at

 0
1:

19
 0

2 
M

ay
 2

01
4 



102 S. Simsek et al.

Figure 1. Electronic band structure and DOS of KNbO3, cubic (a), tetragonal (b), rhombohedral (c).
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Electron Spectroscopy and the Electronic Structure of KNbO3 103

Table 2
Theoretical and experimental data of plasmon energies and energy features of -Imε−1

for KNbO3

Exp Exp Theory Exp[12] Theoretical

Material Ep [eV] Es [eV ∗] Ep [eV] -Imε−1 -Imε−1

KNbO3/Cubic — — 21.8 — 6.5, 15.0, 22.6, 28.1, 41.5
KNbO3/Tetragonal 24.0 17.0 22.0 7.1, 14.0, 23.2, 29.5 6.4, 14.9, 22.5, 28.0, 41.0
KNbO3/Rhombohedral — — 21.9 — 6.4, 14.9, 22.5, 28.1, 41.4

to be at the � point for all phases. The first conduction bands are found to have an eg

character at the � point in the cubic phase (Fig. 1). At higher energy, conduction bands
have a1g or t2g character at the R and � points. The gap in the conduction band has a
minimum of 1.3 eV at � point. The fundamental gap of KNbO3 single crystal has been
measured in the cubic and tetragonal phases [12]. More precisely, VUV spectroscopy has
been performed in reflectivity in the 1.0–35.0 eV range, and the absorption spectrum has
been deduced from a Kramers-Kronig analysis [15]. The band gap obtained from a fit of the
low absorption is found to be of 2.86 eV. However, EEL spectroscopy experiments a large
momentum transfer [17], give a gap value of about 2.9 eV. Our fitted value for Eg amounted
to 2.45 eV in the cubic phase of KNbO3. We have also calculated the minimum and direct
LDA band gap energy at the theoretical lattice parameters (Table 1). Within the accuracy
of our calculations, the values of the direct and indirect band gap are within 2.35 eV of
each other in all phases except the rhombohedral one, where the minimum gap is 1.5 eV
smaller than the first direct gap. Our results are in a good agreement with the previous
calculation [14, 17] performed at the experimental lattice parameters, with the exception
of the rhombohedral phase (Table 2).

Energy Loss Spectroscopy

In this section, we first apply the theoretical framework defined in section 3 and report our
theoretical EEL spectra. Valence EEL spectroscopy experiments have previously been per-
formed in transmission at a large momentum transfer q [1] and also in the reflection [1, 12].
In this work, we have performed very low q and VUV reflectivity [12–14] experiments
and compared them with the theoretical results. In Fig. 2, we report the dielectric functions
(real and imaginary parts, and Imε−1) for KNbO3 in three phases: cubic, tetragonal, and
rhombohedral, calculated in LDA. Three regions can be distinguished. First, we observe
that the valence excitation region extends up to 15.0 eV. The form of the structure and
the shape of ε2 for the investigated crystal are determinate by the positions of the critical
state density points. The similarity between the ε2 for all the modifications of KNbO3 in
the region up to 14.0 eV points to a substantial role of NbO6 octahedra in the formation
of the band structure. This means that the NbO6 octahedra determine the lowest limit of
the conduction band and the upper valence band. These bands are similar for many ABO3

compounds, since the d-orbitals of the transition metals and the p-orbitals of oxygen, which
are joined in each octahedron, yield the main contribution to the bands indicated above. The
real part of ε behaves mainly as a classical oscillator. It vanishes (from positive to negative
value) around 5.52, 10.01, 11.88, and 13.48 eV, and correspondingly, ε2 shows the maxima
of absorption at these frequencies. The real part ε vanishes (from negative to positive) at
6.40, 11.29, 12.72, and 14.96 eV (not seen in the figure because of the small broadening).
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104 S. Simsek et al.

Figure 2. The calculated real (ε1) and imaginary (ε2) parts of the dielectric function and electron
energy-loss spectra (–Imε−1) of KNbO3 in cubic (a), tetragonal (b) and rhombohedral (c) phases.

The loss function consequently shows peaks at these energies: 6.50 and 15.00 eV. In the
absorption spectrum ε2 the strong absorption below 8.0 eV stems from transitions from the
valance band to the eg states. The absorption band expending beyond 8.5 eV up to 14.0 eV
is associated with transitions from the valence band to t2g states in the conduction band.
Second, we see that above 15.0 eV, corresponding to the O 2s and Nb 4p excitations, ε1

also behaves as a classical oscillator: it vanishes (from positive to negative) at 21.30 eV.
Peaks are observed in the loss function when ε1 vanishes (from negative to positive) at
22.11 eV. Third, we remark that the region above 22.0 eV cannot be interpreted in terms of
classical oscillators. Above 22.0 eV ε1 and ε2 are dominated by linear features, increasing
for ε1 and decreasing for ε2. The corresponding loss function exhibits a broadened peak at
41.3 eV that we assign not to plasmons but rather to their forms of collective excitations.
The plasmons are defined by a vanishing real part of dielectric function and a minimum of
the imaginary part, which is not the case for this peak. Such linear behavior for ε1 and ε2 has
already been observed in the theoretical EEL spectra of ABO3. At higher energies, however,
they drastically modify the triple 4p plasmons, both in line shape and peak position. We
also find a small anisotropy for the xx and zz directions.

Conclusion

We have performed an ab initio study of the electronic structures of KNbO3. Within the
DFT-LDA framework, we have found it necessary to include the semicore states in the
calculations. We have then followed the effect on the electronic structure as the crystal
field evolves from a cubic to a tetragonal structure, and then to a rhombohedral. We have
described a fingerprint in the electronic structure of cubic and rhombohedral KNbO3. By
using our earlier EEL spectroscopy experimental results on ABO3 ferroelectrics and the
theoretical investigation in the present paper, we found plasmon oscillation energy for the
investigated compounds.
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