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a b s t r a c t

We provide a global characterization of the Killing vector fields of a standard static space-
time by a system of partial differential equations. By studying this system, we determine
all the Killing vector fields in the same framework when the Riemannian part is compact.
Furthermore, we deal with the characterization of Killing vector fields with zero curl on a
standard static space-time.
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1. Introduction

Themain concern of the current paper is to study the existence and characterization of Killing vector fields (KVF for short)
of a standard static space-time (SSS-T for short).1 Our approach partially follows that of Sánchez for Robertson–Walker
space-times in [2], which is centrally supported by the structure of KVFs on warped products of pseudo-Riemannian
manifolds, already obtained in the pioneering article of Bishop and O’Neill [3].

A standard static space-time (also called globally static, see [4]) is a Lorentzianwarped productwhere thewarping function
is defined on a Riemannianmanifold (called the natural space or Riemannian part) and acting on the negative definite metric
on an open interval of real numbers (see Definition 3.2). This structure can be considered as a generalization of the Einstein
static universe. In [5], it was shown that any static space-time2 is locally isometric to a standard static one. There are many
interesting and recent studies about several questions in SSS-Ts, see for instance [10–12,1,13–18] and references therein.

The existence of KVFs on pseudo-Riemannian manifolds was considered by many researchers (physicists [19] and
mathematicians) from several points of view and by using different techniques. One of the first articles by Sánchez (i.e., [20])
is devoted to provide a review about these questions in the framework of Lorentzian geometry. In [2], Sánchez studied the
structure of KVFs on a generalized Robertson–Walker space-time. He obtained necessary and sufficient conditions for a
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1 We would like to inform the reader that some of the results provided in this article were previously announced in the survey [1].
2 An n-dimensional space-time (M, g) is called static if there exists a nowhere vanishing time-like KVF X onM such that the distribution of (n−1)-plane

orthogonal to X is integrable (see [6, Section 3.7] and also the general relativity texts [7–9]).
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vector field to be Killing on generalized Robertson–Walker space-times and gave a characterization of them as well as an
explicit list for the globally hyperbolic case. In the recent survey [21] about general relativity, there appears a rich variety of
questions where KVFs, stationary vector fields and black hole solutions play central roles.

Our first main result is about the characterization of KVFs on a SSS-T by a set of conditions similar to the conditions
obtained by Carot and da Costa in [22] for the analogous local problem. Unfortunately, in their article (see [22, Section 4.2])
there are couple of computational mistakes that compromise the validity of their procedure but not their conclusions (see
the Appendix). Here we apply an intrinsic notation (as in [2]) to obtain and provide global characterization conditions of
KVFs on a SSS-T, obtaining as a side-product the correct relations corresponding to the procedure of Carot and da Costa.

In our second main result, we establish the central role of a particular over-determined system of partial differential
equations involving the Hessian in the characterization of KVFs on SSS-Ts and studying these systems we completely
characterize the KVFs of a SSS-T with compact Riemannian part. As an interesting application, we deal with the
characterization of KVFs with zero curl (called here non-rotating) on a SSS-T.

The article is organized in the following way: in Section 2 we establish the main results. In Section 3 we give some useful
preliminaries along the article. In Section 4 we prove the central results announced in Section 2 and other supplementary
statements. In Section 5 we give some applications of the main results.

2. Description of main results

Throughout the article ‘‘I will be an open real interval of the form I = (t1, t2) where −∞ ≤ t1 < t2 ≤ ∞’’. and ‘‘(F , gF )
will be a connected Riemannian manifold without boundary with dim F = s’’. We will denote the set of all strictly positive C∞

functions defined on F by C∞

>0(F).
Let V be an R-vector space. For any subset S of V, we use ⟨S⟩ to denote the R-subspace of V generated by S. Briefly, if

x ∈ Vwe will write ⟨x⟩ instead of ⟨{x}⟩. Also, we will write
•

R = R \ {0}.
Suppose that M is a module over a ring A and W ⊆ M . If v ∈ M , then we will use the following notation v + W =

{v + W : W ∈ W }.
Let K be the real Lie algebra of KVFs on (F , gF ). Given ϕ,ψ ∈ C∞(F)we denote

K ψ
ϕ = {K ∈ K : K(ϕ) = ψ}

and
K ⟨ψ⟩

ϕ = {K ∈ K : K(ϕ) ∈ ⟨ψ⟩},

where the ⟨ψ⟩ is considered as an R-subspace of C∞(F). Notice that K ψ
ϕ is not a real vector space unless ψ is identically

zero.
In Section 4, we study KVFs of SSS-Ts. Firstly, we show necessary and sufficient conditions for a vector field of the form

h∂t + V to be a conformal Killing (see Proposition 4.2).
Then adapting the techniques of Sánchez in [2] to SSS-Ts, we give our first main result, namely.

Theorem 2.1. Let f ∈ C∞

>0(F) and If × F := (I × F , g := −f 2dt2 ⊕ gF ) the f -associated SSS-T. Then, given an arbitrary t0 ∈ I ,
the set of KVFs on If × F is

ψh∂t +

 (·)

t0
h(s) ds f 2gradFψ + K + K 0

ln f , (2.1)

where h ∈ C∞(I) verifies

− h′′
= νh, ν ∈ R; (2.2)

ψ ∈ C∞(F) verifies

f 2gradFψ ∈ K
νψ

ln f ≠ ∅ (2.3)

and K ∈ K
−h′(t0)ψ
ln f ≠ ∅, (2.4)

where ∅ is the empty set.
If ν ≠ 0, then −

h′(t0)
ν

f 2gradFψ may be taken asK and (2.1) takes the form

ψh∂t −
h′

ν
f 2gradFψ + K 0

ln f . (2.5)

We remark here the central role of the problem (2.3) in Theorem 2.1. Our approach essentially reduces (2.3) to the
study of a parametric overdetermined system of partial differential equations (involving the Hessian) on the Riemannian
part (F , gF ).
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By studying (2.3) (see also (4.27)) and applying the well known results about the solutions (ν, u) of a weighted elliptic
problem

−∆gF u = νwu on (F , gF ),

where ∆gF (·) := g ij
F ∇

gF
i ∇

gF
j (·) is the Laplace–Beltrami operator, w ∈ C∞

>0(F) and F is compact, we obtain our second main
result, namely.

Theorem 2.2. Let f ∈ C∞

>0(F) and If × F the f -associated SSS-T. If (F , gF ) is compact then, the set of all KVFs on If × F is given
by

{a∂t + K̃ | a ∈ R, K̃ is a KVF on (F , gF ) and K̃(f ) = 0}.

Furthermore, the decomposition given above is unique.

In Remark 4.17, we show the relation between the above results and those of Sharipov [23] about KVFs of a closed
homogeneous and isotropic universe.

In Section 5, we apply Theorems 2.1 and 2.2 to deal with the existence of non-rotating KVFs on a SSS-T. Applying
Theorem 2.1, we obtain a set of conditions that characterize the parallel KVFs on a SSS-T of the type Rf × F in Theorem 5.4.
As a consequence, we give a classification of non-rotating KVFs on SSS-Ts where the natural part is either complete with
nonnegative Ricci curvature (see Theorem 5.6, Corollary 5.7 and Proposition 5.8) or compact and simply connected (see
Proposition 5.10).

3. Preliminaries

On an arbitrary differentiable manifold N , C∞

>0(N) denotes the set of all strictly positive C∞ functions defined on N ,
TN =


p∈N TpN denotes the tangent bundle of N and X(N) denotes the C∞(N)-module of smooth vector fields on N .3

We also recall the canonical (usually called ‘‘musical’’) isomorphisms TF �
♭
♯ T

∗F between the tangent bundle TF and the
cotangent bundle T ∗F , induced by the metric gF . More explicitly, for u ∈ TF and η ∈ T ∗F , we write

gF (·, η♯) = η(·),

and
u♭(·) = gF (u, ·).

Sharp (♯) and flat (♭) correspond to the classical raising and lowering indices, respectively. For instance, gradψ = ♯dψ (or
(dψ)♯) and gF (gradψ, ·) = dψ(·) (or (gradψ)♭ = dψ), for any smooth function ψ on F (for details see for instance [24–27]
among many others).

