
Int. J. Production Economics 137 (2012) 235–249

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Bilkent University Institutional Repository
Contents lists available at SciVerse ScienceDirect
Int. J. Production Economics
0925-52

doi:10.1

n Tel.:

E-m
journal homepage: www.elsevier.com/locate/ijpe
Multi-item quick response system with budget constraint
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a b s t r a c t

Quick response mechanisms based on effective use of up-to-date demand information help retailers to

reduce their inventory management costs. We formulate a single-period inventory model for multiple

products with dependent (multivariate normal) demand distributions and a given overall procurement

budget. After placing orders based on an initial demand forecast, new market information is gathered

and demand forecast is updated. Using this more accurate second forecast, the retailer decides the total

stocking level for the selling season. The second order is based on an improved demand forecast, but it

also involves a higher unit supply cost. To determine the optimal ordering policy, we use a

computational procedure that entails solving capacitated multi-item newsboy problems embedded

within a dynamic programming model. Various numerical examples illustrate the effects of demand

variability and financial constraint on the optimal policy. It is found that existence of a budget

constraint may lead to an increase in the initial order size. It is also observed that as the budget

available decreases, the products with more predictable demand make up a larger share of the

procurement expenditure.

& 2012 Elsevier B.V. All rights reserved.
1. Introduction

A common problem faced by many retailers is the determina-
tion of the optimal stocking quantity prior to a single selling
season in which customer demand for a product is uncertain.
Given a demand forecast and cost estimates for leftovers and
unsatisfied demand, the optimal order quantity can be decided
using the well-known newsvendor model (see e.g. Silver et al.,
1998). Since 1990s quick response systems that enable the
retailers to place two different orders with their suppliers before
the selling season have been popular in supply chains of seasonal
products such as fashion apparel, footwear, and toys (Fisher and
Raman, 1996; Iyer and Bergen, 1997; Perry et al., 1999). Reducing
lead times throughout all the production–supply chain activities
is a primary focus of quick response manufacturing strategy
(Fernandes and Carmo-Silva, 2006). Instead of placing a tradi-
tional single order, in a quick response setting, a retailer can
implement the following strategy: an initial order is placed long
before the selling season when the supplier is willing to commit
to a low supply price, and a second order is placed at a time closer
to the selling season when the retailer has a better assessment of
the potential demand. It is likely that the supply price will be
higher for the second order. For example, a cheaper off-shore
supplier becomes an eligible source when the lead time is long
ll rights reserved.
whereas a short lead time may necessitate using a high-cost
domestic supplier. When a supplier is allowed a short delivery
time, it may ask a higher supply price because it is more difficult
to acquire and utilize cost-effective means of production and
transportation within a short time frame. When the supplier has
more time to complete production, it is possible to procure raw
materials at a lower cost and develop more efficient production
schedules. These cost savings realized by the supplier may
translate into a lower purchase price for the retailer.

Although a short lead time may necessitate an increase in the
purchase cost for the retailer, nevertheless it offers a possibility to
decrease the demand forecast error (Bitran et al., 1986). A more
accurate demand forecast enables the retailer to choose a more
appropriate stocking level, and hence decrease its expected
inventory costs. Thus the retailer can try to optimally balance
the tradeoff between demand forecast error and supply cost by
placing two separate orders at two different times before the
season. The first order takes advantage of the low supply cost
while the second order utilizes an improved demand forecast.

Fisher and Raman (1996) describe in detail how a fashion
skiwear designer and manufacturer, Sport Obermeyer, has applied
the quick response approach in developing production schedules
for a group of products with varying demand forecast character-
istics. Their model has two production periods as the setup costs
and other economies of scale make it undesirable to manufacture
a product more than twice in a selling season.

In this paper we explore the problem of a newsvendor who
places two different orders for multiple products before the
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season given that demand forecast is updated based on market
signals received between the times of two orders. The demands
for products are assumed to be distributed as multivariate normal
with an unknown mean. The market signals received after the
first order are used to update the estimate of the mean of the
multivariate demand distribution. For each product, the size of
the second order is contingent on the market information col-
lected. More encouraging demand signals increase the size of the
second order.

In practice, following the preliminary demand forecast, new
market information for the products can be obtained via various
sources such as marketing research, trade shows, and early order
commitments (Donohue, 2000). Actual sales observations for
similar products can be used to revise the demand forecast of a
product (Iyer and Bergen, 1997). Other sources of data include
mock stores, fashion shows, focus groups and consulting experts
(Caro and Martinez-de-Albeniz, 2010).

The differentiating feature of our work is that we consider the
existence of a budget constraint for purchases, and also we extend
a particular single-product model studied in the quick response
literature to a multi-product setting. By incorporating the features
of budget constraint and multiple products into the basic model,
we can study how the optimal ordering policy in a quick response
system changes with changes in the availability of financial
resources, and parameters of the multivariate demand distribu-
tion. The retailer’s decision problem is to maximize its total
expected profit, and it is solved using a two-stage stochastic
dynamic programming model. For the budget-constrained single-
product problem, we show several properties of the optimal
ordering policy. For the multi-product problem, these properties
are verified in a numerical study.

The budget-constrained, multi-product, single-period inven-
tory problem under a single demand forecast with known
distribution parameters has been explored by many researchers.
By making some distribution parameters unknown, and allowing
an option of a second order prior to the selling season based on a
revised demand forecast, we integrate this classical problem with
the literature on quick response retail operations. When the
budget of the newsvendor is limited, the ordering decision will
be influenced by the relative profitability of different products as
well as the improvement potential in demand forecasts. If the
product demands are correlated with each other, the order
quantity for a particular product should be decided by taking
into account the demand information associated with other
products.

An interesting result from our study is that limiting the funds
earmarked for purchasing a product may lead to an increase in
the quantity ordered prior to collecting the market signal. The
reason is that when it is almost certain that all money will be
spent eventually, it is desirable to reduce the average supply cost
per unit in order to start the season with as much stock as
possible. Conversely, increasing the amount of available funds
causes a drop in the initial order quantity as the risk of facing a
financial constraint at the time of the second order decreases.

In our numerical study we observe that the optimal
budget allocation among the products at the first stage depends
on the degree of demand uncertainty as well as the amount of
funds available. While products with more predictable demand
are favored under limited budget conditions, the removal of the
financial constraint results in a significant increase in the pur-
chase quantity of products with more volatile demand.

The computational study suggests that collecting new market
information to improve the demand forecast yields a significant
benefit only when the procurement budget is sufficiently large.
A restrictive budget leaves the retailer with limited funds that can
be used at the second stage, which places an upper bound on the
cost savings from demand forecast update. It is also observed that
a higher purchase cost at the second stage induces the retailer to
increase its initial order so that a possibly large expenditure at the
second stage can be avoided.

The remainder of the paper is structured as follows. We first
review the related literature on quick response and the multi-
item newsboy problem in Section 2, and describe how parameter
estimation is carried out in our model in Section 3. We study two
special cases of the procurement optimization problem separately
in Sections 4 and 5. In Section 4, we discuss the solution of the
multi-product problem when the budget constraint is not bind-
ing. The single-product problem subject to a budget constraint is
explored in Section 5. In Section 6, we look into the most general
problem, that is, the multi-product problem with a constraining
budget. For this problem, we propose a computational optimiza-
tion procedure that entails solving a series of multi-item news-
vendor problems. We present some numerical examples in
Section 7, and offer suggestions for future research in Section 8.
2. Literature review

The issues of demand information sharing in supply chain
management and the tradeoff between the cost and responsive-
ness of the order fulfillment process due to the presence of dual
supply modes have been investigated by many researchers (e.g.,
Zhu et al., 2011; Bhatnagar et al., 2011; Klosterhalfen et al., 2011).
Our paper is mainly related to two different research streams. The
first line of research consists of papers with analytical models of
quick response systems. Since the literature is extensive, we
review here a few representative works only. For a more detailed
review, see e.g., Choi and Sethi (2010), and Cheng and Choi
(2010). The papers in this area contain multi-period production
or ordering problems in which demand forecast is revised in each
period. Murray and Silver (1966) formulate a Bayesian updating
model in which a retailer has multiple ordering opportunities for
a product during the selling season. The demand for the product is
an unknown proportion of the known total demand for a group of
products. As the season progresses and sales figures are observed,
the retailer updates its estimate of the unknown parameter and
decides its order size accordingly at each ordering instant. Bitran
et al. (1986) develop a multi-item, multi-period production model
in which demand for each item is concentrated in the last period;
the forecast for each item is revised before determining the
production quantities in each period. Matsuo (1990) removes
some restrictions in Bitran et al. (1986), and studies a two-stage
stochastic sequencing problem.

Our work is more closely related to the papers that allow two
production (or ordering) opportunities. The papers in this group
can be further classified based on whether the second-stage
production decision is made prior to or during the selling season.
Fisher and Raman (1996) develop a multi-product model in which
a manufacturer divides the production time available into two
periods. In the first period a production run is made for each
product without receiving any customer order. After receiving
some customer orders, another batch is produced in the second
period. Fisher and Raman (1996) constrain the batch size of each
product to a specific range bounded by a set of lower and upper
limits. Raman and Kim (2002) explore a similar problem with
more than two periods. Iyer and Bergen (1997) study how the
establishment of a quick response link influences the profits of
the retailer and the manufacturer. Donohue (2000) looks into how
buy-back contracts can achieve channel coordination in a
manufacturer–retailer channel when the retailer updates demand
forecast before placing its second order. Choi and Chow (2008)
study the effect of various contracting schemes on the mean and
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variance of profit distributions in a quick response supply chain.
Li et al. (2009) investigate a problem where the time of the second
order is also a decision variable. Caro and Martinez-de-Albeniz
(2010) formulate a two-period, two-retailer inventory competi-
tion model to study the competitive advantage gained via
demand information updates with respect to the traditional
slow-response retail operations.

