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Abstract

The interior point method is applied to frictionless contact mechanics problems and is shown to be a viable alternative
to the augmented Lagrangian approach. The method is derived from a mixed formulation which induces a contact discret-
ization scheme in the spirit of the mortar method and naturally delivers slack variables that help constrain the solution to
the feasible region. The derivation of the algorithm as well as its robustness benefits from the contact interface description
that is induced by NURBS-based isogeometric volume discretizations. Various interior point algorithms are discussed,
including a primal–dual approach that satisfies the unilateral contact constraints exactly, in addition to two primal
approaches that retain an arbitrary barrier parameter. The developed algorithms can easily be pursued starting from an
augmented Lagrangian implementation. Numerical investigations on benchmark problems demonstrate the efficiency
and the robustness of the framework, but also highlight current limitations that suggest paths for future research. Overall,
the results indicate that the interior point method can challenge the augmented Lagrangian method in contact mechanics,
even displaying potential for higher efficiency and robustness.
� 2014 Elsevier B.V. All rights reserved.
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1. Introduction

Mathematically, contact poses an optimization problem with inequality constraints. It is therefore no sur-
prise that the augmented Lagrangian (AL) method [1] has gradually established itself as the most favorable
method for solving contact mechanics problems with simultaneous efficiency and robustness, since it is one
of the most favored methods for nonlinear optimization problems as well. However, recent advances suggest
the interior point (IP) method to be a viable alternative — see [2] for an extensive review. In its simplest form,
the IP method is the classical barrier method [3,4]. The form of the barrier function can be physically
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motivated by microscopic contact mechanisms [5,6]. From an optimization point of view, on the other hand,
the barrier is classically logarithmic. Independent of the particular choice, a straightforward application of any
barrier function faces challenges, for instance due to the need to prevent the penetration of the surfaces in
order to avoid an unphysical interface pressure. The choices made in addressing these challenges directly
impact the efficiency and the robustness of the IP method. Indeed, early comparison studies indicated that
the AL approach is more robust [7]. In this work, it will be demonstrated that the IP method can challenge
the AL approach, even displaying potential for higher efficiency and robustness.

In comparison to penalty, Lagrange multiplier and AL methods, there is only a limited number of studies
concentrating on the application of the IP method in its modern form to contact mechanics. The work [7]
already considered Coulomb friction and additionally introduced slack variables that are crucial to effectively
constraining the solution to the feasible region — see also [8] for similar studies without friction. A solution
scheme that is reminiscent of Uzawa staggering for the multiplier updates in the AL approach has been con-
sidered in [9] for frictionless contact, also using slack variables. Both of the works are in a two-dimensional
setting, the former limited to linear elasticity and a single deformable body while the latter considers hyper-
elasticity with two deformable bodies and non-matching meshes based on a node-to-segment strategy for for-
mulating contact. A hybrid method based on a combination of the AL and the IP methods was proposed in
[10] for the linearly elastic frictionless contact of two bodies with matching meshes in a node-to-node setting.
Kučera et al. [11] considers a linearly elastic three-dimensional body in contact with a rigid obstacle, with Cou-
lomb as well as Tresca friction. One can also identify applications in the optimization literature, for instance
[12,13]. While all of these works are based on the finite element method, the boundary element method can
also be an efficient choice for large scale linear elasticity problems with contact [14].

There are two aspects to investigating an IP method for contact problems. The optimization aspect is still
an active research area. The algorithm employed in this work is an established framework yet leaves room for
improvement. For all aspects of the IP method from an optimization perspective, from the terminology to the
methods chosen, [15] will be made use of extensively and without further reference unless needed for clarity.
See also [16] for an overview. The second aspect concerns the discretization of the problem, both that of the
bodies as well as the contact variables. To some extent, the optimization algorithm can be varied for a given
discretization method, although the particular method will strongly affect the overall robustness of the frame-
work. Presently, the aim is to develop and test a strategy that is suitable for three-dimensional, frictionless
finite deformation contact problems with non-matching meshes. The mortar method has established itself
as the most robust contact discretization approach in this context and will be made use of in this work —
detailed references will be provided in upcoming sections. The discretization of the volume interacts naturally
with the contact discretization. Here, NURBS-based isogeometric analysis will be employed, initiated in [17]
and reviewed in [18]. Recent applications include porous media modeling [19], boundary element analysis [20],
fluid mechanics [21] and shells [22] with optimization [23]. Isogeometric contact approaches, where a smooth
surface finite element discretization is naturally induced by the volume discretization, were initiated in [24,25].
Various advantages reported in recent works will be highlighted. Nevertheless, to the best knowledge of the
authors’, the present work also constitutes a first attempt towards combining IP methods with the mortar idea.
Therefore, although not pursued in this work, the use of mortar formulations developed on the basis of
Lagrange discretizations would be equally interesting.

The work is organized as follows. In Section 2, the basic barrier regularization idea behind the IP method is
reviewed. The mixed formulation basis of the regularized formulation is presented, where slack variables nat-
urally appear and provide a means for avoiding an unphysical interface pressure. The mixed formulation addi-
tionally induces a contact discretization scheme in the spirit of the mortar method, as outlined in Section 3. In
particular, a lumped formulation that is convenient for numerical implementation will be derived through a
series of simplifying assumptions. A primal–dual strategy is then discussed in Section 4 where the aim is to
reduce the barrier parameter towards zero. This is realized within a two-stage predictor–corrector scheme
embedded in an iteration of the Newton–Raphson method for solving the nonlinear problem. Alternative pri-
mal formulations will additionally be introduced as simplifications of the primal–dual strategy. Numerical
investigations will be provided in Section 5 where two-body frictionless elastic contact problems will be dis-
cussed and comparisons with the AL method will be carried out.
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2. Interior point method

2.1. Regularization

The contribution to the weak form of the linear momentum balance due to frictionless contact is
dGc ¼ �hdg pi: ð2:1Þ
Here, p P 0 is the referential contact pressure and, within a classical slave/master setting,
g ¼ �ðx� yÞ � m ð2:2Þ
is the normal gap with x as the current position of a point on the slave surface, y refers to its closest-point
projection on the master and m is the outward unit normal to the current configuration of the master surface
at point y. For compactness, the notation
h�i ¼
Z

Cc
o

� dA ð2:3Þ
has been adopted. The reference configurations of all slave surfaces that could potentially come into contact
with the master constitute the domain of integration Cc

o. When there is no contact on a portion of the slave
surface, p is zero so that the contribution to the integral vanishes. For a detailed overview of contact kinemat-
ics, the reader is referred to [26,27].

Physically, the contact contribution is governed by the unilateral contact constraints
g 6 0; p P 0; g p ¼ 0: ð2:4Þ
In a typical exterior point (EP) method [5], these constraints are relaxed by allowing the solution to leave the
feasible region g 6 0. The violation g > 0 is then penalized by a penalty parameter � > 0, leading to the reg-
ularized model
p ¼ �g: ð2:5Þ
In an algorithmic setting, this exterior penalty approach intrinsically involves an active set — only points for
which g > 0 are considered. The penalty parameter is increased to drive the active points towards the bound-
ary of the feasible region ðg ¼ 0Þ.