In order to provide a complete picture to the reader, we recall the general definitions of singly warped products and
SSS-Ts below.

Definition 3.1. Let (B, gB) and (N, gN) be pseudo-Riemannian manifolds and b ∈ C∞

>0(B). Then the (singly) warped product
B×b N is the product manifold B × N furnished with the metric tensor

g = π∗(gB)⊕ (b ◦ π)2σ ∗(gN),

where π : B × N → B and σ : B × N → N are the usual projection maps and ∗ denotes the pull-back operator on tensors.

Definition 3.2. Let f ∈ C∞

>0(F). The n(= 1 + s)-dimensional product manifold I × F furnished with the metric tensor
g = −f 2dt2 ⊕gF is called a standard static space-time [15] (also usually called globally static, see [4]) and is denoted by If ×F .
From now on, we will frequently refer to this as the f -associated SSS-T.

On a warped product of the form B×f N , we will denote the set of lifts to the product by the corresponding projection of
the vector fields in X(B) (respectively, X(N)) by L(B) (respectively, L(N)) (see [5]). Wewill use the same symbol for a tensor
field and its lift.

Two of the most famous examples of SSS-Ts are theMinkowski space-time and the Einstein static universe [6,28,29] which
is R× S3 equipped with the metric

g = −dt2 + (dr2 + sin2 rdθ2 + sin2 r sin2 θdφ2),

where S3 is the usual 3-dimensional Euclidean sphere and the warping function f ≡ 1 (see Remark 4.17). Another well-
known example is the universal covering space of anti-de Sitter space-time, a SSS-T of the form Rf × H3 where H3 is the
3-dimensional hyperbolic space with constant negative sectional curvature and the warping function f :H3

→ (0,∞)
defined as f (r, θ, φ) = cosh r [6,29]. Finally, we can also mention the exterior Schwarzschild space-time [6,29], a SSS-T of the
formRf × (2m,∞)×S2, where S2 is the 2-dimensional Euclidean sphere, the warping function f : (2m,∞)×S2 → (0,∞)

3 As long as it is possible, our computations will be intrinsic and coordinate free. It is remarkable that we do not use special coordinates for particular
dimensions such as three or four, which can obscure the computations.
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is given by f (r, θ, φ) =
√
1 − 2m/r, r > 2m and the line element on (2m,∞)× S2 is

ds2 =


1 −

2m
r

−1

dr2 + r2(dθ2 + sin2 θdφ2).

Now, we will recall the definition of Killing and conformal-Killing vector fields (CKVF for short) on an arbitrary pseudo-
Riemannian manifold. More explicitly, let (M, g) be a pseudo-Riemannian manifold of dimension n and X ∈ X(M) be a
vector field onM . Then
• X is said to be Killing if LXg = 0,
• X is said to be conformal-Killing if there exists a smooth function σ :M → R such that LXg = 2σg ,

where LX denotes the Lie derivative with respect to X . Moreover, for any Y and Z in X(M), we have the following identity
(see [5, p. 250 and p. 61])

LXg(Y , Z) = g(∇YX, Z)+ g(Y ,∇ZX). (3.1)

Remark 3.3. On (I, gI = ±dt2) any vector field is conformal Killing. Indeed, if X is a vector field on (I, gI), then X can be
expressed as X = h∂t for some smooth function h ∈ C∞(I). Hence, LXgI = 2σgI with σ = h′.

In the next remark we enumerate a set of properties of the families of KVFs introduced in the first paragraph of Section 2.
We do not apply some of them in the rest of the article, but several of them clarify some paragraphs in [22, pp. 476–478]
(see also Appendix here).

Remark 3.4. Let φ,ψ ∈ C∞(F) be.
(1) 0 ∈ K 0

ϕ = K ⟨0⟩
ϕ ⊆ K ⟨ψ⟩

ϕ .

(2) For all k ∈
•

R is 1
kK kψ

ϕ = K ψ
ϕ .

(3) {K ∈ K : K(ϕ) ∈
•

Rψ} =
•

RK ψ
ϕ .

(4) RK ψ
ϕ ⊆ K ⟨ψ⟩

ϕ . Furthermore, (K 0
ϕ \ 0) ∩ RK ψ

ϕ is empty if ψ ≢ 0.
(5) By definition K ⟨ψ⟩

ϕ is an R-subspace of K . But in general it is not an R-sub-Lie algebra of K .
(6) If ψ ∈ ⟨ϕ⟩, i.e., ψ = kϕ with k ∈ R, then K ⟨kϕ⟩

ϕ is an R-sub-Lie algebra of K .
(7) If ψ = ψ0 is a non zero constant in R, then K

ψ0
ϕ  K

⟨ψ0⟩
ϕ .

(8) K ⟨1⟩
ϕ is an R-sub-Lie algebra of K .

(9) K 0
ϕ = K ⟨0⟩

ϕ and hence, it is an R-sub-Lie algebra of K .
(10) By linear algebra arguments, it is clear that for a fixedK ∈ K ψ

ϕ we have,

K ψ
ϕ = K + K 0

ϕ .

(11) Given two elements inK ⟨ψ⟩
ϕ , there exists a linear combination of them inK 0

ϕ . Thus as above, for a fixed K̄ ∈ K ⟨ψ⟩
ϕ \K 0

ϕ

there results

K ⟨ψ⟩

ϕ = K̄ + K 0
ϕ .

(12) As R-vector spaces

0 ≤ dimK 0
ϕ ≤ dimK ⟨ψ⟩

ϕ ≤ dimK 0
ϕ + 1 ≤ dimK + 1 ≤

s(s + 1)
2

+ 1.

Remark 3.5. Let ϕ ∈ C∞(F) be. The Hessian of ϕ is the symmetric (0, 2)-tensor defined by

HϕF (X, Y ) = gF (∇F
XgradFϕ, Y ) = ∇

F
∇

Fϕ(X, Y ) (3.2)

for any X, Y ∈ X(F), where ∇
F is the Levi–Civita connection and gradF is the gF -gradient operator. The gF -trace of HϕF is the

Laplace–Beltrami operator denoted by∆Fϕ. Notice that∆F is elliptic when (F , gF ) is Riemannian (see [5, pp. 85–87]).
Applying the properties that characterize the Levi–Civita connection, it is easy to prove that the following conditions are

equivalent:
(1) gradFφ is a KVF on (F , gF );
(2) HφF = 0;
(3) gradFφ is parallel.
Furthermore, if these are verified, then∆Fϕ = 0 (i.e., ϕ is harmonic) and gF (gradFφ, gradFφ) is a nonnegative constant (thus
the norm |gradFφ|F :=


gF (gradFφ, gradFφ) results constant too). In particular, this implies that: if a KVF is a gradient, then

it is identically zero when (F , gF ) is compact (see [30, p. 43]).

4. Killing vector fields on SSS-Ts

We will begin by stating a simple result which will be useful in our study (see [2,31] and p. 126 of [32]).
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Proposition 4.1. Let f ∈ C∞

>0(F) and If × F the f -associated SSS-T (i.e., with metric tensor g = f 2gI ⊕ gF , where gI = −dt2).
Suppose that X, Y , Z ∈ X(I) and V ,W ,U ∈ X(F). Then

LX+V g(Y + W , Z + U) = f 2LIXgI(Y , Z)+ 2fV (f )gI(Y , Z)+ LFV gF (W ,U),

where LI (respectively, LF ) is the Lie derivative on (I, gI) (respectively, (F , gF )).

On the other hand, if h: I → R is smooth and Y , Z ∈ X(I), then

Lh∂t gI(Y , Z) = Y (h)gI(Z, ∂t)+ Z(h)gI(Y , ∂t). (4.1)

By combining the previous statements we can prove the following.