Although most two-stage ordering models assume that the
unit production (or purchase) cost is higher at the second stage,
Gurnani and Tang (1999) allow cost uncertainty and possibly
lower cost at the second stage. Choi et al. (2003) study a similar
problem in which the demand is assumed to follow a normal
distribution with an unknown mean, and a Bayesian approach is
used to update the estimate of the distribution mean at the
second stage. Along the same line, Serel (2009) explores the
impact of price-sensitive demand on the retailer’s ordering policy.
Choi et al. (2006) extend their previous work to the case where
both the mean and variance of the demand distribution are
unknown, and estimated by the retailer using a two-parameter
Bayesian updating method. Huang et al. (2005) investigate the
retailer’s optimal policy when the initial order quantity can be
changed after the forecast revision by incurring both a fixed and a
variable cost. Sethi et al. (2007) explore the problem in which the
retailer decides the second order subject to a constraint on the
service-level (probability of satisfying all demand). Our contribu-
tion to the quick response research stream described above is to
include in the problem a budget constraint that limits the
purchase quantities of multiple products.

The second major research stream that this paper falls into
concerns the ordering policy of a multi-product newsvendor
subject to a single constraint. In this well-studied problem, the
newsvendor has a single ordering opportunity, and the demand
distribution parameters for all products are assumed known. The
constraint may arise from limited availability of resources such as
budget, shelf-space, or production capacity. The newsvendor
needs to determine the optimal ordering quantities of multiple
products so as to maximize its total expected profit. The multi-
item newsvendor problem, which dates back to Hadley and
Whitin (1963), has been studied by various researchers, e.g.
Nahmias and Schmidt (1984), Lau and Lau (1996), Erlebacher
(2000), Moon and Silver (2000). More recently Abdel-Malek et al.
(2004) develop an iterative method for solving the multi-item
newsvendor problem with budget constraint. Abdel-Malek and
Montanari (2005) develop a method for solving the problem with
two constraints. Niederhoff (2007) uses a piecewise linear
approximation method to obtain an approximate solution.
Abdel-Malek and Areeratchakul (2007) propose a quadratic pro-
gramming approach. Zhang et al. (2009) propose a binary solution
algorithm to solve the multi-product newsvendor problem with a
single constraint. Shao and Ji (2006) study a multi-item news-
vendor problem with fuzzy demand. Abdel-Malek et al. (2008)
study the capacitated multi-item newsboy problem with random
yield. Taleizadeh et al. (2009) and Zhang (2010) investigate the
optimal ordering policy when the supplier offers quantity dis-
count. Shi and Zhang (2010) consider both supplier quantity
Time

1

Q1i units ordered at 
unit purchase cost 
c1i, i = 1,…, p

New market 
information vector X
is observed 

Fig. 1. The ordering dec
discount and price-dependent demand. Chen and Chen (2010)
study an extension where additional demand can be created by
providing a price discount to customers who are willing to buy in
advance. Recently, formulations of the multi-item newsboy pro-
blem with risk constraints have been proposed (Zhou et al., 2008).

Some researchers have considered the possibility of ordering
additional units (emergency supply) after the demands are
observed and the regular selling season ends. Morey and
Sweeney (1984) study a budget-constrained multi-item procure-
ment problem in which following the demand realization,
recourse purchases can be made to reduce the level of unmet
demand. They assume discrete probability distribution for
demand and formulate a stochastic linear program with recourse
for solving the problem. Chung et al. (2008) study a single-period
multi-product production problem in which the first production
batch is completed prior to demand realization. After observing
the demands, production capacities previously allocated to the
products can be used to reduce demand shortages. Zhang and Du
(2010) study a similar multi-item single-period problem with a
production capacity constraint. They include in their model both
an in-house production option and an external supplier with a
higher production cost and unlimited capacity.

Our work extends the traditional budget-constrained multi-
item newsvendor problem to the case where there are two
ordering opportunities, and the second order is placed before
the selling season based on a revised demand forecast. Miltenburg
and Pong (2007a, 2007b) investigate a problem which is related
to the problem considered in this paper. They solve a specialized
multi-item newsvendor problem with demand forecast update.
There are capacity limitations associated with the two orders.
They assume a two-point discrete distribution for the new
demand observation and that product demands are independent.
In our model we allow dependent demands, use the standard
Bayesian theory, and make all purchasing decisions subject to a
single budget constraint.
3. Model

We consider a retailer with a limited budget for purchasing
multiple products that will be sold in a single selling period. The
objective is to maximize the expected profit. The uncertainty in
demand implies that the retailer needs to take into account the
costs of overstocking and understocking. The retailer has two
opportunities for buying the products. The first order must be
placed at time 1, based on a preliminary demand forecast.
The order quantities for p products at time 1 are shown by Q1i,
i¼1, y, p. The demand forecast is revised after gathering new
market information, and the retailer has a second chance to order
additional units at time 2. We use Q2i, i¼1, y, p, to denote the
additional units of product i ordered at time 2. The decisions in
the model are shown in Fig. 1.

The demands for products follow a multivariate normal prob-
ability distribution. The assumption of normal demand distribu-
tion is common both in practice and in the academic inventory
Demand forecast 
is updated 

Q2i units ordered at 
unit purchase cost 
c2i, i = 1,…, p

2

isions in the model.
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literature (Silver et al., 1998; Bitran et al., 1986). The vector
M¼(m1, m2, y, mp) represents the mean demands for p products.
The dependencies between the product demands at time 1 are
described by the covariance matrix S1. The elements of the p� p

matrix S1 will be referred to as sij, i¼1, y, p, j¼1, y, p.
While we allow the mean demands m1, m2, y, mp to be

unknown at time 1, we assume that the correlations between the
demands, and variances of the demand distributions are known,
meaning that the covariance matrix S1 is known by the retailer.
The mean demand vector M itself is assumed to have a multi-
variate normal distribution with mean m1¼(m11, m12, y, m1p ) and
covariance matrix D. This distribution reflects the retailer’s prior
beliefs. Thus m11, m12, y, m1p are the initial estimates of mean
demands for the products. The variances in the covariance matrix
D indicate how well the retailer is informed about these estimates
at time 1. A higher variance for the estimated mean of a product
means that the retailer possesses less information about the
average demand. The elements of the p� p matrix D will be
referred to as dij, i¼1, y, p, j¼1, y, p.

The unconditional demand distribution at time 1 is multi-
variate normal with mean m1 and covariance matrix S1þD.
Between time 1 and time 2 the retailer collects new market
information about the products. This new information is repre-
sented as a demand observation for each product. Hence a vector
of demand observations X¼(x1, x2, y, xp ) is used for revising the
demand forecast at time 2. Based on the vector X, a posterior
probability distribution for the mean demand M is formed at
time 2. We note that this modeling approach has been previously
used in the literature for the single product problem (Choi et al.,
2003). The model constructed here is a natural extension of that
to the case of multiple products with correlated demands.

The Bayesian theory implies that the posterior distribution of
the mean demand M is multivariate normal with mean m2 given
by (Robert, 2007, p. 186)

mT
2 ¼ XT

�S1ðS1þDÞ�1
ðX�m1Þ

T

¼ ðS�1
1 þD�1

Þ
�1
ðS�1

1 XT
þD�1mT

1Þ ð1Þ

and covariance matrix

D2 ¼ ðD
�1
þS�1

1 Þ
�1: ð2Þ

For completeness, derivation of (1) and (2) is provided in
Appendix A. From (1) the random vector m2 is multinormal with
mean m1, and covariance matrix

V ¼ ðS�1
1 þD�1

Þ
�1S�1

1 ðS1þDÞ½ðS�1
1 þD�1

Þ
�1S�1

1 �
T : ð3Þ

Let the elements of the p�p covariance matrix V be denoted as
V¼[vi,j]. The predictive demand distribution at time 2 is also
multivariate normal with mean m2, and covariance matrix

S2 ¼S1þðS�1
1 þD�1

Þ
�1: ð4Þ

Thus after X is known, the optimal order quantities for products at
time 2 can be determined based on m2 and S2. Let the elements of
the p� p covariance matrix S2 be denoted as S2¼[ai,j]. Also let the
elements of the mean vector m2 be shown as m2¼(m21, m22, y,
m2p). Thus the marginal demand distribution for product i at time
2 is normal with mean m2i and variance aii, i¼1, 2, y, p.

Regarding the ordering decisions at time 1, if the retailer has a
budget large enough, the optimal order quantity for product i at
time 1 can be determined using only the marginal demand
distribution for that product at time 2. However, in the case of
budget-constrained retailer, the order quantity at time 1 will
depend on the multivariate probability distribution of m2.