In an interior point method, on the other hand, one attempts to keep the solution within the feasible region.
A suitable regularization for this purpose is a barrier formulation [26]
p ¼ �l=g: ð2:6Þ
There is no active set in this IP method — all points are active at all times. By decreasing the barrier parameter
l > 0, the solution is driven to the boundary of the feasible region. The algorithmic challenge in the applica-
tion of this approach lies in ensuring that points remain within the feasible region g < 0 to avoid undefined or
negative pressures. Within a typical Newton–Raphson type iterative solution of a contact problem based on
this method, the incremental update may move the solution outside the feasible region and there is no straight-
forward procedure for modifying the displacement update to prevent this violation. This is a central challenge.

2.2. Mixed formulation

In order to meet the algorithmic challenge associated with the use of g in the IP method, a variational for-
mulation can be introduced. For this purpose, it is useful to recall the classical three-field mixed variational
formulation of penalty-regularized normal contact, introduced in [28]. The starting point of this mixed formu-
lation is to define a contact functional C by adding a mixed kinematic variable c into the formulation. The clas-
sical penalty contact potential which delivers the regularized form of (2.1) upon variation reads
E½g� ¼ � �
2
hg2i: ð2:7Þ
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The mixed formulation defines
C½g; c; p� ¼ E½c� � hp ðg � cÞi: ð2:8Þ

When added to the functional describing the bulk response, the variation of C delivers the classical contribu-
tion (2.1) to the weak form as well as the two weak relations
hdp ðg � cÞi ¼ 0 and hdc ðp � �cÞi ¼ 0: ð2:9Þ

When all variables have infinite degrees of freedom, i.e. in the continuum setting, these relations enforce c ¼ g
and hence p ¼ �g, thereby recovering the classical EP method. Consequently, in a continuum setting there is
no apparent advantage of reverting to a mixed formulation for the EP method. The advantage appears when
the problem is discretized — see also Section 3. The situation is slightly different for the IP method. The clas-
sical barrier contact potential reads
I ½g� ¼ lhln jgji ð2:10Þ

and results in the algorithmic challenge of ensuring g < 0. Instead, following the idea in [28], a variational for-
mulation can be pursued by introducing an additional mixed kinematic variable s based on the functional
C½g; s; p� ¼ I ½s� � hp ðg þ sÞi: ð2:11Þ

As for the EP method, the variation of this functional delivers the contribution (2.1) as well as the two weak
relations
hdp ðg þ sÞi ¼ 0 and hds ðp � l=sÞi ¼ 0; ð2:12Þ

such that in the continuum setting one assigns s ¼ �g and therefore p ¼ �l=g. Alternatively, however, one
may refrain from this assignment and retain s as an independent variable. In this setting, the pressure is eval-
uated via the original implication of the weak relations:
p ¼ l=s: ð2:13Þ

Unlike g; s is not directly linked to the kinematics of the contacting bodies and hence it is possible to guar-
antee s > 0. Therefore, the mixed formulation provides a means for circumventing the difficulty associated
with the use of g, hence already displaying an advantage without discretization. s is referred to as a slack var-

iable in the optimization literature. The algorithm for updating the value of s will be introduced in 4.3. In what
follows, s > 0 is assumed.

3. Mortar-based contact discretization

3.1. Integration point and node-to-surface methods

In this section, a novel finite element discretization of the IP method will be introduced. Clearly, the sim-
plest approach to the implementation of the IP method follows its EP counterpart in a continuum setting,
starting from the discretization of the slave and master surfaces
x ¼
X

I

N IxI ; y ¼
X

J

MJ yJ : ð3:1Þ
Here, N I are the shape functions of the slave and MJ are those of the master. At any stage of the solution
procedure, the surface discretizations deliver the value of g, and indirectly s, at each integration point of
the slave elements throughout the potential contact interface via (2.2), thereby enabling the integration of
the contact contribution to the weak form either via the EP or the IP method. In the context of the EP method,
it is well known that this approach leads to surface locking [29,30], leading to unphysical solutions as � is
increased. Not surprisingly, the IP algorithm displays the same problem, leading to unphysical solutions as
l is decreased.

The alternative to the integration point approach outlined above is the classical node-to-surface algorithm
where g is calculated only at the nodes of the slave surface through their projections onto the master [26,27].
Therefore, it is possible to update s at the nodes [7,9,8]. However, several problems have been identified with
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this approach in the context of the EP method. First, while the integration point approach passes the contact
patch test, the node-to-surface algorithm in its simplest form fails it [28,31,32]. Second, since contact interac-
tions are associated with nodal locations only, sharp changes in the contact forces are often observed as nodes
change their contact status which may lead to numerical convergence problems [33,34]. Third, control points
play the role of nodes in isogeometric analysis but since isogeometric discretizations are not interpolatory the
gap associated with the location of a control point is not physical, leading to difficulties in the construction of
a node-to-surface type algorithm [24,25] — see [35] for a recent collocation approach in this context.

3.2. Mortar method

The mortar method circumvents all of the difficulties mentioned above. In particular, it passes the contact
patch test and does not display surface locking. Developed originally for domain decomposition with non-
matching interface meshes [36–38], the mortar method has extensively been applied to contact problems with-
out [39,33,40–44] and with friction [45,34,46–51]. However, all of these applications have exclusively been in
the context of the EP penalty (primal) [45,46,40,47] and Lagrange multiplier (dual, with a slight abuse of ter-
minology since a dual problem is not constructed) [39,40,52,51,44] methods or combinations thereof, such as
the AL (primal–dual) method [41,42,48,49,43] (possibly in a staggered form with Uzawa iterations
[33,34,50,53]). In this section, the IP method will be discretized in the spirit of the mortar method.

Within the numerical investigations, comparisons of the primal and primal–dual formulations of the IP
method with both the AL and the penalty methods will eventually be carried out in a mortar setting. Roughly
speaking, the iterative convergence characteristics for the primal–dual IP and EP formulations will be
observed to be similar, as is the case for the primal IP and EP formulations. Primal–dual formulations satisfy
the discrete contact constraints exactly whereas the regularization parameters in the primal formulations must
be chosen judiciously for a satisfactory solution. Although the former are computationally slightly more
expensive due to the additional presence of multipliers, they typically display a significantly more robust
behavior. It is remarked that the form of the AL method to be employed in this work follows [1] where the
multiplier and augmentation contributions to the contact pressure are linearized within a monolithic scheme.
The alternative Uzawa-staggered form is less efficient and its convergence is strongly affected by the choice of
the penalty parameter. Even when strategies are adopted to update the penalty parameter through Uzawa iter-
ations [26], its performance remains inferior to the monolithic form.

It is also remarked that mortar methods are typically accompanied by accurate integration algorithms for
the evaluation of the contact integrals. This is accomplished through the use of an intermediate integration
surface, suggested as early as [54] but the construction of which was introduced in [37] for three-dimensional
finite deformation problems. A strategy for introducing an intermediate surface for mortar-based isogeometric
domain decomposition techniques was recently developed in [55]. Presently, following [40] and consistent with
the notation employed, the integration surface is retained as the slave surface with the implication that (i) the
contact patch test will not be passed to machine precision even for flat interfaces and (ii) some degree of
robustness loss may be observed in the numerical algorithm. Nevertheless, this approach leads to considerable
ease in implementation and it has been shown to deliver satisfactory robustness and accuracy in a broad range
of contact problems in the context of isogeometric analysis.