Proposition 4.2. Let f ∈ C∞

>0(F) and If × F the f -associated SSS-T. Suppose that h: I → R is smooth and V ∈ X(F). Then
h∂t + V is a CKVF on If × F with σ ∈ C∞(I × F) if and only if the following properties are satisfied:

(1) V is conformal-Killing on (F , gF ) with associated σ ∈ C∞(F),
(2) h is affine, i.e., there exist real numbers µ and ν such that h(t) = µt + ν for any t ∈ I,
(3) V (f ) = (σ − µ)f .

Proof. (1) follows from Proposition 4.1 by taking Y = Z = 0 and a separation of variables argument. On the other hand,
from Proposition 4.1 with W = U = 0, (4.1) and Remark 3.3, we have (σ − h′)f = V (f ). Hence, again by separation of
variables, h′ is constant and then (2) is obtained. Thus, (3) is clear.

By computations similar to the previous ones, the converse turns out to be a consequence of the decomposition of any
vector field on If × F , i.e., as a sum of its horizontal and vertical parts. �

Corollary 4.3. Let f ∈ C∞

>0(F) and If × F the f -associated SSS-T. Suppose that h: I → R is smooth and V ∈ X(F). Then h∂t + V
is a KVF on If × F if and only if the following properties are satisfied:

(1) V is Killing on (F , gF ),
(2) h is affine, i.e., there exist real numbers µ and ν such that h(t) = µt + ν for any t ∈ I ,
(3) V (f ) = −µf .

Proof. It is sufficient to apply Proposition 4.2 with σ ≡ 0. �

In what follows, we will make use of some arguments given in [2] (see also [22]) about the structure of Killing and CKVFs
in warped products. In [2] by applying them, Sánchez obtains full characterizations of the Killing and CKVFs in a generalized
Robertson–Walker space-time. In order to be more explanatory, we begin by adapting his procedure to our scenario.

Let (B, gB) be a semi-Riemannian manifold with dimension r and f ∈ C∞

>0(F). Consider the warped product Bf × F :=

(B×F , g := f 2gB+gF ). Given a vector field Z on B×F , wewill write Z = ZB+ZF with ZB = (πB∗(Z), 0) and ZF = (0, πF ∗(Z)),
the projections onto the natural foliations (Bq = B × {q}, q ∈ F and Fp = {p} × F , p ∈ B). Any covariant or contravariant
tensor fieldω on one of the factors (B or F ) induces naturally a tensor field on B×F (i.e., the lift), which eitherwill be denoted
by the same symbol ω, or else (when necessary) will be distinguished by putting a bar on it, i.e., ω.

Proposition 4.4 (See Proposition 3.6 in [2]). If K is a KVF on Bf × F , then KB is a CKVF on Bq for any q ∈ F and KF is a KVF on Fp
for any p ∈ B.

Suppose that {Ca ∈ X(B) | a = 1, . . . , r} is a basis for the set of all CKVFs on B and {Kb ∈ X(F) | b = 1, . . . , s} is a basis
for the set of all KVFs on F .

By Proposition 4.4 (see [2, Section 3.3] and also [3, Sections 7 and 8]), KVFs on a warped product Bf × F can be given as

K = ψaCaKB + φbKb
KF

, (4.2)

where φb
∈ C∞(B) and ψa

∈ C∞(F). Moreover, we consider K̂b := gF (Kb, ·) and Ĉa := gB(Ca, ·). Notice that ˆ(·) denotes the
musical isomorphism ♭with respect to the corresponding metric.

Then Proposition 3.8 of [2] implies that a vector field K of the form (4.2) is Killing on Bf × F if and only if the following
equations are satisfied:

ψaσa + KF (ln f ) = 0
dφb

⊗ K̂b + Ĉa ⊗ f 2dψa
= 0,

(4.3)

where Ca is a CKVF on B with σa ∈ C∞(B), i.e., LBCagB = 2σagB.
Let us assume that (F , gF ) admits at least one nonzero KVF. Thus, there exists a basis {Kb ∈ X(F) | b = 1, . . . , s} for the

set of KVFs on F .
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Recalling Remark 3.3, we observe that the dimension of the set of CKVFs on (I,−dt2) is infinite so that one cannot apply
directly the above procedure due to Sánchez before observing that the form of the CKVFs on (I,−dt2) is explicit (i.e., any
vector field on (I,−dt2) is conformal Killing). Indeed, it is easy to prove that all the computations are valid by considering
the form of any CKVF on (I,−dt2), namely h∂t where h ∈ C∞(I), instead of the finite basis of CKVFs in the Sánchez approach.

If we apply the latter technique adapted to the SSS-T If × F with the metric given by g = f 2gI ⊕ gF where gI = −dt2,
then a K ∈ X(If × F) is Killing if and only if K can be written in the form

K = ψh∂t + φbKb, (4.4)

where h and φb
∈ C∞(I) for any b ∈ {1, . . . ,m} and ψ ∈ C∞(F) satisfy the following version of system (4.3)

h′ψ + φbKb(ln f ) = 0
dφb

⊗ gF (Kb, ·)+ gI(h∂t , ·)⊗ f 2dψ = 0.
(4.5)

Thus, in order to study KVFs on SSS-Ts wewill concentrate our attention to the existence of solutions for the system (4.5).
Since dφb

= (φb)′dt with φb
∈ C∞(I) and gI(h∂t , ·) = −hdt , (4.5) is equivalent to

h′ψ + φbKb(ln f ) = 0 (4.6a)

(φb)′dt ⊗ gF (Kb, ·) = hdt ⊗ f 2dψ, (4.6b)

and by raising indices in (4.6b), (4.6) is also equivalent to

h′ψ + φbKb(ln f ) = 0 (4.7a)

(φb)′∂t ⊗ Kb = h∂t ⊗ f 2gradFψ. (4.7b)

First of all, we will apply a separation of variables procedure to (4.7b). Recall that {Kb}1≤b≤m is a basis of the KVFs in
(F , gF ). Thus by simple computations, each (φb)′ verifies

(φb)′(t) = [h(t)− h(t0)]γ b
+ (φb)′(t0),

= γ bh(t)+ δb, (4.8)

where γ b and δb(= −h(t0)γ b
+ (φb)′(t0), for some fixed t0 ∈ I that is independent of b) are real constants.

The solutions of the first order ordinary differential equation in (4.8) are given by

φb(t) = γ b
 t

t0
h(s) ds + δbt + ηb, (4.9)

where ηb is a constant for each b.
By introducing (4.8) in (4.7b), the latter takes the following equivalent form:

h∂t ⊗ [γ bKb − f 2gradFψ] = ∂t ⊗ [−δbKb]. (4.10)

Thus, by recalling again the fact that {Kb}1≤b≤m is a basis of the KVFs in (F , gF ), there results two different cases, namely.

h nonconstant: First of all, note that by applying the separation of variablesmethod in (4.10), the non-constancy of h implies
that 

γ bKb − f 2gradFψ = 0
δb = 0 ∀b.

(4.11)

Thus, by (4.9),

φb(t) = γ b
 t

t0
h(s) ds + ηb. (4.12)

On the other hand, by differentiating (4.7a) with respect to t and then by considering (4.11), we obtain

h′′ψ + h(f 2gradFψ)(ln f ) = 0.

Besides, by considering (4.11), (4.12) and again (4.7a) there results
hh′

− h′′

 (·)

t0
h(s) ds


ψ + hηbKb(ln f ) = 0.
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Thus, we proved that (4.7) is sufficient to

f 2gradFψ ∈ K ; (4.13a)

h′′ψ + h(f 2gradFψ)(ln f ) = 0; (4.13b)
∀b : φb(t) = τ b

 t

t0
h(s) ds + ωb where

τ b, ωb
∈ R : f 2gradFψ = τ bKb and

hh′
− h′′

 (·)

t0
h(s) ds


ψ + hωbKb(ln f ) = 0;

(4.13c)

on I .4
By (4.13b), it is not difficult to show that if − h′′

h is nonconstant, then ψ ≡ 05and the latter infers

K = φbKb with φb(t) = ωb and ωb
∈ R : ωbKb ∈ K 0

ln f . (4.14)

On the other hand, if − h′′

h = ν is constant6, (4.13b) implies−
h′′

h
= ν

(f 2gradFψ)(ln f ) = νψ.