We remark that for updating the demand forecast, alternative
approaches exist in the previous literature. The two-period
production model of Fisher and Raman (1996) involves multiple
products, of which demands in the two periods are correlated. In
their approach, historical sales data for each product are used to
estimate the means and variances of the marginal demand
distributions as well as the correlation between them. Using this
correlation estimate, the demand distribution in the second
period can be written as conditional on the first period demand,
yielding a more accurate demand forecast for period 2 compared
to the marginal probability distribution for the second period
demand. In Gurnani and Tang’s (1999) single-product model, the
demand and market information are assumed to be distributed as
bivariate normal, and similar to Fisher and Raman (1996), the
demand distribution conditional on the market information is
used for deciding the purchase quantity at the second stage. In
other words, the market information in the model of Gurnani and
Tang (1999) plays the same role as the first period demand in
Fisher and Raman (1996). In both papers, there are two different
and correlated random variables associated with each product. As
stated earlier, we follow the approach of Choi et al. (2003) in
which there is a single random variable (with unknown mean)
associated with each product. The new market information vector
X in our model is a draw from the joint distribution of p random
variables, each of which represents the seasonal demand of a
particular product. This is in contrast to Gurnani and Tang (1999)
in which market information is an exogenous variable.

The cost parameters and order decisions in our model are
listed below

cji unit purchase cost for product i at time j, j¼1,2, i¼1,2,
y, p

ti unit salvage value for product i, i¼1,2, y, p

pi unit shortage cost (loss of goodwill) for product i, i¼1,2,
y, p

pi unit selling price for product i, i¼1,2, y, p

Qji order quantity for product i at time j, j¼1,2, i¼1,2, y, p

The salvage value ti indicates the revenue from leftover stock, and
the shortage cost pi is incurred when some of the demand cannot
be satisfied because of insufficient stock. We assume that
tioc1ioc2iopi, i¼1,2, y, p. If c1iZc2i, no order would be placed
for item i at time 1.
4. Multi-product problem without a budget constraint

The two-stage multi-product problem without a budget con-
straint is a special case of the general problem that we consider. It
can be decomposed into simpler single-product subproblems,
hence, before dealing with the general case, we focus on the case
of a non-binding budget constraint first.

If the retailer has a large (non-binding) budget, the optimal
ordering policy for a given product can be specified similarly to
the budget-unconstrained single-product problem. The earlier
studies on the single-product problem have assumed that the
retailer is not financially constrained (e.g., Choi et al., 2003;
Huang et al., 2005).

To apply the backward dynamic programming approach, we
start with considering the ordering problem at time 2. Given that
Q1i units of product i has been ordered at time 1, suppose the
retailer orders Q2i additional units of product i at time 2, i¼1, y, p.
Then the expected profit associated with product i at time 2 can be
written as

EP2iðQ1i,Q2iÞ ¼ piE½minðQ1iþQ2i,YiÞ�þtiE½Q1iþQ2i�Yi�
þ

�piE½Yi�Q1i�Q2i�
þ�c2iQ2i ð5Þ

where Yi is the demand for product i during the selling season, the
demand distribution is normal with mean m2i and variance aii, and
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Kþ¼max(K,0). The four terms on the right side of (5) are the
expected revenue, expected salvage revenue resulting from left-
overs, expected shortage cost, and the purchase cost, respectively.
The total expected profit function for all products at time 2 is a
sum of p profit functions, each of which is associated with a
specific product and has the form shown in (5). Hence, to
determine the optimal budget-unconstrained order quantity for
a specific product at time 2, it is sufficient to consider only the
marginal demand distribution for that product. EP2i(Q1i,Q2i) is
concave in Q2i, and setting the derivative of (5) to zero, the
optimal order quantity at time 2, Qn

2i is

Qn

2i ¼maxf0,m2iþa0:5
ii F�1

ðsiÞ�Q1ig,

where F�1 (si) is the inverse of the standard normal cumulative
distribution function (cdf). The threshold si is the critical percentile
point of the demand distribution that balances the tradeoffs
between the underage and overage costs in the standard news-
vendor problem, i.e.,

si ¼
piþpi�c2i

piþpi�ti
:

Thus the retailer will order additional units of product i if the
updated mean m2i is greater than Q1i�a0:5

ii F�1
ðsiÞ. Let

ti ¼ m2iþa0:5
ii F�1

ðsiÞ. If Qn

2i40, the retailer’s expected profit at
time 2, J1i (Q1i,m2i), will be

J1iðQ1i,m2iÞ ¼ piE½minðti,YiÞ�þtiE½ti�Yi�
þ�piE½Yi�ti�

�c2iðti�Q1iÞ ¼ ðpi�c2iÞm2iþðti�c2iÞa
0:5
ii F�1

ðsiÞ

�ðpiþpi�tiÞa
0:5
ii CðF�1

ðsiÞÞþc2iQ1i, ð6Þ

where CðuÞ ¼
R1

u ðz2uÞjðzÞdz is the unit loss function for the
standard normal distribution, and j(z) is the density of a standard
normal variable. If Qn

2i ¼ 0, the retailer’s expected profit, J2i

(Q1i,m2i), is

J2iðQ1i,m2iÞ ¼ piE minðQ1i,YiÞ½ �þtiE½Q1i�Yi�
þ�piE½Yi�Q1i�

þ

¼ pim2iþtiðQ1i�m2iÞ�ðpiþpi�tiÞa
0:5
ii C

Q1i�m2i

a0:5
ii

 !
: ð7Þ

Combining the two cases, Qn

2i40 and Qn

2i ¼ 0, the retailer’s
expected profit associated with product i at time 1, EP1i(Q1i), can
be written as

EP1iðQ1iÞ ¼

Z 1
�1

EP2iðQ1i,Q
n

2iÞgiðm2iÞdm2i�c1iQ1i

¼

Z Q1i�a0:5
ii
F�1
ðsiÞ

�1

J2iðQ1i,m2iÞgiðm2iÞdm2i

þ

Z 1
Q1i�a0:5

ii
F�1
ðsiÞ

J1iðQ1i,m2iÞgiðm2iÞdm2i�c1iQ1i: ð8Þ

The probability density function (pdf) of m2i in (8), gi(m2i), is
normal with mean m1i and variance vii. Thus the retailer’s expected
profit at time 1 in the budget-unconstrained multi-product pro-
blem is

EPðQ11,Q12,. . .,Q1pÞ ¼
Xp

i ¼ 1

EP1iðQ1iÞ: ð9Þ

It can be shown that EP(Q11,Q12, y, Q1p) is concave in the first-
stage order quantities Q11,Q12, y, Q1p.

Proposition 1. The retailer’s expected profit in the budget-uncon-

strained multi-product problem is concave in the variables Q1i, i¼1,
2, y, p.

The proofs of all propositions can be found in Appendix A.
Based on Proposition 1, the optimal order quantity for product i at
time 1 follows from the first-order optimality condition. Using (8),
the first derivative of EP1i(Q1i) is

@EP1iðQ1iÞ

@Q1i
¼ ðpiþpi�c2iÞFðeiÞþðc2i�c1iÞ

�ðpiþpi�tiÞ

Z ki

�1

F
Q1i�m1i�giv

0:5
ii

a0:5
ii

 !
jðgiÞdgi ð10Þ

where F( � ) is the standard normal cdf, ki ¼Q1i�a0:5
ii F�1

ðsiÞ,
gi ¼ ððm2i�m1iÞ=v0:5

ii Þ, and ei ¼ ððQ1i�a0:5
ii F�1

ðsiÞ�m1iÞ=v0:5
ii Þ, cf. Choi

et al. (2003, Lemma 1). The optimal Q1i, if positive, satisfies the
equation (qEP1i(Q1i))/(qQ1i)¼0. To find the optimal set of initial
order quantities Q1i, i¼1, y, p, it is sufficient to solve p single-
product problems separately. When the product demands are
correlated with each other, the optimal order quantity Q1i for
product i found by using (10) depends on the demand distribu-
tions of other products. In the special case when the demands for
products are statistically independent, the first-order optimality
condition for a product will depend on only the demand and cost
parameters for that product, and the optimal order at time 1 will
be exactly same as that derived in the single-product problem of
Choi et al. (2003). On the other hand, the multi-product problem
under a binding budget constraint is not separable into single-
product problems, and the optimal initial orders for the products
must be determined jointly.
5. Single product problem with a budget constraint

We now consider the single-product problem with demand
forecast update and a budget constraint. In the presence of a
budget constraint, the problem involves determining how much
of the available funds to reserve for purchases at the second stage.
Let B be the total budget available for purchases at time 1 and
time 2 combined. Since there is only a single product, we omit the
subscript for the product number in the notation in this section.

After the forecast update, the target inventory at time 2 is
m2þF�1(s)sx where sx is the standard deviation of the predictive
demand distribution at time 2. We note that sx corresponds to
a0:5

ii for product i that has an independent demand distribution in
the multi-product problem (see e.g., Serel, 2009). We can write
the order amount at time 2, Q2, as

Q2 ¼maxf0,m2þF
�1
ðsÞsx�Q1g if c2½m2þF

�1
ðsÞsx�Q1�oB�c1Q1,

¼maxf0,ðB�c1Q1Þ=c2g if c2½m2þF
�1
ðsÞsx�Q1�ZB�c1Q1

The amount of money on hand at time 2 is B�c1Q1. If there are
sufficient funds at time 2, the retailer raises the inventory on hand
to the target level m2þF�1(s)sx. Otherwise, all funds available are
used to bring the inventory to the target level as close as possible.