The derivation of a suitable mortar approach can be conveniently based on the mixed formulation (2.11).
Such a construction, implicit in the construction of all mortar methods (see [39] for an early example), was
demonstrated in the context of the EP method without [56] and with friction [53]. Applying the core idea
of the mortar method in the form adopted in [33], it is proposed that not only the pressure but also the slack
variables are discretized using the slave discretization:
p ¼
X

I

N IpI ; s ¼
X

I

N I sI : ð3:2Þ
Although the same order of discretization is employed for the displacement and contact degrees of freedom,
earlier works on isogeometric contact have not detected any stability issues with this choice. Specifically, the
local pressure distribution and the global loads converge with mesh refinement [57,58]. Additionally, the patch
test is satisfied without displaying surface locking [53].
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The first of the weak relations in (2.12) now implies
X
I

dpIhNIðg þ sÞi ¼ 0 ð3:3Þ
or
hN Isi ¼ �hNIgi: ð3:4Þ
The physical gap g does not admit a discretization but s does, leading to a linear system of equations that
deliver the discrete values of s:
X

J

hNIN J isJ ¼ �hN Igi: ð3:5Þ
Consequently, s is not necessarily equal to g pointwise but only in the weighted sense in (3.4). It is recalled that
sI must additionally be subjected to a positivity requirement to avoid undefined or unphysical pressures — see
Section 4.3.

The second of the weak relations in (2.12) implies
X
I

dsIhNIðp � l=sÞi ¼ 0 ð3:6Þ
or
hN Ipi ¼ lhNI=si; ð3:7Þ
thereby leading to a linear system of equations for the discrete values of p provided s has already been
determined:
X

J

hNIN J ipJ ¼ lhNI=si: ð3:8Þ
3.3. Lumped formulation

The results (3.5) and (3.8) are inconvenient for two reasons. First, they require the solution of linear systems
of equations. Second, the discrete values of s cannot be moved out of the integral expression on the right-hand
side of (3.8), which is inconvenient for the numerical implementation. The first of these can be resolved
through a simple lumping approach — see [56] for alternative approaches in the context of the present deri-
vation. For (3.5) this results in
sI ¼ �hN
Igi
hN Ii

: ð3:9Þ
Here, an important feature of isogeometric discretizations comes into play, namely the non-negativity of the
basis functions [18]. This feature guarantees that sI is positive whenever the physical gap g is negative through-
out the interface. This is not true for discretizations based on the classical Lagrange basis functions, leading to
complications for higher-order mortar formulations [42,47,50]. Presently, the same mortar algorithm will be
uniformly applicable to all orders of isogeometric (NURBS) discretizations without any special modification
[58–60], thereby simplifying the treatment of geometries with varying orders of discretizations.

For (3.8), on the other hand, it is desirable to apply lumping to the left-hand side and also simplify the
right-hand side. In relation to the continuum expression (2.13), obtaining the result
pI ¼ l=sI ð3:10Þ
would prove convenient whereas lumping alone delivers
pI ¼ l
hN I=si
hN Ii

: ð3:11Þ
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Hence, the simplification of the right-hand side must be justified. This is possible through energy arguments.
The contribution to the weak form is, upon repeatedly using (3.2), (3.4) and (3.7),
dGc ¼ �hdg pi ¼ �
X

J

hdg NJ ipJ ¼
X

J

hdsNJ ipJ

¼ hdspi ¼
X

I

hN IdsI pi ¼
X

I

dsIhNI pi ¼
X

I

ldsIhNI=si

¼ lhds=si ¼ ldhln jsji ¼ dI ½s�:

ð3:12Þ
For insufficiently small values of l; �Gc ¼ �I ½s� > 0 represents a convex interface energy. Since sI will be
retained in the feasible (positive) region and the isogeometric basis functions satisfy the partition of unity, Jen-
sen’s inequality guarantees
�I ½s� ¼ �lhln jsji 6 �l
X

I

hNI ln jsI ji ¼ �eI ½s�: ð3:13Þ
Consequently, the minimization of �eI will ensure the minimization of �I . Specifically, if �eI is driven to zero
by decreasing l towards zero then �I is guaranteed to be driven to zero. In this sense, eI is a suitable approx-
imation of I . When eI is used in the mixed formulation (2.11) instead of I , followed by lumping, one ends up
with (3.10) as desired instead of (3.11).

Above, it was assumed that the same sI values are used to evaluate both I and eI . Clearly, the original and
approximate formulations will deliver different sI values such that the inequality in (3.13) may not hold. Nev-
ertheless, the numerical investigations in Section 5.2 will demonstrate that the difference between the two
potentials remains very small which suggests that the solutions obtained from both formulations would prob-
ably also be very close. In view of this observation, the algorithmic convenience of the approximation is very
appealing.

To summarize, the final discrete form of the functional (2.11) from which the mortar-based IP method ema-
nates is
C ¼
X

I

flwI ln sI � pIðgI þ wIsIÞg; ð3:14Þ
where the notation
wI ¼ hNIi; gI ¼ hN Igi ð3:15Þ
has been introduced for further notational compactness in upcoming algorithmic discussions.

4. Primal–dual strategy

4.1. Gap and complementarity conditions

The IP method introduced so far is a primal strategy where the contribution to the weak form of the linear
momentum balance is determined by a mortar-based discretization
dGc ¼ �
X

I

dgIpI ð4:1Þ
with the lumped formulation pI ¼ l=sI where sI , ideally equal to �gI=wI , will be algorithmically ensured to be
positive. It is remarked that, since lumping is not applied to the contact contribution, the analysis presented in
[33,44] regarding momentum conservation is applicable to the present formulation as well. Specifically, when
the problem demands it, the linear momentum will be conserved provided the mortar integrals are evaluated
exactly.

Provided l is chosen sufficiently small, a satisfactory solution is expected. However, an appropriate choice
of l may not always be straightforward. A primal–dual strategy that is also based on the functional (3.14) may
be constructed to circumvent this problem wherein sI will be driven to zero at the contact interface and pI will
be regarded as independent Lagrange multipliers. Note that this needs to be realized by driving l to zero since



596 _I. Temizer et al. / Comput. Methods Appl. Mech. Engrg. 276 (2014) 589–611
the barrier term in (3.14) would otherwise be undefined. The method of determining how l is decreased dic-
tates the solution scheme. Here, one common scheme is adopted from the optimization literature. Extensive
discussions on the apparent ill-conditioning that arises as l! 0 as well as methods of circumventing it may be
found in [15,16].

The starting point for a primal–dual approach is to restate the lumped formulations as
wIsI þ gI ¼ 0; sIpI ¼ l; ð4:2Þ
the former to be referred to as the gap and the latter as the complementarity condition. Within the primal set-
ting, the former condition is satisfied only at convergence, due to the necessity of ensuring sI > 0. The latter,
however, is enforced directly. In the primal–dual setting, both of these conditions are satisfied only at conver-
gence. Their linearizations therefore deliver
wIsI þ gI þ wIDsI þ DgI ¼ 0; sIpI þ DsIpI þ sIDpI þ DsIDpI ¼ l ð4:3Þ
with the non-incremental terms not necessarily adding to zero. Note the presence of the seemingly unfitting
quadratic term DsIDpI . This term will be initialized to zero and then recomputed in a predictor–corrector algo-
rithm in the primal–dual strategy. If the quadratic term is omitted then one essentially obtains a scheme that is
equivalent to the primal one — see Section 4.5. Its presence serves two purposes: (i) it helps to quicker satisfy
the complementarity with the updated solution, i.e. ðsI þ DsIÞðpI þ DpIÞ ¼ l, and (ii) it delivers an estimate of
l for the next iteration.