(4.15)

Furthermore, by (4.13c) (see footnote 4)

ωbKb ∈ K
−h′(t0)ψ
ln f . (4.16)

Hence, by (4.13) and (4.14) the problem (4.6) is sufficient for:

(a)

ψ ≡ 0;
φb(t) ≡ ωb on I where ωb

∈ R : ωbKb ∈ K 0
ln f ;

or
(b) ∃ν ∈ R :

−
h′′

h
= ν;

f 2gradFψ ∈ K
νψ

ln f ;∀b : φb(t) = τ b
 t

t0
h(s) ds + ωb where τ b, ωb

∈ R :

f 2gradFψ = τ bKb and ωbKb ∈ K
−h′(t0)ψ
ln f .

Notice that the case (a) is a subcase of (b), for instance taking ν = 0. This allows us to say that (4.6) is sufficient
for:

∃ν ∈ R such that

−h′′
= νh; (4.17a)

f 2gradFψ ∈ K
νψ

ln f ; (4.17b)∀b : φb(t) = τ b
 t

t0
h(s) ds + ωb where τ b, ωb

∈ R :

f 2gradFψ = τ bKb and ωbKb ∈ K
−h′(t0)ψ
ln f .

(4.17c)

4 Clearly, h
 (·)
t0

h′′(s) ds − h′′
 (·)
t0

h(s) ds = hh′
− hh′(t0)− h′′

 (·)
t0

h(s) ds. So, if − h′′

h = ν with ν constant, then the left hand side is 0; as a consequence

hh′
− h′′

 (·)
t0

h(s) ds = hh′(t0).
5 Suppose that t1 and t2 are such that −

h′′

h (t1) ≠ −
h′′

h (t2). Since −
h′′

h (t1)ψ = (f 2gradFψ) ln f and −
h′′

h (t2)ψ = (f 2gradFψ) ln f ,
−

h′′

h
(t1)+

h′′

h
(t2)


  

≠0

ψ = 0. So ψ ≡ 0.

6 Recall the Courant theorem about the number of nodal points of the eigenfunctions of a Sturn–Liouville problem with Dirichlet boundary conditions
(see [33, p. 454], [34, p. 174]). Roughly speaking this says that the number of nodal sets of the n-th eigenfunction of such a problem is n. Since the latter
particularly implies that no node of an eigenfunction is an accumulation point of nodes of the same eigenfunction, it allows us to consider the ratio h′′

h
defined on the whole interval I .
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h ≡ h0 constant: By (4.9), (4.7) takes the form

[(t − t0)h0γ
b
+ tδb + ηb]Kb(ln f ) = 0 (4.18a)

γ bh0 + δb

Kb = h0f 2gradFψ. (4.18b)

We consider two subcases
h0 = 0: Since {Kb}1≤b≤m is a basis, (4.18b) implies δb = 0 for all b. So K = ηbKb. Thus, it is clear that (4.17) is

verified choosing ν = 0, τ b = 0 and ωb
= ηb for all b. Notice that ‘‘τ b = 0 for all b’’ is equivalent to ψ ≡ 0.

h0 ≠ 0: In this case (4.18b) implies that f 2gradFψ is Killing on (F , gF ) and gives the coefficients of f 2gradFψ with
respect to the basis {Kb}1≤b≤m. On the other hand, differentiating (4.18a) with respect to t and then considering
(4.18b), we obtain

0 = (γ bh0 + δb)Kb(ln f ) = h0(f 2gradFψ)(ln f ).
Furthermore, the latter and (4.18a) imply that
(ηb − h0t0γ b)Kb(ln f ) = 0.

Thus, we proved that (4.17) is verified choosing ν = 0, τ b =
1
h0
(γ bh0 + δb) and ωb

= ηb − h0t0γ b for all b.

Conversely, it is easy to prove that if for a set of sufficiently regular functions h,ψ and {φb}1≤b≤m, where h andφb
∈ C∞(I)

for any b ∈ {1, . . . ,m} andψ ∈ C∞(F), there exists ν ∈ R such that (4.17) is verified, then the vector fieldψh∂t + φbKb on
the SSS-T If × F is Killing. Indeed, this set satisfies (4.7).

Hence, in the precedent discussion we proved the following result.

Theorem 4.5. Let f ∈ C∞

>0(F), {Kb}1≤b≤m a basis of KVFs on (F , gF ) and If × F the f -associated SSS-T. Then, any KVF on If × F
admits the structure

K = ψh∂t + φbKb, (4.19)

where h and φb
∈ C∞(I) for any b ∈ {1, . . . ,m} and ψ ∈ C∞(F).

Furthermore, assume that K is a vector field on If × F with the structure as in (4.19). Hence, for an arbitrary fixed t0 ∈ I , K is
Killing on If × F if and only if there exists a real number ν ∈ R such that

−h′′
= νh; (4.20a)

f 2gradFψ ∈ K
νψ

ln f ; (4.20b)∀b : φb(t) = τ b
 t

t0
h(s) ds + ωb where τ b, ωb

∈ R :

f 2gradFψ = τ bKb and ωbKb ∈ K
−h′(t0)ψ
ln f .

(4.20c)

For clarity we also state the following lemma, which covers the case where the Riemannian part of the SSS-T admits no
non identically zero KVF.

Lemma 4.6. Let f ∈ C∞

>0(F) and If × F the f -associated SSS-T. If the only KVF on (F , gF ) is the zero vector field, then all the KVFs
on If × F are given by h0∂t where h0 is a constant.

Proof. Indeed, by Proposition 4.4 if K is a KVF on If × F , then K = ψh∂t whereψ ∈ C∞(F) and h ∈ C∞(I). Then, by similar
arguments to those applied to system (4.7), a vector field of the latter form is Killing if and only if the following equations
are verified

h′ψ = 0 (4.21a)

h∂t ⊗ f 2gradFψ = 0. (4.21b)

As an immediate consequence, either ‘‘h and ψ are constants’’ or ‘‘ψ ≡ 0’’. �

Proof of Theorem 2.1. It is sufficient to apply Theorem 4.5, Remark 3.4 (10) and Lemma 4.6. In order to obtain (2.5) for the
case ν ≠ 0, notice that (2.1) can be written as

ψh∂t +

 (·)

t0
h(s) ds −

h′(t0)
ν


  

=−
h′
ν

f 2gradFψ + K +
h′(t0)
ν

f 2gradFψ  
∈K 0

ln f

+K 0
ln f . �
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Remark 4.7. If the Riemannian part (F , gF ) admits a non identically zero KVF, then the family of KVFs obtained in
Corollary 4.3 corresponds to the case of ψ ≡ 1 in Theorem 4.5. Thus, (4.20) implies that ν = 0, and τ b = 0 for any b,
and also h(t) = at + b is affine, and φb

= ωb is constant such that φbKb(ln f ) = −a. The latter conditions agree with those
in Corollary 4.3.

In other words, if ν is nonzero, then the family of KVFs in Theorem 4.5 are different form those in Corollary 4.3, they
correspond to the so called nontrivial KVFs in [2].

Remark 4.8 (Uniqueness of the Decomposition). Under the assumptions of Theorem 4.5, further suppose that K is a KVF on
If × F . We know that K admits a decomposition given by (4.19). If K admits a different decomposition of the same type,
more explicitly, K = ψ1h1∂t + φb

1Kb, it is easy to prove that hψ = h1ψ1 and φb
= φb

1 for each b, i.e., such decomposition is
essentially unique. More specifically, h1 = λh, ψ1 =

1
λ
ψ and φb

= φb
1 for each b, where λ ≠ 0 is a real constant.

Remark 4.9. Let f ∈ C∞

>0(F) be smooth. For any ν ∈ R, we consider the problem

f 2gradFψ ∈ K
νψ

ln f with ψ ∈ C∞(F) (4.22)

and define

Kν
f = {ψ ∈ C∞(F) : ψ verifies (4.22)}

and

Kνf = {K ∈ X(F) : ∃ψ ∈ Kν
f such that f 2gradFψ = K}.