The ordering policy at time 2 can be expressed in terms of
three regions for the updated mean estimate m2

Q2 ¼

0 if m2rQ1�F
�1
ðsÞsx,

m2þF
�1
ðsÞsx�Q1 if Q1�F

�1
ðsÞsxom2rQ1�F

�1
ðsÞsxþ

B�c1Q1
c2

B�c1Q1
c2

if m24Q1�F
�1
ðsÞsxþ

B�c1Q1
c2

:

,

2
6664

ð11Þ

Let W¼Q1(1�(c1/c2))þ(B/c2). The expected profit at time 2 can be
written as a function of Q1 and m2 as follows:

Case 1. If m2rQ1�F�1(s)sx, the total inventory at the beginning
of the season will be Q1, and the expected profit T1(Q1,m2) is

T1ðQ1,m2Þ ¼ pm2þtðQ1�m2Þ�ðpþp�tÞsxC
Q1�m2

sx

� �
: ð12Þ

Case 2. If

Q1�F
�1
ðsÞsxom2rQ1�F

�1
ðsÞsxþððB�c1Q1Þ=c2Þ,
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we have Q1þQ2¼m2þF�1(s)sx and the expected profit T2(Q1,m2)
is

T2ðQ1,m2Þ ¼ ðp�c2Þm2þðt�c2ÞsxF�1
ðsÞ�ðpþp�tÞsxCðF�1

ðsÞÞþc2Q1:

ð13Þ

Case 3. If m24Q1�F�1(s)sxþ((B�c1Q1)/c2), the total inventory
is W, the expected profit T3(Q1,m2) is

T3ðQ1,m2Þ ¼ pm2þtðW�m2Þ�ðpþp�tÞsxC
W�m2

sx

� �
�ðB�c1Q1Þ:

ð14Þ

By taking expectation with respect to m2, the expected profit at
time 1, EP(Q1), can be written as

EPðQ1Þ ¼

Z Q1�sxF�1
ðsÞ

�1

T1ðQ1,m2Þgðm2Þdm2þ

Z Q1�sxF�1
ðsÞþ ððB�c1Q1Þ=c2Þ

Q1�sxF�1
ðsÞ

T2ðQ1,m2Þgðm2Þdm2þ

Z 1
Q1�sxF�1

ðsÞþ ððB�c1Q1Þ=c2Þ

T3ðQ1,m2Þgðm2Þdm2�c1Q1, ð15Þ

where g(m2) is the pdf of m2. In Proposition 2, we show that EP(Q1)
is concave in Q1.

Proposition 2. The retailer’s expected profit in the budget-con-

strained single-product problem is concave in the initial order Q1.

Thus, the optimal first-stage order quantity in the budget-
constrained single-product problem can be found by equating the
first derivative of EP(Q1) to zero (Eq. (A10) in Appendix A). In
Proposition 3, we show that as the budget increases, the expected
profit increases at a decreasing rate.

Proposition 3. The retailer’s expected profit in the budget-con-

strained single-product problem is non-decreasing concave in the

budget amount B.

Let Qu
1 be the optimal first-stage order quantity, and c1Qu

1 be
the total procurement cost at the first-stage in the budget-
unconstrained single-product problem. It can be shown that
when the budget available exceeds the threshold c1Qu

1, the
optimal initial order in the unconstrained-budget problem is a
lower bound for the optimal initial order in the constrained-
budget problem.

Proposition 4. The retailer’s optimal initial order in the budget-

constrained single-product problem is greater than or equal to Qu
1

when the budget B exceeds c1Qu
1.

The optimal first-stage order quantity in the budget-con-
strained problem depends on the budget amount in the following
manner. When the budget available B is less than c1Qu

1, the
optimal first-stage order quantity equals B/c1; the retailer pur-
chases as much as it can at time 1. However, when the budget
available exceeds c1Qu

1, it does not imply that the optimal first-
stage order quantity will be Qu

1. Given a limited budget, the
retailer takes advantage of the relatively lower purchase cost at
time 1, and orders more than Qu

1 at time 1. The amount of money
left for additional purchases at time 2 determines how many extra
units the retailer will add to the inventory above Qu

1 at time 1.
If the total funds are tight and expected to be spent fully before the
season, it may be preferable to order at time 1 rather than at time
2 due to the savings in the unit purchase cost. By ordering most of
the stock at time 1, the retailer is able to increase its stocking level
and reduce the risk of unsatisfied demand. On the other hand,
when the budget available becomes sufficiently large, there are
enough funds for possible purchases at time 2. As the budget
available B goes to infinity, the right side of (A26) approaches to
the right side of (A25), and the first derivative of the expected
profit becomes the same for both the budget-unconstrained
and budget-constrained single-product problems. The retailer
does not face the risk of insufficient funds at time 2, and the
order size at time 1 converges to the order quantity in the
budget-unconstrained problem Qu

1.
We note that the optimal order quantity in a budget-uncon-

strained single-stage problem is an upper bound on the optimal
order quantity in the budget-constrained single-stage problem.
We have shown that this property does not extend to the initial
order quantity in the two-stage problem.

It can also be shown that the optimal initial order is non-
decreasing in the second-stage purchase cost c2.

Proposition 5. The retailer’s optimal initial order in the budget-

constrained single-product problem is non-decreasing in the second-

stage purchase cost c2.

6. Multi-product problem with a budget constraint

We now analyze the most complicated case, that is, there are
multiple products and the funds available for purchase are tight.
As in the cases considered previously, dynamic programming
approach is used. We first solve the second stage problem given
the ordering decisions at the first stage, and substitute this
solution into the expected profit function at stage 1 to find the
optimal stage 1 decisions. We use B to denote the total funds
available for all products.

Let Q1¼(Q11,Q12,y,Q1p) and Q2¼(Q21,Q22,y,Q2p) be the vec-
tors that contain the purchase quantities at time 1 and time 2,
respectively. The retailer’s problem at time 2 is essentially a
constrained multi-product newsvendor problem with initial
inventories Q1i, i¼1, y, p, and an available budget of
B�
Pp

i ¼ 1 c1iQ1i. Given Q1i, i¼1, y, p, units that have been ordered
at time 1, and the market information X, the optimal order
quantities Q2i, i¼1,y,p, at time 2 can be found by solving the
following optimization problem:

Maximize B2ðQ1,Q2,m2Þ ¼
Xp

i ¼ 1

piE½minðQ1iþQ2i,YiÞ�þtiE½Q1iþQ2i�Yi�
þ

�piE½Yi�Q1i�Q2i�
þ�c2iQ2i

subject to
Xp

i ¼ 1

c2iQ2irB�
Xp

i ¼ 1

c1iQ1i: ð16Þ

The objective function B2(Q1,Q2,m2) is concave in the decision
variables Q2i, i¼1, y, p, and using Karush–Kuhn–Tucker (KKT)
conditions, the optimal order quantities, if positive, are given by

Qn

2i ¼ F�1
i

piþpi�c2i�lc2i

piþpi�ti

� �
�Q1i,

l B�
Xp

i ¼ 1

ðc1iQ1iþc2iQ
n

2iÞ

" #
¼ 0: ð17Þ

where l is the Lagrange multiplier, lZ0, and Fi is the cdf of the
demand at time 2 for product i, i.e., a normal distribution with
mean m2i and variance aii. The optimal values for Q2i satisfying
(17) can be found using one of the algorithms available for solving
the constrained multi-product newsvendor problem, e.g. Abdel-
Malek et al. (2004) and Zhang et al. (2009).

Let k(Q1,m2) be the optimal value of B2(Q1,Q2,m2) in problem
(16). The retailer’s expected profit at time 1 can be written as

EPðQ1Þ ¼ Em2
kðQ1,m2Þ�

Xp

i ¼ 1

c1iQ1i: ð18Þ

It is stated in Proposition 6 that the expected profit at time 1 is
jointly concave in the decision variables Q1i, i¼1, y, p.
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Proposition 6. The retailer’s expected profit in the budget-con-

strained multi-product problem is jointly concave in the initial order

quantities Q1i, i¼1, y, p.

To determine the optimal ordering decisions at time 1, a
computational procedure can be used. Suppose we discretize
the p-dimensional grid that contains all possible values for the
p-dimensional vector m2¼(m21, m22, y, m2p). Given a particular
point on this grid m2¼m2

a, and the initial orders Q1i, i¼1, y, p, the
retailer’s problem at time 2 is defined by (16). The demands for
products in this problem are distributed as multinormal with
Yes

No

Yes 

Set μ2 = [μ21, μ22, …, μ2p] 

Initialize Q1 = [Q11, Q12, …
Set maxprofit=0. 

Find Q21, Q22, …, Q2p max
the second stage expected
by solving a multi-item 
newsvendor problem. 

Find the first-stage expect
profit given μ2

a

Find the first-stage expect
profit B(Q1) by taking exp
with respect to μ2 over the
∈ S. 

Is B(Q1) > 
maxprofit? 

Set maxprofit=B(Q1). Q1*

Are all points in the se
Q considered for Q1?

Stop. 