DsI may be isolated from the latter result in (4.3) as
DsI ¼ ðl� sIpI � sIDpI � DsIDpIÞ=pI ð4:4Þ
and then substituted into former to yield, after rearrangement,
DgI � wIsIDpI=pI ¼ �wIðl� DsIDpIÞ=pI � gI : ð4:5Þ
Recalling that the gap condition emanates from the (lumped) weak statement (3.3), this result may be restated
in weak form as
X

I

dpIðDgI � wI sIDpI=pIÞ ¼ �
X

I

dpIfwIðl� DsIDpIÞ=pI þ gIg; ð4:6Þ
which constitutes a linear system of equations, apart from the quadratic term in the right-hand side, that com-
plements the system of equations associated with the linearization of (4.1):
�DdGo½u;Du� þ
X

I

ðDdgIpI þ dgIDpIÞ ¼ dGo½u� �
X

I

dgIpI : ð4:7Þ
Here, dGo½u� symbolically denotes the classical weak form of the bulk problem without contact and u symbol-
ically denotes the configurations of the bodies, e.g. in the first Newton–Raphson iteration of the first time/load
step u represents the vector of control point positions associated with the reference configuration. The solution
of the coupled system (4.6) and (4.7) delivers the update to u as well as to the contact variables pI and, through
(4.4), sI . The solution strategy will be discussed in the next section.

Before proceeding, it is remarked that the contact contributions to the tangent matrix are standard and
require no special discussion: fdgI ;DgI ;DdgIg are classical terms and all other terms are straightforward.
Clearly, the contributions are symmetric. It is also worth comparing the framework to the AL approach
[1,41,43,59,61] as the primal–dual extension based on the functional (2.8). Therein, the weak form (4.7) of
the linear momentum balance remains identical. However, the pressure is defined through an augmented
Lagrange multiplier kI :
pI ¼ kI þ �gI=wI �! DpI ¼ DkI þ �DgI=wI : ð4:8Þ
The weak statement (4.6) is replaced by
X
I2A

dkIDgI �
X
IRA

dkIwIDkI=� ¼ �
X
I2A

dkI gI þ
X
IRA

dkIwIkI=�: ð4:9Þ
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Note that it is necessary to define an active set A : I 2 A if pI P 0. The inactive set contribution serves to reset
the deactivated multipliers to zero. In view of the considerable algorithmic similarity of the two approaches,
the present IP formulation can easily be pursued starting from an AL implementation. Moreover, it is straight-
forward to switch from the IP formulation to the AL formulation at any stage of the iterative solution scheme
by transferring the Lagrange multipliers, although an advantage of such an approach has not been observed
for the set of examples investigated in this work.

4.2. Predictor stage

At a given load step, the nonlinear system of equations describing the IP method is iteratively solved within
a Newton–Raphson scheme. Each iteration step involves two stages within which (4.7) is preserved and (4.6) is
successively modified. For further theoretical and practical details on the method chosen, the reader is referred
to [15] (Section 14.2 and Chapter 19).

The first predictor (or, affine-scaling) stage starts from the last iterative solution fu; sI ; pIg of the Newton–
Raphson procedure. To determine the predictor updates, one sets both l as well as the quadratic term within
the right-hand of side (4.6) to zero. Therefore, the predictor form of (4.6) becomes
R ¼ �
X

I

dpIgI �!
X

I

dpIðDgI
p � wIsIDpI

p

.
pIÞ ¼ R ð4:10Þ
and together with (4.7) delivers the incremental predictor updates Dup and DpI
p. These are used to determine

the predictor update to the slack variables through (4.4) where l and the quadratic term are still omitted:
DsI
p ¼ �ðsIpI þ sIDpI

pÞ=pI : ð4:11Þ
The computational cost of this first stage is identical to a single iteration based on the AL method — see
Eqs. (4.8) and (4.9). The second stage will therefore lead to additional cost. However, the iterative solution
fu; sI ; pIg will not be updated until the end of the second stage. Consequently, the second stage will make
use of the same tangent matrix emanating from (4.7) and (4.6), as well as the same right-hand side from
(4.7). New terms will only be added to the right-hand side R from (4.10), but without the need for additional
element-level computation. Consequently, the overall additional cost of the second stage will be due to an
extra linear system solver call. Typically this cost can be minimized since, for instance, the factorized tangent
matrix can be retained for reuse in the second stage.

4.3. Corrector stage

The second corrector stage (in its present form including the so-called centering contribution [15]) starts by
setting the barrier parameter l via a heuristically chosen centering parameter b
b ¼
lp

lo

� �3

�! l ¼ blo: ð4:12Þ
Here, the deviation from the complementarity condition in (4.2) is assessed by
X
I

wIlo ¼
X

I

wIpIsI �! lo ¼
X

I

wIpI sI=
X

I

wI ð4:13Þ
for the last iteration, and similarly by
lp ¼
X

I

wI pI þ aD
p DpI

p

� �
sI þ aP

p DsI
p

� �
=
X

I

wI ð4:14Þ
for the predictor update, where the primal and dual predictor scaling factors aP
p ; a

D
p

n o
lie in ð0; 1�.

The right-hand side R from (4.10) is now updated by adding the previously omitted terms:
X
I

dpI DgI
c � wIsIDpI

c=pI
� �

¼ R�
X

I

dpIwI l� DsI
pDpI

p

� �
=pI : ð4:15Þ
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Together with (4.7), this updated system of equations delivers the incremental corrector updates Duc and DpI
c

which, through (4.4), determine the corrector update to the slack variables:
DsI
c ¼ l� sI pI � sIDpI

c � DsI
pDpI

p

� �.
pI : ð4:16Þ
Using corrector scaling factors aP
c ; a

D
c

� 	
in ð0; 1�, the final algorithmic update to the solution is
u ¼ uþ Duc; sI ¼ sI þ aP
c DsI

c; pI ¼ pI þ aD
c DpI

c ð4:17Þ
followed by a new two-stage Newton–Raphson iteration until convergence within a load step.
The step size choices are made such that sI and pI remain positive. This is achieved through the fraction to

the boundary rules
aP
c ¼ min 1; min

I:DsI
c<0
� c sI

DsI
c


 �
; aD

c ¼ min 1; min
I:DpI

c<0
� cpI

DpI
c


 �
: ð4:18Þ
The predictor scaling factors aP
p ; a

D
p

n o
in (4.14) are defined similarly. The constant c, typically ½0:9; 1Þ, deter-

mines how close to zero the slack variables and the Lagrange multipliers are allowed to approach. The choices
regarding the barrier parameter and solution update are not unique and may be altered to improve perfor-
mance. For instance, one may set minimum and maximum values for b or the update to u may also be scaled,
e.g. by aP

c . Also, the scheme above drives l to zero aggressively. Modifications can slow down the rate at which
this is carried out or a cutoff may be employed.