It is easy to show that Kν
f (respectively, Kνf ) is an R-subspace of C∞(F) (respectively, K ). In particular, if ψ ∈ Kν

f then

(f 2gradFλψ)(ln f ) = λν ψ, ∀λ ∈ R. (4.23)

Consequently, if {τb}1≤b≤m is the set of coefficients of a KVF of the form f 2gradFψ with respect to the basis {Kb}1≤b≤m and
λ ∈ R, then

− λν ψ + ωbKb(ln f ) = 0, (4.24)

where ωb
= λτ b, for any b.

Notice that, this is particularly useful in order to simplify the condition (4.20c) when ν ≠ 0, taking λν = −h′(t0).
We observe also that it is easy to prove that the Lie bracket of two elements in Kνf belongs to K 0

ln f .

Now we deal with the existence of nontrivial solutions for the problem (4.22), which is relevant for Theorem 4.5 and as
a consequence for Theorems 2.1 and 2.2.

Lemma 4.10. Let f ∈ C∞

>0(F) and ψ ∈ C∞(F). Then the vector field f 2gradFψ is Killing on (F , gF ) if and only if

HψF +
1
f
[df ⊗ dψ + dψ ⊗ df ] = 0, (4.25)

where HψF is the gF -Hessian of the function ψ .

Proof. We begin by recalling two results. By (3.1), for all ϕ ∈ C∞(F)

LFgradFϕgF = 2HϕF . (4.26)

Moreover, for any Z ∈ X(F),

LFϕZgF = ϕLFZgF + dϕ ⊗ Z ♭ + Z ♭ ⊗ dϕ.

So the latter formulas with ϕ = f 2 and Z = gradFψ imply

LFf 2gradFψgF = f 2LFgradFψgF + df 2 ⊗ (gradFψ)
♭
+ (gradFψ)

♭
⊗ df 2.

But (gradFψ)
♭
= dψ , so

LFf 2gradFψgF = 2f 2

HψF +

1
f
[df ⊗ dψ + dψ ⊗ df ]


.

Then f 2gradFψ is a KVF on (F , gF ) if and only if (4.25) is verified. �



F. Dobarro, B. Ünal / Journal of Geometry and Physics 62 (2012) 1070–1087 1079

Thus, by Lemma 4.10 and the identity fgF (gradFψ, gradF f ) = (f gradFψ)(f ), (4.22) is equivalent to

ψ ∈ C∞(F); (4.27a)

HψF +
1
f
[df ⊗ dψ + dψ ⊗ df ] = 0; (4.27b)

fgF (gradFψ, gradF f ) = νψ where ν is a constant. (4.27c)

Remark 4.11. By Lemma 4.10, if the dimension of the Lie algebra of KVFs of (F , gF ) is zero, then the system (4.27) has only
the trivial solution given by a constant ψ (this constant is not identically 0 only if ν = 0). This happens, for instance when
(F , gF ) is a compact Riemannian manifold of negative-definite Ricci curvature without boundary, indeed it is sufficient to
apply the vanishing theorem due to Bochner (see for instance [35], [30, p. 44], [25, Theorem 1.84] or [36, Proposition 6.6 of
Chapter III]).

Lemma 4.12. Let f ∈ C∞

>0(F). If (ν, ψ) satisfies (4.27), then ν is an eigenvalue and ψ is an associated ν-eigenfunction of the
elliptic problem:

−∆gFψ = ν
2
f 2
ψ on (F , gF ). (4.28)

Proof. It is enough to apply the general identity

tracegF [df ⊗ dψ + dψ ⊗ df ] = 2gF (gradFψ, gradF f ) (4.29)

to the gF -trace of (4.27b) and then consider (4.27c). �

Remark 4.13. i: Notice that similar arguments to those applied in Lemma 4.12 allow us to prove that the system (4.27) is
equivalent to

ψ ∈ C∞(F); (4.30a)

HψF +
1
f
[df ⊗ dψ + dψ ⊗ df ] = 0; (4.30b)

−∆gFψ = ν
2
f 2
ψ where ν is a constant. (4.30c)

ii: Assuming (4.30) (or equivalently (4.27)), if p ∈ F is a critical point of f or ψ , then ν = 0 or ψ(p) = 0.

Remark 4.14 (See Theorem 5.4 for an Application). Suppose that f ∈ C∞

>0(F) and take ψ =
C
f with C ≠ 0 constant. Then it

is easy to prove that

HψF +
1
f
[df ⊗ dψ + dψ ⊗ df ] = −C

1
f 2

Hf
F (4.31)

and

fgF (gradFψ, gradF f ) = −
C
f
gF (gradF f , gradF f )  

≥0

. (4.32)

Thus, ψ verifies (4.27) iff Hf
F = 0 and ν = −gF (gradF f , gradF f ).

Note that Hf
F = 0 implies gF (gradF f , gradF f ) is constant and nonnegative (see Remark 3.5). Besides ν = −gF (gradF f ,

gradF f ) infers ν is non-positive.
Besides, since f 2gradFψ = −CgradF f and C ≠ 0, f 2gradFψ is a KVF iff gradF f is a KVF.

Example 4.15. Let f ∈ C∞

>0(F) such that

H f
F = 0 and ν := −gF (gradF f , gradF f ) < 0 (4.33)

and let ψ =
C
f with C ≠ 0 constant. So, f 2gradFψ = −CgradF f ∈ K

νψ

ln f (cfr. (4.20b)). Then, by some computations and
applying Theorem 4.5, Lemma 4.10 and Remarks 4.9 and 4.14 (see also the proof of Theorem 2.1) we obtain that if h is a
solution of −h′′

= νh on an interval I , then

C

h
f
∂t +

h′

ν
gradF f


(4.34)

is a KVF on the SSS-T If × F .
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Proposition 4.16. Let (F , gF ) be compact and f ∈ C∞

>0(F). Then (ν, ψ) satisfies (4.27) if and only if ν = 0 and ψ is constant.

Proof. It is clear that (0, ψ)withψ constant verifies (4.27). So, we will concentrate our attention in the converse direction.
First of all, notice that by (4.27c), if p ∈ F is a critical point of ψ , then νψ(p) = 0. Then, since (F , gF ) is compact, there

exists a point p0 ∈ F such that ψ(p0) = infF ψ and consequently, νψ(p0) = 0.
On the other hand, by applying Lemma 4.12, one can conclude that ν is an eigenvalue and ψ is an associated

ν-eigenfunction of the elliptic problem (4.28). Besides, since (F , gF ) is compact, it is well known that the eigenvalues of
(4.28) form a sequence in R≥0 and the only eigenfunctions without changing sign are the constants corresponding to the
eigenvalue 0.

Thus, if ψ(p0) ≥ 0, then ν = 0 and ψ results a nonnegative constant. Alternatively, if ψ(p0) < 0, then νψ(p0) = 0, so
ν = 0. As a consequence of that, ψ is a negative constant. �

Proof of Theorem 2.2. If (F , gF ) has only the zero KVF, the result is an easy consequence of Lemma 4.6.
Let us consider now the case there exists a basis {Kb}1≤b≤m for the space of KVFs on (F , gF ). Theorem 4.5 and

Proposition 4.16 imply that a vector field K on the SSS-T If × F is Killing if and only if it admits the structure

K = ψh∂t + φbKb, (4.35)

where

(1) h(t) = at + bwith constants a and b;
(2) ψ is constant;
(3) φb are constants satisfying aψ + φbKb(ln f ) = 0.

Since (F , gF ) is compact, then infF ln f is reached at a point p0 ∈ F . Set K̃ = φbKb. Thus K̃(ln f )|p0 = 0 and by (3) a = 0 or
ψ = 0. Hence we proved that any KVF on If × F is given by a KVF on (F , gF ) plus eventually a real multiple of ∂t . Note that
K̃(ln f ) =

1
f K̃(f ), so by (3) we have K̃(f ) = 0.