Fig. 2. Solution procedure for the budget
mean m2
a and covariance matrix S2. After solving (16) based on

m2¼m2
a, by subtracting the cost of purchases at time 1 from the

stage 2 profit associated with optimal Q2i, we can find the
retailer’s profit at time 1 given Q1i and a particular realization
for m2, m2

a.
The retailer’s expected profit at time 1 for a given Q1i and prior

to observing the market information X can be computed using the
joint probability distribution of predictive demand mean, m2. Let
Z(m2) be the joint density of the random variables m21, m22, y, m2p.
Recall that m21, m22, y, m2p are distributed multinormal with
mean m1 and covariance matrix V. For example, if there are two
No

  

to μ2
a.

, Q1p].

imizing 
 profit 

ed 

ed 
ectation 
 set  μ2

=Q1.

t 

Set Q1 to a new 
point.   

-constrained multi-product problem.
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products (i.e., p¼2), the joint pdf of m21 and m22 is bivariate
normal given by

Zðm21,m22Þ ¼
1

2p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v11v22ð1�r2Þ

p exp �
y2

1�2ry1y2þy2
2

2ð1�r2Þ

� �� �
,

where y1 ¼ ðm21�m11Þ=v0:5
11 , y2 ¼ ðm22�m12Þ=v0:5

22 , and r¼ v12=ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v11v22
p

. In general, for pZ2 we have (see, e.g., Robert, 2007,
p. 519)

Zðm2Þ ¼
1

ð2pÞ0:5p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðVÞ

p exp �0:5ðm2�m1ÞV
�1
ðm2�m1Þ

T
h i

: ð19Þ

If B(Q11,Q12, y, Q1p9m2) is the expected profit for a given realiza-
tion of m2, the expected profit at time 1 prior to the realization of
m2 is

EPðQ11,Q12,:::,Q1pÞ ¼

Z Z
. . .

Z
BðQ11,Q12,. . .,Q1p9m2ÞZðm2Þdm21dm22. . .dm2p:

ð20Þ

By suitably discretizing Z(m2) over the region for m2 that contains
all possible values of m2 for practical purposes, we can calculate
the expected profit at time 1 for a particular choice of Q1i, i¼1, y,
p. The idea is to approximate the integral representing the
expected profit by a weighted sum of values which are derived
by evaluating the term inside the integral at a discrete set of
points. If S is the set of points for m2 at which the retailer’s profit is
calculated, the retailer’s expected profit at time 1 can be
expressed as

BðQ11,Q12,. . .,Q1pÞ ¼
X
m2 AS

BðQ11,Q12,:::,Q1p9m2ÞZðm2Þ: ð21Þ

To calculate the expected profit, we evaluate (21) at all possible
combinations of the specific values for components m2i of the
vector m2. The consecutive points for each component m2i are
specified along an interval starting at the lowest value m2i¼2.5
with a step size of 1 up to the maximum value of m1iþ3:5v0:5

ii . The
probability that m2i exceeds the higher limit of the interval is
considered to be negligible, and hence we ignore the contribution
to the expected profit when m2i4m1iþ3:5v0:5

ii . Because we use a
step size of 1 for all p dimensions, the weight applied to each term
that enters the sum (and evaluated at a particular m2) in (21) is 1.
In the special case of one dimension (p¼1), the pdf of m2

evaluated at a particular value of m2, say ma
2, is multiplied by 1,

which is approximately the area of the strip under the pdf
between ma

2�0:5 and ma
2þ0:5. To understand the rationale of

(21), it can be thought that when there are p dimensions, we
have p nested integrals on the right side of (20) and we evaluate
these nested integrals iteratively. Starting with the innermost
layer, we evaluate the integral for a single dimension, and
substitute this evaluation into the integral immediately nesting
it. Thus using a step size of 1 for all p dimensions, (21) provides an
approximation to the evaluation of the p-dimensional integral
that represents the expected profit, (20).

Note that to limit the number of points used in the computa-
tions, the units in which demand is measured may need to be re-
defined (i.e., scaled down) if the mean demand m1i is significantly
large. Another alternative to approximate the multi-dimensional
integral yielding the expected profit is to use quadrature methods
such as Gauss–Hermite instead of (21) (e.g., Press et al., 1992).

Finally, the optimal set of decisions at time 1 can be found
using a grid search. After computing B(Q11,Q12, y, Q1p) for all
possible combinations of Q11,Q12, y, Q1p, we can determine the
optimal combination of Q11,Q12, y, Q1p that maximizes the
retailer’s expected profit at time 1. Let Q be the set of points over
which the search for the optimal initial orders is conducted. The
procedure described above is summarized in a flow-chart in
Fig. 2. The output of the algorithm are Qn

1, the vector containing
the optimal values of Q11,Q12,y,Q1p, and maxprofit, the optimal
expected profit at time 1. Note that the full grid (solution space)
spanning all discrete values of Q11,Q12,y,Q1p does not need to be
searched. Given a set of values Q11,Q12,y,Q1i�1, Q1iþ1,y,Q1p, to
find the best value for Q1i, the search can be started at the lowest
value specified for Q1i and the value of Q1i is increased by the step
size used, say DQ1i, at each iteration until the expected profit
starts decreasing. Due to the concavity of the expected profit
function by Proposition 6, the Q1i values falling in the remaining
unexplored high-end region cannot yield a better profit, and
hence do not need to be considered. Note also that when the
number of products is large, instead of grid search, with appro-
priate modifications well-known numerical optimization techni-
ques such as Nelder–Mead downhill simplex method can be
applied to find the optimal ordering policy (e.g. Press et al., 1992).

To check the accuracy of our approximation formula (21), in our
numerical study in Section 7, we conducted Monte Carlo simulation
to evaluate the expected profit at the optimal point that is found
using (21). In the simulation, expected profit function (20) was
computed by generating random vectors from the multivariate
normal distribution for m2. In the numerical examples considered,
the observed maximum difference between the expected profits
calculated via (21) and simulation was less than 0.4%.

When the budget available is sufficiently large, the optimal
first-stage order Qn

1 can be approximated by the optimal order
sizes in the budget-unconstrained problem, which can be deter-
mined using (10).

It is possible to find an upper bound on the optimal initial
order for a product by considering the budget-unconstrained
single-stage problem. Suppose the retailer does not have the
option to revise the demand forecast and issue a second order. In
this single-stage traditional newsvendor problem, the retailer
orders only once based on the demand forecast at time 1. The
solution to this problem is an upper bound on the optimal initial
order in the two-stage multi-product problem. Thus, the upper
bound on the optimal Q1i is given by

Qub
1i ¼ m1iþðdiiþsiiÞ

0:5F�1 piþpi�c1i

piþpi�ti

� �
, i¼ 1,. . .,p: ð22Þ

In the two-stage problem, due to the possibility of learning a
lower expected demand from the market signal, the retailer
orders less than Qub

1i units of product i at time 1. Note that besides
the demand learning factor, existence of a budget constraint also
may induce the retailer to reduce its order size. The upper bounds
given by (22) can be used to define the search region for Q1i in the
algorithm described in Fig. 2.

We also remark that in a related problem, instead of a common
budget, there may be p different budgets B1, B2, y, Bp specifically
reserved for each product. The solution to this problem can be
found by solving p constrained single-product problems sepa-
rately, as discussed in Section 5.
7. Numerical examples

In this section we present numerical examples for the models
developed in the previous sections. We investigate how the
optimal ordering policy is influenced by the changes in the
available budget and demand uncertainty.

7.1. Examples for the budget-constrained single-product problem

In the first set of examples we focus on the budget-constrained
single-product problem assuming that demand distribution at
time 1 is normal with unknown mean m and known variance s1

2.
The mean of the demand distribution, m itself is assumed to be



Table 1
Optimal first-stage order, expected purchase cost, percentage of purchase cost

incurred at time 1, and expected profit for the budget-constrained single-product

problem (c1¼5, c2¼7, t¼1, p¼20, p¼2, m1¼20, s1
2
¼2).

d1 B Qc
1

EPC r (%) EPðQc
1Þ

10 90 18.0 90.0 100 253.3

100 20.0 100.0 100 271.0

110 22.0 110.0 100 279.3

120 21.5 111.5 96.4 282.1

130 21.1 112.5 93.8 283.4

140 21.0 113.0 92.9 284.0

20 90 18.0 90.0 100 244.2

100 20.0 100.0 100 260.7

110 22.0 110.0 100 270.2

120 21.8 113.0 96.5 274.5

130 21.3 114.4 93.1 277.4

140 20.9 115.2 90.7 279.2
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Fig. 3. Effect of shortage penalty p on optimal initial order at different budget

levels in the single-product problem.

Table 2
Optimal order quantity and expected profit for the single-stage problem with

parameters given in Table 1.

d1 B Qss
1 EPðQss

1 Þ

10 90 18.0 253.3

100 20.0 271.0

110 22.0 279.3

120 23.0 280.2

130 23.0 280.2

140 23.0 280.2

20 90 18.0 244.2

100 20.0 260.7

110 22.0 270.2

120 24.0 273.2

130 24.1 273.2

140 24.1 273.2

Table 3
Cost and demand parameters in the numerical example of products with

independent demands.