4.4. Efficiency and robustness

A summary of the primal–dual solution algorithm is presented in Table 1. Unlike the AL approach, the
primal–dual algorithm is not expected to converge quadratically due to the continuous update of the barrier
parameter l. Nevertheless, the algorithm converges superlinearly, in fact very close to quadratically. More-
over, due to the lack of an active set, the overall efficiency of the method can be superior to the AL method
despite the fact that the time per iteration is higher due to one extra linear system solve. From a robustness
point of view, on the other hand, it was observed that the IP method is just as robust as the AL method when
multiple time or load steps are not required. Otherwise, the IP method fails due to the rapid reduction of the
barrier parameter across the steps. However, the predictor–corrector scheme presented here is not unique and
modifications can alter the degree of robustness [15,16]. See Section 5 for further discussion.

4.5. Primal algorithm

The primal strategy outlined in Section 3.3 explicitly enforces the complementarity condition via (3.10). The
resulting algorithm does not require a two-stage iteration and operates through a constant barrier parameter
l, as summarized in Table 2. Here, the non-smoothness introduced by the scaling factor has similar conse-
quences as the non-smoothness introduced by the active set of the primal EP method. Therefore, the primal
strategy delivers asymptotically quadratic convergence since the scaling factor consistently takes the value 1
near convergence.

An alternative primal formulation may be obtained by modifying the primal–dual algorithm in a straight-
forward fashion. For this purpose, one omits the quadratic term in the linearization (4.3) of the complemen-
tarity condition and, hence, in the update (4.4) to sI . In other words, one simply carries out a standard
linearization of the system of equations. Consequently, as in the primal–dual case, both the gap and the com-
plementarity conditions are satisfied only at convergence. The resulting algorithm, still operating through a
constant l, also converges asymptotically quadratically and is summarized in Table 3. With some abuse of
terminology, this version is also referred to as primal since it converges to the same result as the previous ver-
sion. The additional cost due to the introduction of the additional degrees of freedom pI is not significant. In
view of the observations to be stated in Section 5.2, this will be the preferred primal IP algorithm.

In either case, the barrier parameter needs to be chosen sufficiently small to ensure a physically reasonable
solution. In the primal EP method, and in particular for two highly deformable bodies in large sliding contact,



Table 1
Algorithm for the mortar-based primal–dual IP method.

1. Initialize. Within a load step, the solution fu; sI ; pIg (hence gI ¼ hNI gi) from the last Newton–Raphson iteration is known. The
weights wI ¼ hNIi are iteration independent. (For the first load step set, e.g., sI ¼ jgI j=wI and pI ¼ lo=sI with a chosen lo.)

2. Linearized System Setup. The two-stage Newton–Raphson iteration requires the solution of (4.7)

�1 � DdGo½u;Du� þ
X

I

ðDdgI pI þ dgIDpIÞ ¼ dGo½u� �
X

I

dgI pI ;

together with (4.6) for a prescribed right-hand side R:

�2
X

I

dpIðDgI � wI sIDpI=pIÞ ¼ R

Compute the stage-independent tangent matrices emanating from the left-hand sides of r and s, as well as the
stage-independent right-hand side of r.

3. Predictor Stage. Determine the predictor updates Dup and DpI
p by solving r and s using

R ¼ �
X

I

dpI gI

The slack variable updates follow from the predictor form (4.11) of (4.4):

DsI
p ¼ �ðsI pI þ sIDpI

pÞ=pI

4. Barrier Parameter Update. Calculate predictor scaling factors using, e.g., c 2 ½0:9; 1Þ

aP
p ¼ min 1; min

I :DsI
p<0
� c sI=DsI

p

( )
; aD

p ¼ min 1; min
I :DpI

p<0
� cpI=DpI

p

( )
and base quantities

lo ¼
X

I
wI pI sI

.X
I
wI ; lp ¼

X
I
wI pI þ aD

p DpI
p

� �
sI þ aP

p DsI
p

� �.X
I

wI

to set the barrier parameter

b ¼ ðlp=loÞ
3 �! l ¼ blo

5. Corrector Stage. Determine the corrector updates Duc and DpI
c by solving r and s after the update

R ¼ R�
X

I

dpI wI l� DsI
pDpI

p

� �.
pI :

The slack variable updates follow from the corrector form (4.16) of (4.4):

DsI
c ¼ l� sI pI � sIDpI

c � DsI
pDpI

p

� �.
pI :

6. Iterative Solution Update. Compute corrector scaling factors

aP
c ¼ min 1; min

I :DsI
c<0
� c sI=DsI

c


 �
; aD

c ¼ min 1; min
I :DpI

c<0
� cpI=DpI

c


 �
and update the solution based on the corrector stage solution:

u ¼ uþ Duc; sI ¼ sI þ aP
c DsI

c; pI ¼ pI þ aD
c DpI

c:

7. Check convergence. Compute the iteration error and reiterate if necessary.
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it is well-known that the solution often displays the need for a larger � yet convergence cannot be achieved
when it is increased or the resulting robustness is significantly inferior compared to the AL method. Contrary
to expectation, it was observed that this problem is not nearly as significant in the primal IP method — l can
be chosen satisfactorily small. In fact, it was observed that (i) the algorithm challenges the AL approach in all
the cases tested, even displaying better robustness at the same cost, and (ii) it is more robust than the predic-
tor–corrector scheme adopted in this work. With respect to the latter observation, it should be remarked that
the construction of robust primal–dual approaches is an active research area for the IP method where proper
choices of the centering parameter and the fraction to the boundary rules directly impact efficiency and



Table 2
Algorithm for the mortar-based primal IP method: Version 1.

1. Initialize. Within a load step, the solution fu; sIg (hence gI ¼ hNI gi) from the last Newton–Raphson iteration is known. Constants
wI ¼ hNI i are iteration independent. (For the first load step set, e.g., sI ¼ jgI j=wI .)

2. Primal Formulation. The barrier parameter l is prescribed to a fixed value, hence pI ¼ l=sI is known. Using DsI from the linearized
gap condition (4.3), obtain the pressure linearization:

DpI ¼ Dðl=sIÞ ¼ �pIDsI=sI ¼ ðpI sI þ pI gI=wI þ pIDgI=wIÞ=sI :

3. Linearized System Solution. The Newton–Raphson iteration update Du follows from (4.7)

�DdGo½u;Du� þ
X

I

ðDdgI pI þ dgIDgI pI=wI sIÞ ¼ dGo½u� �
X

I

dgIð2pI þ pI gI=wI sIÞ;

which delivers DgI and hence DsI .
4. Iterative Solution Update. Compute a scaling factor using, e.g., c 2 ½0:9; 1Þ

a ¼ min 1; min
I:DsI<0

� c sI=DsI


 �
and update the solution based on the corrected increments:

u ¼ uþ Du; sI ¼ sI þ a DsI �! pI ¼ l=sI :

5. Check convergence. Compute the iteration error and reiterate if necessary.
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robustness. It is believed that the adoption of alternative strategies that deliver superior performance can be
pursued based on the present framework.

5. Numerical investigations

In this section, the observations summarized in the previous sections as well as additional aspects of the
interior point method are demonstrated by numerical examples. Where possible, a compact presentation is
pursued by borrowing test cases from earlier works where detailed descriptions of the loading scenarios
may be found. Some relatively straightforward remarks are not explicitly discussed. For instance, the enforce-
ment of the contact constraints at the integration points leads to surface locking (Section 3.1) and the patch
test is passed to high accuracy (Section 3.2). These would follow in a similar fashion as in earlier isogeometric
contact studies of surface locking and patch tests based on penalty approaches [53]. In all examples, c ¼ 0:95
has been employed in the IP algorithms summarized in Tables 1 and 3. The value of the barrier parameter will
be noted.