The uniqueness of the decomposition is easily obtained by evaluating the KVF at the function σ(t, x) = t . �

Remark 4.17 (KVFs in the Einstein Static Universe). In [23], the author studied KVFs of a closed homogeneous and isotropic
universe (for related questions in quantum field theory and cosmology see [37,28,38,39]). Theorem 6.1 of [23] corresponds
to our Theorem 2.2 for the spherical universe R × S3 with the pseudo-metric −(R2dt2 − R2h0), where the sphere S3 is
endowed with the usual metric h0 induced by the canonical Euclidean metric of R4 and R is a real constant (i.e., a stable
universe).

As we have already mentioned in Remark 4.11, any KVF of a compact Riemannian manifold of negative-definite Ricci
curvature is equal to zero. Thus, one can easily state the following result.

Corollary 4.18. Let If × F be a SSS-T. If (F , gF ) is compact with negative-definite Ricci curvature, then any KVF on If × F is given
by a∂t where a ∈ R.

In [17, Theorem 5], it is shown that the decomposition of a space-time as a standard static one is essentially unique when
the fiber F is compact. We observe that Corollary 4.18 enables us to establish a stronger conclusion (i.e., nonexistence of
nontrivial (it means independent of ∂t ) strictly stationary7 fields) under a stronger assumption involving the definiteness of
the Ricci curvature.

We would like to make some comments about the case where the Riemannian part of the SSS-T is noncompact. While
Theorem 4.5 does not require the compactness of the Riemannian manifold (F , gF ), this condition is central for a complete
characterization similar to the one provided in Theorem 2.2. The key question in our approach is the full characterization of
the solutions of (4.30) (or the equivalent problems (4.22) and (4.27)), which is obtained by means of the theory of weighted
elliptic eigenvalue problems on compact Riemannian manifolds when (F , gF ) is compact. In the noncompact case, the latter
question is more difficult. Through the application of Liouville type arguments about the nonexistence of one side bounded
subharmonic functions on complete and noncompact Riemannian manifolds, it is possible to obtain partial nonexistence
results of nontrivial solutions for (4.30), but the global question is still open. However, there are particular situations, like
the following well known example where the application of Theorem 2.1 is sufficient for a complete classification.

Example 4.19 (KVFs in the Minkowski Space–time). Let the Riemannian part (F , gF ) = (Rs, g0) where g0 is the canonical
metric and f ≡ 1 be. Thus, it is easy to show that the solutions of (4.30) are (ν, ψ) where ν = 0 or ψ ≡ 0. Furthermore if
ν = 0, then ψ(x) = c ixi + d where ∀i : 1 ≤ i ≤ s, c i ∈ R and d ∈ R. Recall that for ν = 0, h(t) = at + bwhere a, b ∈ R.

On the other hand, the condition (2.4) implies h′(t0)(c ixi + d) ≡ 0.

7 Stationary means Killing and time-like (see [17]).
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Hence, all the KVFs of the Minkowski space-time are

(c ixi + d)(at + b)∂t +

 t

t0
(as + b) ds c i∂i + K ,

where a, b, ci, d ∈ R satisfy a(c ixi + d) ≡ 0. Precisely, these are

(c ixi + d)∂t + (t − t0) c i∂i + K

or equivalently (taking t0 = 0)

c i (xi∂t + t∂i)  
Lorentz boosts

+d∂t + K ,

where ci, d ∈ R. Thus the dimension of the Lie algebra of the KVFs of the Minkowski space-time is s + 1 + s(s + 1)/2 =

(s + 1)(s + 2)/2.

5. Non-rotating killing vector fields

In this section we will apply Theorems 2.1 and 2.2 to the analysis of non-rotating KVFs on SSS-Ts also called static regular
predictable space-times in [29, p. 325] (also see the recent article [17] for a related question).

We first recall the definition of the curl operator on semi-Riemannian manifolds of arbitrary finite dimension, namely: if
V is a vector field on a semi-Riemannian manifold (N, gN), then curlV is the antisymmetric 2-covariant tensor field defined
by

curl V (X, Y ) := gN(∇XV , Y )− gN(∇YV , X), (5.1)

where X, Y ∈ X(N) (see for instance [5,40] and for other close approach [41]). Thus, it is easy to prove for all φ ∈ C∞(N)

curl(φV ) = gN(V , Tφ)+ φcurl V , (5.2)

where Tφ is the so called torsion of φ.8
We will consider the following definitions (see [40,42]): A vector field V on a semi-Riemannian manifold (N, gN) is said

to be

non-rotating: 9 if curl V (X, Y ) = 0 for all X, Y ∈ X(N).
orthogonally irrotational: 10 if curl V (X, Y ) = 0 for any X, Y ∈ X(N) orthogonal to V . This condition is equivalent to ‘‘V

has an integrable orthogonal distribution’’.

It is clear that if a vector field is non-rotating, then it is orthogonally irrotational. The converse is not true (see below
Example 5.3). Moreover, (5.2) implies that if V is orthogonally irrotational, then so is φV for any φ ∈ C∞

>0(N). Indeed, since
φ does not vanish, X is orthogonal to φV if and only if it is orthogonal to V . However, if V is non-rotating and φ ∈ C∞

>0(N),
φV is not necessarily non-rotating (see (5.2)).

Remark 5.1. Let V a KVF on a semi-Riemannian manifold (N, gN). Then, V is non-rotating iff it is parallel. Indeed, for any
X, Y ∈ X(N)

0 = LV gN(X, Y ) = curl V (X, Y )+ 2gN(∇YV , X). (5.3)

Thus,

(1) curl V (X, Y ) = 0 for any X, Y ∈ X(N);
(2) for any Y ∈ X(N) ‘‘gN(∇YV , X) = 0 for any X ∈ X(N)’’;
(3) ∇YV = 0 for any Y ∈ X(N);
(4) V is parallel (see [5, p. 63]);

are equivalent.

Remark 5.2. Let Rf × F be a SSS-T. Recall that any V ∈ X(R × F) admits a decomposition as VR + VF (see above
Proposition 4.4).

8 For any φ ∈ C∞(N), the torsion of the function φ, Tφ , is the antisymmetric 2-covariant tensor field defined by Tφ(X, Y ) := X(φ)Y − Y (φ)X for all
X, Y ∈ X(N) (taking attention to the sign in the definition, see for instance [41, p. 139]).
9 In [40,42] this condition is called irrotational.

10 In [5,17] this condition is called irrotational.
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Let also

Tan : T(q,p)(R× F) −→ T(q,p)(R× {p}) (5.4)

the projection onto the subspace T(q,p)(R× {p}) and

Nor : T(q,p)(R× F) −→ (T(q,p)(R× {p}))⊥ = T(q,p)({q} × F) (5.5)

the orthogonal projection onto the subspace T(q,p)({q} × F).
Then applying [5, Proposition 35] we obtain that for any X, Y ∈ L(F) and any V ,W ∈ L(R) hold

(1) ∇XY = ∇
F
XY ,

(2) ∇XV = ∇VX =
X(f )
f V ,

(3) ∇VW = ∇
R1
1

V W  
Tan∇VW

+ fdt2(V ,W )gradF f  
Nor∇VW

,

where R1
1 = (R,−dt2) and ∇ (respectively, ∇R1

1 and ∇
F ) is the Levi–Civita connection of Rf × F (respectively, R1

1 and
(F , gF )).

In particular

(1) ∇XY = ∇
F
XY ,

(2) ∇X∂t = ∇∂tX =
X(f )
f ∂t = X(ln f ) ∂t ,

(3) ∇∂t ∂t = f gradF f .