Product (i) ti pi c1i c2i pi m1i sii dii

1 1 2 5 7 20 20 2 20

2 1 2 5 7 20 20 2 10

3 1 2 5 10 20 20 2 20
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normally distributed with mean m1 and variance d1. In our study
we use the following values for parameters: t¼1, p¼2, p¼20,
s1

2
¼2, m1¼20, d1A{10, 20}. The unit purchase costs at time 1 and

time 2 are c1¼5, c2¼7, respectively.
The optimal first-stage order Qc

1 and the resulting expected profit
at time 1, EPðQc

1Þ, associated with different budget values B are shown
in Table 1. A higher value for d1 indicates a more variable demand
distribution. The optimal budget-unconstrained first-stage order Qu

1 is
20.9 and 20.4 when d1 is 10 and 20, respectively. The optimal
expected profit in the budget-unconstrained problem is 284.2 and
281.2 when d1 is 10 and 20, respectively.

The changes in expected profit values in Table 1 indicate that,
in consistence with Proposition 3, marginal benefit of additional
budget decreases as the budget becomes larger. Comparing the
results for d1¼10 and d1¼20 in Table 1, we observe that the
expected profit decreases with demand variability. The optimal
first-stage order size varies with the budget available. As noted
earlier, when the budget B is neither too small nor large, the first-
stage order exceeds the first-stage order in the unconstrained-
budget case. Table 1 shows that when the budget is small, the
best decision is to spend all funds at time 1, and hence, the first-
stage order Qc

1 is not affected by demand variability in this case.
We also list in Table 1 the total expected purchase cost, EPC,

and the percentage of this cost incurred at time 1, r. The
difference between the purchase cost and the salvage value
represents the holding cost for the retailer. Hence, the unit
holding cost resulting from a stock purchased at time 2 is higher
than that purchased at time 1. The values for r in Table 1 are
generally high, indicating that a substantial portion of the
procurement funds are spent at time 1. Thus, in our example
benefit from a lower holding cost dominates the benefit from
improved demand forecast at time 2.
The impact of shortage penalty cost p on the optimal initial
order quantity Qc

1 at various budget levels is displayed in Fig. 3.
The results pertain to the case d1¼20. It can be observed from
Fig. 3 that when the budget exceeds a threshold level, the optimal
initial order increases as p increases.

For comparison purposes, we present in Table 2 the optimal
solution for the single-stage problem. As indicated by (22), if the
budget is sufficient, the optimal order quantity for the single-
stage problem, Qss

1 , is given by

Qss
1 ¼ m1þðd1þs2

1Þ
0:5F�1 pþp�c1

pþp�t

� �
:

If the budget B is not sufficient to purchase Qss
1 units, all money

available will be spent, and the optimal order size will be B/c1. The
difference between the profits in Tables 1 and 2 indicates the
value of implementing a quick response system over using
the traditional single order approach. The results indicate that
the benefit from placing two distinct orders increases with the
available budget. When the funds are very tight, the retailer
exhausts all of its budget at time 1 even though it has a chance to
order again later. Thus, a limited budget blurs the distinction
between the two-stage problem and the single-stage problem.
Note also that in the unconstrained-budget case, as expected, the
order size in the single-stage problem exceeds the initial order
size in the two-stage problem. When a second order opportunity
is not available, the retailer stocks more units at time 1.

7.2. Multi-product problem with independent demands

We now turn our attention to the budget-constrained multi-
product problem. In the first set of examples we consider
3 products with independent demands. Thus we assume
sij¼dij¼0 for all ia j, i¼1, 2, 3, j¼1, 2, 3. The cost and demand
parameters for the products are listed in Table 3. The parameters
are selected to facilitate exploring the effect of demand variability
and the second-stage purchase cost. Hence we keep the salvage
value, stockout cost, first-stage purchase cost, selling price and
estimate of mean demand at time 1 identical across the three
products. The optimal first-stage order quantities in the



Table 4
Optimal first-stage order quantities and expected profit for the problem described

in Table 3.

B Q11 Q12 Q13 maxprofit profit-sim

260 17.1 17.8 17.8 720.2 720.2

280 18.5 18.9 18.6 761.2 761.2

300 20.0 20.0 20.0 792.4 792.4

320 20.3 19.9 20.7 814.5 815.7

340 20.6 20.3 21.6 829.0 830.3

360 20.8 20.7 22.3 836.5 837.9

380 20.6 20.9 22.5 839.6 841.1

400 20.5 20.9 22.5 840.8 842.3

Table 5
Optimal order quantities and expected profit for the single-stage problem with

parameters given in Table 3.

B Q11 Q12 Q13 maxprofit

260 17.1 17.8 17.1 720.2

280 18.5 18.9 18.6 761.2

300 20.0 20.0 20.0 792.4

320 21.5 21.1 21.5 813.2

340 22.9 22.2 22.9 824.2

360 24.1 23.0 24.1 826.7

380 24.1 23.0 24.1 826.7

400 24.1 23.0 24.1 826.7
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unconstrained-budget case are Q11¼20.4, Q12¼20.9, and
Q13¼22.4, resulting in a total expected profit of 842.6. As
discussed in Section 4, the optimal solution for the uncon-
strained-budget case can be found by solving 3 single-product
problems separately.

The optimal solutions with different levels of budget availability
are displayed in Table 4. The optimal expected profit at time 1,
maxprofit, increases as the available budget B increases. The marginal
benefit of additional budget gets smaller as the budget amount
becomes larger, and the expected profit approaches the expected
profit for the unconstrained-budget case. The expected profit calcu-
lated by simulating the random vector m2 is denoted by profit-sim in
Table 4. The small difference between maxprofit and profit-sim

indicates that the error caused by discretizing the pdf of m2 in
evaluating (20) is not expected to be significant. Note that when
the budget is restricted, the problem turns into a single-stage problem
which is solved without taking into account the pdf of m2.

Similar to the single-product case discussed in Section 7.1, we
compare the optimal solution for the single-order problem (pre-
sented in Table 5) with that for the two-order case (Table 4). As
noted previously, demand for product i at time 1 is distributed as
normal with mean m1i and variance siiþdii. The difference
between the profits in Tables 4 and 5 shows a similar pattern to
the difference between the profits in Tables 1 and 2. The benefit
from the demand forecast update is realized only when the
budget is sufficiently large. When there is no financial constraint,
the order sizes for all products in the single-stage problem exceed
the initial order sizes in the two-stage problem.

We note that, since all products have the same cost para-
meters, the optimal solution to the single-stage problem when
the budget constraint is active can be found using (see Erlebacher,
2000, Theorem 1):

Q1i ¼ m1iþðsiiþdiiÞ
0:5 B�

P3
i ¼ 1 c1im1iP3

i ¼ 1 c1iðsiiþdiiÞ
0:5

, i¼ 1,2,3: ð23Þ

According to (23), the impact of demand standard deviation on
the order quantity of a product depends on the sign of
B�
P3

i ¼ 1 c1im1i. If Bo
P3

i ¼ 1 c1im1i, a higher value for (siiþdii)
0.5

implies a lower order size for product i. On the other hand, if
B4

P3
i ¼ 1 c1im1i, a higher value for (siiþdii)

0.5 implies a larger
order size for product i. Notice that the effect of demand standard
deviation on the order size is independent of the critical fractile
value, which is determined by the underage and overage costs.
We remark that in the traditional single-product newsboy pro-
blem with normally distributed demand, the optimal order size
equals mean demand plus k� (standard deviation of demand),
where the multiplier k depends on the critical fractile. Hence, in
the single-product problem, the qualitative effect of a change in
demand standard deviation on the optimal order size depends on
the sign of k, or equivalently, whether the order size is above or
below the mean demand. From (23), we have

@Q1i

@B
¼

ðsiiþdiiÞ
0:5P3

i ¼ 1 c1iðsiiþdiiÞ
0:5

40: ð24Þ

It follows from Eq. (24) that

@Q1i

@B
4
@Q1j

@B
if ðsiiþdiiÞ

0:54ðsjjþdjjÞ
0:5: ð25Þ

Thus, Eq. (25) indicates that as the budget increases, the increase
in the order size of the product with a higher demand standard
deviation is more than that of the product with a lower demand
standard deviation. This expression explains the changes in the
order sizes in response to budget changes in Table 5.

Products 1 and 2 have the same cost parameters. Demand for
product 1 is more volatile than that for product 2. With a limited
budget, the retailer plays safe, and diverts the limited funds to the
product that entails a lower demand risk (product 2). However, as
the budget increases, this preference is reversed and product 2 is
given a lower weight in the retailer’s product portfolio. When the
funds are abundant (non-binding), the retailer can make stocking
decision of a product independently of other products; hence,
given the critical fractile values for products in this example,
more demand variability results in a larger order quantity.

The result that the product with more predictable demand is
allocated a higher share of the binding budget is also observed in
the two-stage problem of Table 4. As the budget increases,
product 1 becomes more attractive for investment, and it
accounts for a larger share of the total expenditure. But, as
different from the single-stage problem in Table 5, the order size
for product 1 does not exceed the order size for product 2 as the
budget constraint is loosened. Thus having the option to issue a
second order prevents a large increase in the initial order for
product 1. Referring to the results in Table 4, we also notice that
high unit purchase cost for product 3 at time 2 urges the retailer
to place a large order of product 3 at time 1.

Note that under a tight budget, the two-stage problem essen-
tially turns into a budget-constrained single-stage problem, and
as Eq. (23) implies, a high demand variance leads to a smaller
order size. Hence, the order size of the more risky product
(product 1) is smaller than that of the less risky product (product
2) in Table 4 for low budget amounts.