5.1. Hertzian contact

The classical Hertzian contact is a convenient setting since it is a materially and geometrically linear prob-
lem that helps assess the performance of the optimization algorithm alone. For instance, the stiffness matrix
needs to be computed only once so that comparisons of simulation times are indicative of the algorithm effi-
ciency. For this purpose, the plane-strain setting with two bodies is considered, based on the order elevation
and knot refinement schemes discussed for this problem in [25]. The Young’s modulus is E ¼ 1 and the Pois-
son’s ratio is m ¼ 0:3. Coarser and finer discretizations respectively halve and double the angular NURBS dis-
cretization of the default case where the slave is assigned 96 elements and the master 48. The discretizations in
the radial direction are the same, fixed and based on 48 linear Lagrange elements. The default NURBS order is
two ðN 2Þ.

Fig. 1 summarizes fundamental aspects of the IP algorithm. For the primal IP method (Table 3), the choice
of the barrier parameter l directly affects the quality of the solution, which quickly approaches the exact solu-
tion as l is decreased. The primal–dual IP method (Table 1) eliminates the arbitrariness due to the choice of l.
The solution obtained with an initial guess lo ¼ 10�5 overlaps with the AL one (see Eq. (4.9)) since both meth-
ods enforce the contact constraints (2.4) exactly. In order to remove the observed oscillations, the discretiza-
tion must be refined by knot insertion. The mortar-based contact algorithm is uniformly applicable to all



Table 3
Algorithm for the mortar-based primal IP method: Version 2.

1. Initialize. Within a load step, the solution fu; sI ; pIg (hence gI ¼ hNI gi) from the last Newton–Raphson iteration is known. The
weights wI ¼ hNI i are iteration independent. (For the first load step set, e.g., sI ¼ jgI j=wI and pI ¼ l=sI where l is prescribed to
a constant value.)

2. Linearized System Solution. The Newton–Raphson iteration requires the solution of (4.7)

�DdGo½u;Du� þ
X

I

ðDdgI pI þ dgIDpIÞ ¼ dGo½u� �
X

I

dgI pI ;

together with (4.6) by omitting the quadratic terms:X
I

dpIðDgI � wI sIDpI=pIÞ ¼ �
X

I

dpIðwIl=pI þ gIÞ:

The solution delivers the update Du and hence DsI , using (4.4) without the quadratic terms.
3. Iterative Solution Update. Compute scaling factors using, e.g., c 2 ½0:9; 1Þ

aP ¼ min 1; min
I :DsI<0

� c sI=DsI


 �
; aD ¼ min 1; min

I:DpI<0
� cpI=DpI


 �
and update the solution based on the corrected increments:

u ¼ uþ Du; sI ¼ sI þ aP DsI ; pI ¼ pI þ aDDpI :

4. Check convergence. Compute the iteration error and reiterate if necessary.

_I. Temizer et al. / Comput. Methods Appl. Mech. Engrg. 276 (2014) 589–611 601
orders of NURBS discretizations, although the solution remains relatively unaffected by order elevation at a
fixed resolution. A preliminary analysis additionally indicated that the order of convergence does not improve
with order elevation. Discussions of optimal convergence for mortar-based higher-order NURBS and
Lagrangian discretizations may be found in [52,50,55]. Presently, the practical advantage of order elevation
appears when there is large sliding as will be observed in Section 5.4.

A comparison of the primal–dual IP and the AL methods is provided in Fig. 2 for the test cases of Fig. 1.
Here, the iteration error is monitored to convergence. Both methods are relatively insensitive to order eleva-
tion. However, a clear performance advantage is observed for the IP method: convergence is faster, asymptot-
ically near-quadratic, smooth and monotonic. The smooth monotonic convergence of the IP method is due to
the absence of an active set. Indeed, the AL method delivers quadratic convergence only after the active set
settles. The advantage becomes clearer for knot refinement. With an increase in the number of contact degrees
of freedom, both methods require a larger number of iterations to convergence. However, the AL method
requires almost twice the number of iterations in each case. Since the primal–dual IP method requires two
solves per iteration, the overall solution times do not show the same ratio although the IP method still displays
a clear advantage. It is noted that each solve per IP solution step was carried out independently, without tak-
ing advantage of the fact that the tangent matrix remains identical. Therefore, the solution times for the IP
method leave room for improvement. It is also noted that for the application of the AL method, the penalty
parameter is chosen as � ¼ 10. At this value, a pure penalty approach would deliver a solution that is similar to
the primal IP solution with l ¼ 10�5. The AL method performance is insensitive to the choice of �, although
larger choices start to display typical ill-conditioning problems. The primal–dual IP method performance is
slightly sensitive to the initial choice lo since it must be driven to zero with iterations. However, the increase
in the number of iterations is small (roughly one additional iteration for one order of magnitude increase in
lo). Similar to the AL method, smaller choices of lo render the primal–dual IP method prone to ill-
conditioning.

5.2. Finite Hertzian-type contact

A finite Hertzian-type contact problem is considered, based on the material, geometry and loading choices
in [56] with the extension of a deformable master body. The goal is to assess the effect of significant nonlin-
earity in the problem. Here, two bodies with a Neo-Hooke type elastic response ðE ¼ 10; m ¼ 0:3Þ are pressed
against each other under displacement control of the top surface of the upper slave body. At the coarse



Fig. 1. The Hertzian contact problem of Section 5.1: (a) the barrier parameter is varied using the primal IP method (version 2), (b) the
primal–dual IP method is compared with the AL method, (c) the effect of order elevation as well as (d) knot refinement is monitored. pmax

is the maximum pressure and r is the distance from the center of the contact zone of width 2 rcontact. After order elevation followed by knot
refinement on the original geometry, the interface control points are concentrated in the vicinity of the contact zone by relocating the knots
[25]. The procedure does not guarantee a symmetric mesh, which is the source of the unsymmetric pressure distribution. For the portion of
the mesh within the contact zone, the unsymmetry in the mesh is observable from the unsymmetric positions of the control points near
r=rcontact ¼ �0:8 in (b).
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discretization, the slave is discretized with 6/3 N
2

elements in the horizontal/vertical directions and the master
with 4/2. From the coarse (C) to the medium (M) and from the medium to the fine (F) discretization, the num-
ber of elements in each direction is doubled. At the finest resolution, there are more than 12,000 control points.

Fig. 3 displays the problem setting based on a relatively large barrier parameter such that the primal IP
method (Table 3) delivers a significant gap in comparison with the primal–dual one. The primal–dual IP
and AL methods are compared in Fig. 4(a). Clearly, in comparison with the linear setting of Section 5.1,
the primal–dual IP method appears to lose its advantage in terms of efficiency, even requiring a larger number
of iterations at the finest resolution despite displaying initial faster convergence. In terms of computation time,
the primal–dual IP method requires two solves per iteration so that the overall computation time is also
higher. However, the method is just as robust as the AL approach for this problem. In particular, the signif-
icant deformation visible in Fig. 3 has been applied in one step at all resolutions.