Example 5.3 (Elementary but Important). Clearly, ∂t is a stationary KVF on any SSS-T (R×F , g := −f 2dt2+gF ). Furthermore,
‘‘∂t is non-rotating iff f is a positive constant’’. Indeed, the identity

− f 2gradt = ∂t (5.6)

and (5.2) imply that

curl ∂t =
1
f 2

g(∂t , Tf 2). (5.7)

So, if f is constant, ∂t is non-rotating (because Tf 2 ≡ 0).
On the other hand, Tf 2(∂t , Z) = −Z(f 2)∂t ∀Z ∈ X(R× F), so

(curl ∂t)(∂t , Z) = Z(f 2) ∀Z ∈ X(R× F). (5.8)

Thus, if ∂t is non-rotating, then f is constant.
However, ∂t is always orthogonally irrotational. Indeed, it is sufficient to observe that by (5.7), there results

(curl ∂t)(X, Y ) = 0 ∀X, Y ∈ X(R× F) g-orthogonal to ∂t . (5.9)

Theorem 5.4. Let κ be a KVF on a SSS-T of the form (R× F , g := −f 2dt2 + gF ). If κ is parallel (or non-rotating) then κ belongs
to the set (2.1) and satisfies one of the following conditions:

(1) h ≡ 0 or ψ ≡ 0; in these cases κ is the lift of a κ1 ∈ K 0
ln f parallel (or non-rotating) on (F , gF );

(2) ψ =
C
f where C ≠ 0 is a constant, H f

F = 0 (in particular f is harmonic of constant sign,
√
gF (gradf , gradf ) is

constant and gradf is Killing on (F , gF )) and the part in K + K 0
ln f is parallel (or non-rotating) on (F , gF ). Furthermore

ν = −gF (gradF f , gradF f ) and hence non-positive.

Proof. By Theorem 2.1 κ takes the form (2.1), i.e., there exists qK ∈ K 0
ln f such that

κ = ψh∂t +

 (·)

t0
h(s) ds f 2gradFψ + K + qK , (5.10)

where h, ψ andK are like in Theorem 2.1. Then, by Remark 5.2, we obtain for any X ∈ L(F) the following expressions:

i:

∇∂t [ψh∂t ] = ψh∇∂t ∂t + ∂t(ψh)∂t
= ψhf gradf + ψh′∂t

= ψhf 2grad(ln f )+ ψh′∂t; (5.11)
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ii:

∇X [ψh∂t ] = ψh∇X∂t + X(ψh)∂t
= ψhX(ln f )∂t + hX(ψ)∂t; (5.12)

iii:

∇∂t

 (·)

t0
h(s) ds f 2gradFψ


=

 (·)

t0
h(s) ds ∇∂t [f

2gradFψ] + hf 2gradFψ

=

 (·)

t0
h(s) ds [f 2gradFψ](ln f )  

=νψ

∂t + hf 2gradFψ

=

 (·)

t0
h(s) ds νψ ∂t + hf 2gradFψ; (5.13)

iv:

∇X

 (·)

t0
h(s) ds f 2gradFψ


=

 (·)

t0
h(s) ds ∇X [f 2gradFψ] + X

 (·)

t0
h(s) ds


  

=0

f 2gradFψ

=

 (·)

t0
h(s) ds ∇

F
X [f

2gradFψ]; (5.14)

v:

∇∂t

K + qK


= K(ln f )∂t; (5.15)

vi:

∇X
K + qK


= ∇

F
X

K + qK

. (5.16)

Thus and since κ is parallel, we obtain:

0 = ∇∂t κ = ψhf 2gradF (ln f )+ ψ


h′

+ ν

 (·)

t0
h(s) ds


  

=h′(t0)

∂t + hf 2gradFψ + K(ln f )  
−h′(t0)ψ

∂t

= f 2h[ψgradF (ln f )+ gradFψ]

= fh[ψgradF f + f gradFψ]

= fhgradF [fψ] (5.17)

and

0 = ∇Xκ = h[ψX(ln f )+ X(ψ)]∂t +

 (·)

t0
h(s) ds ∇

F
X [f

2gradFψ] + ∇
F
X

K + qK


=
h
f
X(fψ)∂t +

 (·)

t0
h(s) ds ∇

F
X [f

2gradFψ] + ∇
F
X

K + qK

. (5.18)

Since f > 0, (5.17) infers h ≡ 0 or ‘‘fψ = C constant with signψ = signC ’’.
Suppose that h ≢ 0. So fψ = C constant,

f 2gradFψ = −gradF (Cf ) (5.19)

and considering (5.18) there results

∇
F
Xgrad(Cf )

 (·)

t0
h(s) ds = ∇

F
X

K + qK

. (5.20)

So, if there exists X ∈ X(F) such that∇F
Xgrad(Cf ) ≠ 0, then by a separation of variables argument

 (·)
t0

h(s) ds is constant (the
right hand side of (5.20) is independent of t). But this implies that h ≡ 0, the contrary of our assumption. So,∇F

Xgrad(Cf ) = 0
for all X ∈ X(F), or equivalently H(Cf )F = 0 (see Remark 3.5). In particular Cf is harmonic on (F , gF )with constant sign.
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Hence, if h ≡ 0, then κ is the lift of a κ1 ∈ K 0
ln f parallel on (F , gF ) (by (5.10) and (2.4)). Otherwise, if C = 0 then ψ ≡ 0

and again by (5.10) and (2.4), κ is the lift of a κ1 ∈ K 0
ln f parallel on (F , gF ); if C ≠ 0, then (5.19) holds and the left hand side

of (5.20) is 0 for all X ∈ X(F), so κ belongs to (2.1) with ψ =
C
f , H

f
F = 0 (particularly f results harmonic of positive sign),

√
gF (gradf , gradf ) constant and gradf is Killing on (F , gF ) (see Remark 3.5) and the part inK + K 0

ln f parallel on (F , gF ). The
properties of ν in the latter case are consequence of Remark 4.14.

Note that the case non-rotating is equivalent to the case parallel by Remark 5.1. �

Remark 5.5. Taking into account the role played by the positive solutions of the equation

H f
F = 0 on (F , gF ), (5.21)

we observe that Kanai [43, Theorem B] and Tashiro [44] proved, applying the de Rham’s decomposition theorem [45], that

A complete Riemannian manifold (F , gF ) of dimension s ≥ 2 has a nontrivial (i.e., nonconstant) solution of (5.21) iff
(F , gF ) is a Riemannian product (F̄ × R, gF̄ + g0) of a complete Riemannian manifold (F̄ , gF̄ ) and the real line (R, g0),
where g0 is the canonical metric of R.

On the other hand, clearly the solutions of (5.21) are harmonic, butwe are interested in positive solutions (note that these
will be warping functions in our study). Thus, it is interesting to recall the so called Liouville type theorems on complete
Riemannian manifolds about the existence of harmonic functions of constant sign. Among others wemention the following
pioneering Yau [46, Corollary 1] result:

On a complete Riemannianmanifoldwith nonnegative Ricci curvature, every positive harmonic function on thewhole
manifold is constant.

Furthermore, we know that the solutions of (5.21) has gradient of constant norm. About questions of existence of these
type of functions we reference the reader to the Sakai article [47], where it is proved (among other results) that

On a complete Riemannianmanifoldwith nonnegative Ricci curvature, any smooth functionwith gradient of constant
norm is an affine function.

Now, taking into account the latter remark, we will characterize the non-rotating KVFs on a SSS-T under an hypothesis
about the Ricci curvature of the Riemannian part when this is complete.

Theorem 5.6. Let κ be a KVF on a SSS-T of the form (R×F , g := −f 2dt2 +gF )where (F , gF ) is a complete Riemannianmanifold
with nonnegative Ricci curvature. If κ is non-rotating then one of the following conditions hold

(1) κ is the lift of a κ1 ∈ K 0
ln f non-rotating on (F , gF );

(2) f is a positive constant and κ belongs to

ψa∂t + K , (5.22)

where ψ =
C
f with C ≠ 0 a constant and the element in K is non-rotating on (F , gF ).

Conversely, if κ is a vector field on (R × F , g := −f 2dt2 + gF ) verifying (1) or (2), then κ is a non-rotating KVF on
(R× F , g := −f 2dt2 + gF ).

Proof. The condition (1) is clear by the analogous condition in Theorem 5.4. If (2) is the condition verified in Theorem 5.4,
by the Yau result cited in Remark 5.5 f is a positive constant andψ =

C
f ≠ 0, where C is a constant. Since any vector field is

zero on any constant, (2.3) implies ν = 0 and (2.4) implies 0 = K(ln f ) = −h′(t0)ψ , so by (2.2) h is a constant. Furthermore,
again because f is constant K = K 0

ln f and the element in K is non-rotating by Theorem 5.4.
The converse is an immediate consequence of Remark 5.2, Corollary 4.3 and Example 5.3. �

Corollary 5.7. Let κ be a KVF on a SSS-T (R × F , g := −f 2dt2 + gF ) where (F , gF ) is a complete Riemannian manifold with
nonnegative Ricci curvature and f nonconstant. If κ is non-rotating then it is the lift of a κ1 ∈ K 0

ln f non-rotating on (F , gF ).