As noted earlier, in the traditional newsboy problem, the
qualitative impact of demand variability on the order size
depends on whether the critical fractile is above or below 0.5.
To investigate how critical fractile may influence the ordering
policy in our problem, we change some of the cost parameters
used in Table 3, and display the new data in Table 6. We decrease
the selling price significantly so that the critical fractile at time
1 is less than 0.5 for all three products. The optimal decisions
under new parameters are shown in Table 7. The optimal first-
stage order quantities in the unconstrained-budget case are
Q11¼17.2, Q12¼18.2, and Q13¼18.5, and the optimal expected
profit is 150.0.



Table 6
Cost and demand parameters in the second numerical example of products with

independent demands.

Product (i) ti pi c1i c2i pi m1i sii dii

1 1 0 5 6 8 20 2 20

2 1 0 5 6 8 20 2 10

3 1 0 5 7 8 20 2 20

Table 7
Optimal first-stage order quantities and expected profit for the problem described

in Table 6.

B Q11 Q12 Q13 maxprofit profit-sim

220 14.1 15.7 14.2 127.4 127.4

240 15.6 16.8 15.6 135.5 135.5

260 17.1 17.8 17.1 141.4 141.4

280 17.4 17.9 17.5 145.2 145.4

300 17.4 17.8 18.0 147.8 148.1

320 17.2 18.2 18.5 149.1 149.4

340 17.2 18.2 18.5 149.6 149.9

Table 8
Cost and demand parameters in the numerical example of products with

dependent demands (s12¼2, s13¼�1, s23¼�2, d12¼10, d13¼�5, d23¼�8).

Product (i) ti pi c1i c2i pi m1i sii dii

1 1 2 3 5 12 10 2 10

2 1 2 3 5 12 15 3 15

3 1 2 3 7 12 15 3 10

Table 9
Optimal first-stage order quantities and expected profit for the problem described

in Table 8.

B Q11 Q12 Q13 maxprofit profit-sim

110 9.0 13.7 13.9 283.7 283.7

120 10.0 15.0 15.0 301.3 301.3

130 11.0 16.3 16.0 313.1 313.9

140 12.0 17.5 17.1 320.7 321.6

150 12.4 18.0 17.6 324.5 325.4

160 12.5 18.0 17.9 326.3 327.3

170 12.4 17.9 18.0 327.2 328.1

180 12.3 17.8 18.1 327.6 328.6
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Fig. 4. Effect of correlation parameter r on expected profit at different budget

levels in the two-product problem.
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The results in Table 7 are similar to that in Table 4. When the
budget is in the intermediate range (280–300), the order size for
product 1 is greater than the order size for the unconstrained-
budget case (17.2). It appears that when the budget is large, in the
high critical fractile case (Table 4), the difference between the
order sizes of product 2 and product 1 is less than that in the low
critical fractile case (Table 7). We can link this result to the impact
of demand variance in the traditional newsboy problem. In the
newsboy problem with normally distributed demand, order size
is negatively related to demand variance when the critical fractile
is below 0.5. In our problem, the preference given to the product
with less variable demand (product 2) over the product with
more variable demand (product 1) seems to increase when the
critical fractile is low. As in Table 4, the difference between
maxprofit and profit-sim is not significant, indicating that (21)
provides a good approximation for (20).

7.3. Multi-product problem with dependent demands

Finally we present examples for the case of products with
correlated demands. The cost and demand distribution para-
meters for the first example are listed in Table 8. There are three
products, and demands for product 1 and product 2 are positively
correlated. The coefficient of correlation between product 1 and
product 3 as well as between product 2 and product 3 are both
negative. By using the algorithm described in Section 6, we obtain
the results shown in Table 9. The optimal solution for the
unconstrained-budget problem is Q11¼12.2, Q12¼17.7, and
Q13¼18.3, with an associated expected profit of 328.7.

The general patterns in Table 9 are similar to that in Tables 4
and 7. When the budget is in a certain interval, the order sizes for
product 1 and product 2 exceed the order sizes for the unconstrained-
budget case. Because the demand for product 3 is less volatile than
demand for product 2, and also the purchase cost at time 2 of product
3 is higher, the initial order size for product 3 is higher than that for
product 2 when the budget is limited. It is observed in Table 9 that
when the budget is in the intermediate range, Q12 slightly exceeds
Q13, which suggests that the combined effect of demand variability
and correlations among product demands offset the effect of purchase
cost when the budget is in this range.

To investigate the impact of positive versus negative correla-
tion among product demands, we solved a two-product problem
with varying degrees of correlation among demands. We used the
parameters t1¼t2¼1, p1¼p2¼2, p1¼p2¼15, c11¼c12¼5,
c21¼c22¼7, m11¼m12¼20, s11¼s22¼2, s12¼r(s11s22)0.5,
d11¼d22¼20, d12¼r(d11d22)0.5. Thus by varying the parameter
r, we can modify the nature of dependence between product
demands. Positive (negative) values for r indicate that high levels
of demand for a product will be more likely to occur when the
demand for the other product is high (low). We observed that the
impact of correlation on expected profit depends on the budget
amount. When the budget is very limited or very large, the
parameter r is observed to have a negligible impact on expected
profit. Using a budget of BA{190,230,300}, we solved the problem
with r values between �0.9 and 0.9 with a step size of 0.1. When
the budget is very tight (B¼190), all funds are spent at time 1 so
the new market information is not important for determining the
optimal policy. When the budget is unrestricted (B¼300), the
retailer is less pressured to consider the possibility of monetary
constraint at time 2. Only when the budget is in the midrange
(B¼230) that allows to carry a limited amount of funds to time 2,
the correlation parameter r has some influence on expected
profit.

The optimal expected profit and optimal initial orders as a
function of r are plotted in Figs. 4 and 5, respectively. The results
for B¼230 indicate that as r increases from �0.9 to 0.9, the
optimal initial order quantities for products increase while the
optimal expected profit decreases. The optimal initial orders
when r is negative are less than that when r is zero; when
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product demands are negatively correlated, the retailer reserves
some funds for stage 2. At time 2, this reserved money can be
used to purchase more of the product that has a higher demand
signal after the new market information is gathered. Interestingly,
when the budget is 230, positive correlation between demands
may lead to an initial order exceeding that when the budget is
300. Thus positive correlation between product demands causes
the retailer to order more at time 1, which is similar to how a
budgetary constraint may lead to an increase in the initial order
quantity.

We find that correlation between product demands has a
minor impact on expected profit as the difference between the
expected profits when r¼�0.9 and when r¼0.9 is less than 2%
in Fig. 4. We observed similar results in other numerical examples
with different cost and demand data.
8. Conclusion

We have studied an extension of the budget-constrained
multi-product newsvendor problem in which two separate orders
can be placed at two different times, and a Bayesian updating of
demand forecast is made at the time of the second order.
A multivariate normal demand distribution has been assumed.
A dynamic programming algorithm is used to determine the
optimal allocation of the budget among competing products.
The algorithm requires solving a series of constrained multi-
product newsvendor problems with given initial inventories. The
problem can also be regarded as an extension of the two-stage
ordering problem of a single product in a quick response system
to the setting of multiple products. In the budget-constrained
single-product case, we have derived the optimality equation that
the first-stage order quantity should satisfy.

We have shown that in the single-product problem, a limited
budget may cause the initial order size to be greater than the
order size under unlimited budget, and high supply cost for an
item at the second stage leads to an increase in the quantity of
that item ordered at the first stage. Similar patterns are observed
in the numerical examples involving multiple products. The
numerical examples illustrate the increase in the expected profit
resulting from placing two orders instead of the traditional single
order. As the purchasing budget is reduced, cost savings due to
demand forecast revision decrease.

The allocation of the budget among the multiple products with
the same cost structure was studied. The results indicate that the
amount of funds available has an important effect on the relative
share of products in the portfolio. In the unlimited budget case
with independent product demands, products with high demand
volatility make up a large portion of the total procurement
expenditure. However, when the budget is scarce, products with
less volatile demand are given preference in the assortment.