In order to highlight an advantage of the IP method, the EP penalty approach is compared with the primal
IP method. Either one is inferior to the methods discussed above so that the loading must be applied in two
steps to ensure convergence. Even then, the penalty method fails to converge for values of � above 10 which,
however, delivers an unacceptable solution quality with excessive penetration and little deformation of the
bodies. The primal IP method, on the other hand, already delivers an acceptable solution at l ¼ 10�2. Beyond
l ¼ 10�3 the solution is indistinguishable from the primal–dual one although l can be decreased even further



Fig. 2. The convergence behaviors of the AL and the primal–dual IP method are summarized for cases (c) and (d) in Fig. 1. The error is
defined as kDuk2

�
kuoldk2. For knot refinement based on coarse (C), default (D) and fine (F) N

2
discretizations, the numbers in parentheses

denote the relative simulation times (based on the average of 100 (C), 10 (D) and 5 (F) runs), with the coarse IP solution as the reference.
The gray line indicates the convergence tolerance ð10�9Þ.

Fig. 3. The finite Hertzian-type contact problem is depicted at the coarse resolution: (a) to (c) are based on the primal IP method (version
2) with l ¼ 10�1, which results in a visible gap. The primal–dual IP method also employs this value as the starting point lo but drives the
gap to zero.
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by several orders of magnitude. The convergence behavior as l is adjusted is monitored in Fig. 4(b) for the
second load step. In general, the choice of the barrier parameter in the primal IP method should be made judi-
ciously by taking into account the stiffness of the bodies in contact. Similar to the EP penalty approach, the
number of iterations to convergence increases as the contact gap is driven to zero by adjusting the regulari-
zation parameter. At an acceptable quality, the primal IP method is still more expensive than the AL method
since the IP formulation requires integrating over all the contact surface versus only the active ones. In view of
the fact that the loading is typically applied at multiple steps, it is interesting to observe that the primal IP
method can challenge the primal–dual one for nonlinear problems in terms of efficiency and also display a
close level of robustness.

By construction, both versions of the primal IP method deliver the same result although the iterative con-
vergence behavior of each version is different as summarized in Fig. 4(c). Version 1 of the algorithm fails to
converge in 2 steps for the chosen values of l. Only l ¼ 10�3 converges with 3 steps. With 4 steps or larger,
version 1 converges for all choices of l. This indicates that version 2 of the primal algorithm is more robust
and it also appears to converge faster. It is recalled that the algorithmic difference between the two versions is
the indirect relation between the slack variable and the pressure as well as their independently scaled updates
in version 2 (see Table 3, step 3). In view of the observed advantages of version 2, version 1 will not be inves-
tigated further in the remaining examples.



Fig. 4. For the problem of Section 5.2, the convergence behaviors of AL and the IP method are summarized. The error is defined as
kDuk2

�
kuoldk2. Coarse (C), medium (M) and fine (F) N

2
discretizations at compared in (a) where the IP method is based on the primal–

dual approach. The gray line indicates the convergence tolerance ð10�6Þ. In (b), the primal IP method (version 2) with various barrier
parameter values is compared with the primal–dual method. In (c), versions 1 ðv1Þ and 2 ðv2Þ of the primal algorithm are compared at
different l values for the last step of a 4-step loading. In (d), following (b), the corresponding barrier potentials for the original and
approximate formulations are compared in the context of the discussion of the inequality (3.13).
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The original barrier potential is compared with the approximate one in Fig. 4(d). As expected, smaller
choices of l within the primal formulation delivers smaller values for the potentials. It is observed that this
also ensures a vanishing gap between the original and approximate potentials. Moreover, since l is driven
to zero automatically within the primal–dual formulation, both the potentials and their difference are driven
to zero with iterations. Similar trends are observed for order elevation and knot refinement, the former having
a weaker influence compared to varying l while the latter has an effect of comparable magnitude.

5.3. Thick-walled shells in sliding contact

In this section, the large sliding contact of two thick-walled shells is considered at the finite deformation
regime, exactly following the setup in [56] — see Fig. 5. Contrary to the previous two examples, this problem
requires multiple time steps by construction, chosen to be 20. As time progresses, contact is first initiated and
then lost. Three N

2
discretizations are employed, with respectively 10/10 (coarse), 20/10 (medium) and 30/20

(fine) elements on the slave/master in the horizontal directions to monitor the normal ðF N Þ and tangential ðF T Þ
forces acting on the master. The thickness direction had two elements in all cases.



Fig. 5. The problem of Section 5.3 is summarized at the fine N
2

discretization based on the AL method. The upper (slave) thick-walled
shell is moved over the lower stationary one under displacement control in 20 steps. Time ratio indicates simulation progress.
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Due to multiple load steps, the primal–dual IP algorithm in Table 1 usually succeeds in the first few time
steps but subsequently drives l to too small a value that causes ill-conditioning and hence the failure of the
algorithm. A simple modification, such as using a cut-off on l or resetting its value to lo at each time step
(cold-start), does not lead to robustness. Consequently, the primal–dual version of the IP method requires
improvement with respect to the update of the barrier parameter through multiple time/load steps, which
can be accomplished by adopting warm-start strategies [62,63]. Strategies may also be adopted from pri-
mal–dual IP algorithms that have successfully been tailored for similar nonlinear constraint problems arising
in elastoplasticity [64]. This is left for a future study. On the other hand, in view of the results of the previous
section, the primal IP algorithm in Table 3 is expected to be not only efficient but also as robust as the AL
method. Hence, it will be employed in the remaining studies.

Results based on the primal IP method are summarized in Fig. 6. The best EP penalty method solution is
obtained at � ¼ 1, beyond which the method fails to converge. This value of � significantly underestimates the
solution obtained with the AL method. It should be noted that 20 steps lead to convergence problems for the
AL method for all choices of �. 40 steps were chosen instead. 20 steps was sufficient for all the IP method appli-
cations, indicating that the primal IP method can potentially display higher robustness. l ¼ 10�3 results in an
overestimate of the solution. However, the barrier parameter can easily be reduced further by several orders of
magnitude. At l ¼ 10�5, the solution is already indistinguishable from the AL one. While the computations
were carried out at the medium resolution, the results are observed to be very close to the fine resolution
results and the evolution of the forces is smooth throughout the computation, as expected due to the C1-con-
tinuity of the N

2
discretization and the mortar-based contact algorithm.
5.4. Ironing with large indentation

As a last example, the robustness of the primal IP method (Table 3) is compared with the AL method. For
this purpose, the classical ironing problem is considered (Fig. 7). It is known that the solution of this problem
can be challenging at high stiffness ratios of the two bodies if the harder one is dragged while it significantly
indents the softer one [33]. For this analysis, the setup follows [58] in two and three dimensions, with the mod-
ification that the stiffness of the upper (slave) body will be increased with respect to the fixed stiffness of the
lower one, hence making the indentation more severe. The discretizations of the two bodies are fixed to three
N

2
elements in the vertical direction and to five for the horizontal direction of the slave. The master body will

be discretized with varying orders in the horizontal directions using ten elements in the dragging direction and
five in the remaining one for the three-dimensional setup.