Proposition 5.8. Let (R×F , g := −f 2dt2+gF ) be a SSS-Twhere (F , gF ) is a complete Riemannianmanifold and f is nonconstant.
If κ is a non-rotating KVF onRf ×F then it is the lift of a κ1 ∈ K 0

ln f non-rotating on (F , gF ) or (F , gF ) has negative Ricci curvature
somewhere and is a Riemannian product (F̄ × R, gF̄ + g0) of a complete Riemannian manifold (F̄ , gF̄ ) and the real line (R, g0),
where g0 is the canonical metric of R.

Proof. It is a consequence of Theorem 5.4 and the de Rham–Tashiro–Kanai result mentioned in Remark 5.5. �

At this point we deal with the case where the stronger hypothesis of compactness of the Riemannian part holds.

Lemma 5.9. Let (F , gF ) be compact and simply connected. The unique KVF on (F , gF ) with zero curl is the zero field.
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Proof. Let K ∈ X(F) a KVF such that curl K = 0. Since (F , gF ) is simply connected, K is a gradient (see [48]), i.e., there exists
ψ ∈ C∞(F) such that gradFψ = K . Then, by Remarks 3.5 and 5.1 we infer that ψ is harmonic, but (F , gF ) is compact, so ψ
is constant and as a consequence K is zero. �

Proposition 5.10. Let (F , gF ) be compact and simply connected. If f ∈ C∞

>0(F) is nonconstant, then there is no nontrivial (non-
identically zero) non-rotating KVF on the SSS-T (R× F , g := −f 2dt2 + gF ).

Proof. Let κ be a non-rotating KVF on (R× F , g := −f 2dt2 + gF ). Item (2) in Theorem 5.4 is not verified because f would
be harmonic and nonconstant on a compact manifold. So (1) is verified, in particular κ is the lift of a non-rotating κ1 ∈ K 0

ln f
on (F , gF ). Hence, applying Lemma 5.9, κ1 and as a consequence its lift κ is zero. �

We will finish with the following additional result.

Proposition 5.11. Let κ be a KVF on a SSS-T of the form (R × F , g := −f 2dt2 + gF ) such that (curl κ)(X, Y ) = 0 for all
X, Y ∈ X(R × F)g-orthogonal to ∂t . If (F , gF ) is compact and simply connected, then κ = a∂t where a is a real constant. In
particular, κ becomes time-like if a ≠ 0.

Proof. Notice that letting κ be a KVF on (R× F , g)where (F , gF ) is compact, Theorem 2.2 implies that κ = a∂t + K where
a is a constant and K is a KVF on (F , gF )with K(f ) = 0. Thus, by hypothesis, linearity of the curl and (5.9), we obtain that

curl K(X, Y ) = 0 for all X, Y ∈ X(R× F) g-orthogonal to ∂t . (5.23)

Since the lifts of elements in X(F) are g-orthogonal to ∂t that verifies (5.23). Then, applying Remark 5.2 and the definition
of the curl , there results curlFK = 0 (curlF denotes the curl on the Riemannian manifold (F , gF )), i.e., K is non-rotating on
(F , gF ). Hence applying Lemma 5.9 K ≡ 0. Thus we have established that κ = a∂t , where a is constant. �

Remark 5.12. Notice that in Proposition 5.11 the involved vector fields necessarily turn out to be causal (i.e., non-spacelike).
The conclusion would be invalid if we eliminate the simply connectedness. For example, consider the vector field a∂t + ∂θ
where a < 1 on (R × S1, g := −dt2 + dθ2). This is a non-rotating KVF and yet not time-like due to a < 1, indeed
g(a∂t + ∂θ , a∂t + ∂θ ) = −a2 + 1 > 0.

6. Conclusions

It is very well known that a space-time possesses a symmetry if it admits nontrivial KVFs. Thus existence and
characterization problems of KVFs are extremely important in the geometry of space-times (see [21]). In Theorem 2.1 we
give a description of the set of KVFs of a SSS-T, where the role of an over-determined system of partial differential equations
on the Riemannian part is central, namely (4.22) (or equivalently (4.27) and (4.30)). Our analysis corrects the computational
mistakes in [22] mentioned in our Section 1.

As a consequence of Theorem 2.1 and the well known results about the eigenvalues and eigenfunctions of a positively
weighted elliptic problem on a compact Riemannian manifold without boundary, we also provide a characterization of the
KVFs on a SSS-T with compact Riemannian part in Theorem 2.2. Note that by combining this theorem with the vanishing
results of Bochner (see Remark 4.11), we obtain that in a SSS-T with compact Riemannian part of negative Ricci curvature
without boundary, the only KVFs are of the form c∂t and yet time-like where c ∈ R is constant. The study of analogous
results to Theorem 2.2 but with noncompact Riemannian part is an open question.

However, Theorem 2.1 allow us to obtain a characterization of parallel KVFs on SSS-Ts of the formRf × F in Theorem 5.4.
Then, combining the latter with the Liouville type results of Yau about the existence of harmonic functions bounded from
below on complete Riemannianmanifolds with nonnegative Ricci curvature andwith the results of de Rham–Tashiro–Kanai
about the existence of concircular scalar fields, we partially classify the KVFs on SSS-Ts where the natural part is complete
(see Theorem 5.6 and its consequences in Section 5). The classification is complete if the Riemannian part is either of
nonnegative Ricci curvature or compact and simply connected.

Wewould like to observe that other relevant problem is the full classification of the conformal KVFs of a SSS-T. There are
partial recent results in this direction (see for instance [49,18] and the references therein).

In principle, one can apply the technique developed here to characterize KVFs or CKVFs of some other space-timemodels
such as stationary space-times11 and multiply generalized Robertson–Walker space-times.12 However, the expressions for
the Lie derivative and the KVF or CKVF equations of such space-timemodels result more complex ones than those of SSS-Ts.
All these equations bring to the study of more sophisticated linear and nonlinear partial differential equations onmanifolds.
We will deal with the study of these questions in future works.

11 A space-time is called stationary if it admits a time-like Killing vector field [15].
12 See [50] for a definition and properties ofmultiply generalized Robertson–Walker space-times.
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Appendix

Notice that fixed ν ∈ R \ {0}, (4.20) is equivalent to

−h′′
= νh; (A.1a)

f 2gradFψ ∈ K
νψ

ln f ; (A.1b)
∀b : φb(t) = τ b

 t

t0
h(s) ds + ωb where τ b, ωb

∈ R :

f 2gradFψ = τ bKb and
ωb

+
h′(t0)
ν

τ b

Kb ∈ K 0

ln f .

(A.1c)

Nowwe correct a couple of computationalmistakes in [22] that result inwrong conclusions in that article. In any case the
local approach of the authors is generically correct. First of all we observe that SSS-Ts of dimension 4 with I = R correspond
to ‘‘warped space-times of class A2’’ with ‘‘ϵ = −1’’ in their notation. Carot and da Costa deal with the study of KVFs of A2
warped product space-times applying local techniques in [22, Section 4.2].

The first mistake is in [22, Eq. (70) p. 475] namely, the second term on the left hand side must be multiplied by ϵ. It is
particularly relevant for SSS-Ts, indeed in this case ϵ = −1.

The second mistake is connected to the case ν ≠ 0 in (4.20) (or equivalently (A.1)): in this situation it is not possible to
assume a priori that h′(t0) = 0, which contradicts with [22, left Eq. (78a) p. 476]. The right hand side of the latter would be
cλwhere c is a real constant arising in the integration constant term of [22, Eq. (72) p. 476]. This mistake propagates along
the authors’ analysis of their case k = 1, ϵ = 1.

In any case, it is possible to justify expressions like (79) or (84) in [22], applying (A.1) or (2.5).
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