Higher-order discretizations are expected to enable the solution of the problem even at coarse dicretizations
by allowing the softer body to conform perfectly to the harder surface (Fig. 7). Even though the discretizations
are C1-continuous in all cases, the degree of conformity decreases with decreasing order, which reflects as an
increasing amplitude of oscillations for the normal ðF N Þ and, in particular, the tangential ðF T Þ forces acting on
the master. See also [58,57] for studies of the degree of smoothness for isogeometric mortar-based discretiza-
tions in the presence of friction. The solution of the problem with 20 normal (indentation) and 200 tangential



Fig. 6. Problem of Section 5.3 is analyzed. (a) and (b) Compare the primal IP method (version 2) with the penalty and AL methods at a
fixed resolution. (c) and (d) Consider the effect of resolution using the primal IP method with a fixed barrier parameter.

Fig. 7. The ironing problem of Section 5.4 with large indentation is summarized. The instances are obtained from a simulation where the
upper (slave) body is 104 times stiffer than the lower one. The bodies are discretized with N

2
in the vertical direction and N

6
in the

horizontal one. DEF indicates the magnitude of the deformation gradient tensor.
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(dragging) stages based on the AL method reflects these oscillations (Fig. 8(a) and (b)) and how they diminish
with order elevation. Orders lower than four did not deliver a reliable performance due to extreme oscillations
at this resolution, hence they are omitted from the investigation. As the barrier parameter is decreased by
orders of magnitude, the primal IP method (Table 3) delivers a solution with an increasing degree of accuracy
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and virtually no loss of robustness or efficiency (Fig. 8(c) and (d)). The tangential force evolution for l ¼ 10�1

is not acceptable but the forces for l ¼ 10�3 are already very satisfactory and l ¼ 10�5 delivers a solution that
virtually overlaps with the AL solution.

Due to the large number of steps used in generating the results in Fig. 8, both the AL and the primal IP
methods converge very quickly in each step such that the IP method is just as efficient as the AL one. In order
to compare the degree of robustness of the two methods, two sets of tests are conducted:

1. Minimal step number: The minimal number of normal/tangential steps required for convergence at a fixed
stiffness ratio is sought. The upper body is chosen to be 104 times stiffer and the primal IP method operates
with l ¼ 10�3. The step number is incremented by 1/5 for the normal/tangential stage during the search.
The AL method requires 6 normal and 20 tangential steps for N

6
and N

5
discretizations. No convergence

could be achieved for N
4

until the search reached 100 tangential steps. Here, � ¼ 1 was chosen although
smaller choices did not affect the results while larger choices only worsen the situation. The primal IP
method requires 3 normal steps. The number of tangential steps was 15/20/25 for N

6
=N

5
=N

4
. When l

is decreased to 10�4 or 10�5, only the number for N
4

changes to 40.
2. Maximal stiffness ratio: The highest possible stiffness ratio delivering convergence at a fixed number of steps

is sought. The number of steps is chosen as the best primal IP performance, which is 3/15 for the normal/
tangential stage. The AL method can handle a ratio of at most 10/1/1 for N

6
=N

5
=N

4
while the IP method

can handle 100/10 for N
5
/N

4
. For N

6
, the IP method displays no convergence problems and no deterio-

ration in efficiency for a stiffness ratio as high as 109 for l as low as 10�5. The stiffness ratio and l values are
already satisfactory for a reliable simulation of a rigid indentor in contact with a highly deformable body
although higher and lower values, respectively, were also achieved.
Fig. 8. Problem of Fig. 7 is analyzed. (a) and (b) Compare different orders of discretization with the AL method while (c) and (d) consider
the effect of the barrier parameter in the primal IP method (version 2). Here, the upper body is 104 times stiffer.
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In view of these results, one can conclude that the primal IP algorithm in Table 3 can deliver a performance
that is superior to the AL method in terms of robustness. The three-dimensional version of this problem
(Fig. 9) is calculated based on the same set of simulation parameters as in Fig. 7, using the primal IP method
with l ¼ 10�5 and 3/15 normal/tangential steps. The AL method fails during the indentation stage with this
step size.

6. Conclusion

Exterior point (EP) methods and their primal–dual extensions, notably the augmented Lagrangian (AL)
approach, constitute the most widely used constraint enforcement algorithms in computational contact
mechanics. In this work, an interior point (IP) algorithm was investigated. The work introduces and benefits
from two major ingredients that have earlier been applied to contact mechanics problems in the context of EP
methods. First, isogeometric discretizations are employed. These provide not only convenience and numerical
robustness, primarily due to induced surface smoothness, but also assist in overcoming theoretical obstacles
with higher-order discretizations. Second, interactively with the former, a contact discretization scheme is
derived from a three-field mixed variational formulation in the spirit of the mortar method. This scheme sig-
nificantly improves robustness, in addition to avoiding surface locking and passing the patch test.

As the direct counterpart of the AL approach, a primal–dual algorithm was investigated. The one adopted
in this work is well-established in the optimization literature. The framework involves a number of algorithmic
stages that allows flexibility for problem-specific tuning. The choices made in the present work deliver a
scheme that is just as robust as the AL method for linear and nonlinear problems when the load is applied
in a single step. However, the IP method was observed to be less robust for problems with multiple time/load
steps. The central reason for this shortcoming is that the barrier parameter is aggressively driven to zero. On
the other hand, a primal formulation was found to challenge the AL approach. One practical disadvantage of
the primal formulation is that it relies on a constant-valued barrier parameter that should be judiciously cho-
sen. Nevertheless, in all the cases tested in this work, this parameter could easily be chosen satisfactorily small
without displaying any convergence problems, contrary to the penalty parameter in an EP penalty method. In
fact, the primal IP method displayed a higher level of robustness than the AL method when the contacting
bodies did not have the same stiffness.

Overall, it can be stated that the IP method is a viable alternative to the EP method, in particular to the
popular AL approach. From a practical point of view, a potential advantage is that a smooth transition from
physical interface interaction formulations to contact constraint enforcement schemes can be realized in the
context of a single algorithm based on the IP method. Examples are thin-film lubrication [65] and adhesive
contact problems [66]. These problems share the requirement of avoiding penetration between the interacting
surfaces, which is easily handled in an IP method context but not with EP method algorithms. It may addi-
tionally be possible to combine IP and AL formulations in frictional contact where the former is used to treat
normal contact in order to benefit from its observed robustness and the latter is used for tangential contact in
order to benefit from established implicit time integration schemes.
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[11] R. Kuc era, J. Machalová, H. Netuka, P. Z éncák, An interior-point algorithm for the minimization arising from 3D contact problems

with friction, Optim. Methods Softw. http://dx.doi.org/10.1080/10556788.2012.684352 (in press).
[12] G. Stadler, Path-following and augmented Lagrangian methods for contact problems in linear elasticity, J. Comput. Appl. Math. 203

(2007) 533–547.
[13] J. Herskovits, S.R. Mazorche, A feasible directions algorithm for nonlinear complementarity problems and applications in mechanics,

Struct. Multi. Optim. 37 (2009) 435–446.
[14] S.R. Mazorche, J. Herskovits, A. Canelas, G.M. Guerra, Solution of contact problems in linear elasticity using a feasible interior

point algorithm for nonlinear complementarity problems, in: Proceedings of the Seventh World Congress on Structural and
Multidisciplinary Optimization (COEX Seoul, 21 May–25 May 2007, Korea), 2007.

[15] J. Nocedal, S.J. Wright, Numerical Optimization, second ed., Springer, Berlin, Heidelberg, New York, 2006.
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