Future research directions include developing effective heur-
istics for finding an approximately optimal solution, investigating
the case of price-sensitive demand, and incorporating risk mea-
sures such as conditional value-at-risk (CVaR).
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Appendix A

Derivation of Eqs. (1) and (2):
If K is a p-variate normal random variable with mean m2 and

covariance matrix D2, the density is given by

gðK9m2,D2Þ ¼
1

ð2pÞ0:5p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðD2Þ

p exp �0:5ðK�m2ÞD
�1
2 ðK�m2Þ

T
h i

:

Since

ðK�m2ÞD
�1
2 ðK�m2Þ

T
¼ KD�1

2 KT
�KD�1

2 mT
2�m2D�1

2 KT
þm2D�1

2 mT
2,

and

m2D�1
2 KT

¼ ðm2D�1
2 KT
Þ
T
¼ KðD�1

2 Þ
TmT

2 ¼ KD�1
2 mT

2 ,

the density can be written as

gðK9m2,D2Þpexp½KD�1
2 KT
�2KD�1

2 mT
2�: ðA1Þ

The terms not involving K are omitted on the right side of (A1). Let
a(M) be the prior density of M. It is assumed that

aðMÞ ¼ 1

ð2pÞ0:5p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðDÞ

p exp �0:5ðM�m1ÞD
�1
ðM�m1Þ

T
h i

:

The likelihood function L(X9M) is

LðX9MÞ ¼
1

ð2pÞ0:5p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðS1Þ

p exp �0:5ðX�MÞS�1
1 ðX�MÞT

h i
:

By Bayesian approach, the posterior density of M, f(M9X) is
proportional to the likelihood function multiplied by the prior
density of M:

f ðM9XÞpLðX9MÞaðMÞ:

Thus, we have

f ðM9XÞpexp½ðM�XÞS�1
1 ðM�XÞTþðM�m1ÞD

�1
ðM�m1Þ

T
�: ðA2Þ

Rewriting the term on the right side of (A2),

ðM�XÞS�1
1 ðM�XÞTþðM�m1ÞD

�1
ðM�m1Þ

T
¼MS�1

1 MT
�MS�1

1 XT

�XS�1
1 MT

þXS�1
1 XT

þMD�1MT
�MD�1mT

1�m1D�1MT
þm1D�1mT

1

ðA3Þ

Collecting the terms,

ðM�XÞS�1
1 ðM�XÞTþðM�m1ÞD

�1
ðM�m1Þ

T
¼MðD�1

þS�1
1 ÞM

T

�2MðS�1
1 XT

þD�1mT
1ÞþhðX,m1,S1,DÞ ðA4Þ

The terms that do not depend on M are shown by h(X,m1,S1,D) in
(A4). Thus, using (A2) and (A4),

f ðM9XÞpexp½MðD�1
þS�1

1 ÞM
T
�2MðS�1

1 XT
þD�1mT

1Þ�: ðA5Þ

To obtain a proper probability density function, the right side of
(A5) should be multiplied by a normalization constant that does
not depend on M. Comparing (A1) and (A5), we observe
D2 ¼ ðD

�1
þS�1

1 Þ
�1 and D�1

2 mT
2 ¼S�1

1 XT
þD�1mT

1. It follows that
the posterior density of the parameter vector M, f(M9X) is
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p-variate normal with mean m2 ¼ ½D2ðS�1
1 XT

þD�1mT
1Þ�

T and covar-
iance matrix D2 ¼ ðD

�1
þS�1

1 Þ
�1.

Proof of Proposition 1. Because EP1i(Q1i) depends only on Q1i

and not on Q1j, ja i, it is sufficient to show concavity of EP1i(Q1i) in
Q1i. Using (10), we obtain

@2EP1iðQ1iÞ

@Q2
1i

¼�
ðpiþpi�tiÞ

a0:5
ii

Z ki

�1

j
Q1i�m1i�giv

0:5
ii

a0:5
ii

 !
jðgiÞdgir0:

ðA6Þ

Hence, the expected profit associated with product i, EP1i(Q1i) is
concave in Q1i. We note that in the budget-unconstrained multi-
product problem, the order quantity Q1i for a product indirectly
depends on the demand distribution characteristics of other
products because, by (3), the variance of the distribution of m2i,
vii is a function of the elements of the covariance matrices S1 and
D. Thus the optimal Q1i is not totally independent of the demand
distribution parameters of other products. &

Proof of Proposition 2. We first show that the expected profit
function EP(Q1) given by (15) is continuous. Using (12) and (13), it
can be verified that

T1ðQ1,m2Þ
��
m2 ¼ Q1�sxF�1

ðsÞ
¼ T2ðQ1,m2Þ

��
m2 ¼ Q1�sxF�1

ðsÞ

¼ pQ1þðt�pÞsxF�1
ðsÞ�ðpþp�tÞsxCðF�1

ðsÞÞ

Similarly, it can be checked that

T2ðQ1,m2Þ
��
m2 ¼ Q1�sxF�1

ðsÞþ
B�c1 Q1

c2

¼ T3ðQ1,m2Þ
��
m2 ¼ Q1�sxF�1

ðsÞþ
B�c1Q1

c2

¼ pðQ1þ
B�c1Q1

c2
Þþðt�pÞsxF�1

ðsÞ

�ðpþp�tÞsxCðF�1
ðsÞÞ�ðB�c1Q1Þ:

Thus EP(Q1) is continuous as m2 changes. From (12)–(14), observe
that

@T1ðQ1,m2Þ

@Q1
¼ tþðpþp�tÞFc

Q1�m2

sx

� �
, ðA7Þ

@T2ðQ1,m2Þ

@Q1
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@Q1
¼ 1�
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� �
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W�m2

sx
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þc1, ðA9Þ

where Fc( � ) is the complementary cdf for the standard normal
distribution. By using (A7)–(A9) and (15), the first derivative of
EP(Q1) with respect to Q1 is

@EPðQ1Þ

@Q1
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Z Q1�sxF�1
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gðm2Þdm2�c1, ðA10Þ

where s is the standard deviation of the distribution of m2. In
order to show that the second derivative of EP(Q1) is negative, we
will decompose the right side of (A10) into three parts as follows:

@EPðQ1Þ

@Q1
¼ Z1þZ2þZ3:

Define Z1 as
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Z Q1�sxF�1
ðsÞ
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From (A11)
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Define Z2 as
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We have
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Now define Z3 as

Z3 ¼ c2F
W�sxF�1

ðsÞ�m1
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: ðA15Þ

Differentiating (A15), we obtain
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From (A14) and (A16) we obtain
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Finally, (A12) and (A17) imply that

@2EPðQ1Þ

@Q2
1

o0: &

Proof of Proposition 3. We first show that for a fixed Q1, EP is
non-decreasing concave in B. From (15), we have

@EP
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Z 1
Q1�sxF�1

ðsÞþ ððB�c1Q1Þ=c2Þ
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Differentiating (14), we obtain
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When the budget is constraining, we have

F
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(A19) and (A20) imply that ((qT3(Q1,m2))/qB)Z0, and conse-
quently
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Using (A18),
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gðm2Þdm2 ðA22Þ

Taking the derivative of (A19), we have

@2T3ðQ1,m2Þ

@B2
¼�

pþp�t
c2

2sx
j Q1ð1�ðc1=c2ÞÞþðB=c2Þ�m2

sx

� �
r0:

ðA23Þ
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Combining (A22) and (A23), we obtain

@2EP

@B2
¼

Z 1
Q1�sxF�1

ðsÞþ ððB�c1Q1Þ=c2Þ

@2T3ðQ1,m2Þ

@B2
gðm2Þdm2r0: ðA24Þ

The additional budget can be spent for increasing Q1 and/or the
purchase amount at time 2. When Q1 is fixed, an increase in
budget can be used to purchase more units at time 2. Eqs. (A21)
and (A24) imply that for a given Q1, the expected profit increases
at a decreasing rate as the budget increases. We have a linear
purchase cost, and by Proposition 2, the expected profit is concave
in Q1. Thus, because the expected profit increases at a decreasing
rate regardless of how the additional budget is spent, it follows
that expected profit is non-decreasing concave in the budget
amount B. &

Proof of Proposition 4. The optimal initial order in the budget-
unconstrained single-product problem Qu

1 satisfies the following
first-order optimality condition, which is found by setting Eq. (10)
to zero:

ðpþp�tÞ
Z Qu

1�sxF�1
ðsÞ

�1

F
Qu

1�m2

sx

� �
gðm2Þdm2�ðpþp�c2ÞFðzÞ ¼ c2�c1,

ðA25Þ

where z¼ ðQu
1�sxF�1

ðsÞ�m1Þ=s. From (A10), the first-order con-
dition in the budget-constrained single-product problem is

ðpþp�tÞ
Z Q1�sxF�1

ðsÞ

�1

F
Q1�m2

sx

� �
gðm2Þdm2

�ðpþp�c2ÞF
Q1�sxF�1

ðsÞ�m1

s

 !

¼ c1Fc
W�sxF�1

ðsÞ�m1

s

 !
þ

Z 1
Q1�sxF�1

ðsÞþ
B�c1Q1

c2

1�
c1

c2

� �
tþðpþp�tÞFc

W�m2

sx

� �� �

� gðm2Þdm2þc2F
W�sxF�1

ðsÞ�m1

s

 !
�c1 ðA26Þ

Recall that W¼Q1(1�(c1/c2))þ(B/c2). Observe that,Z 1
Q1�sxF�1

ðsÞþ ððB�c1Q1Þ=c2Þ

1�
c1

c2

� �
tþðpþp�tÞFc

W�m2

sx

� �� �
gðm2Þdm2

Z ðc2�c1ÞFc
W�sxF�1

ðsÞ�m1

s

 !
ðA27Þ

Eq. (A27) implies that

c1Fc
W�sxF�1

ðsÞ�m1

s

 !
þ

Z 1
Q1�sxF�1

ðsÞþ
B�c1 Q1

c2

1�
c1

c2

� �
tþðpþp�tÞFc

W�m2

sx

� �� �
gðm2Þdm2

þc2F
W�sxF�1

ðsÞ�m1

s

 !
Zc2: ðA28Þ

Define the left side of (A26) as H(Q1), i.e.,

HðQ1Þ ¼ ðpþp�tÞ
Z Q1�sxF�1

ðsÞ

�1

F
Q1�m2

sx

� �
gðm2Þdm2

�ðpþp�c2ÞF
Q1�sxF�1

ðsÞ�m1

s

 !
: ðA29Þ

Differentiating (A29),

@HðQ1Þ

@Q1
¼

pþp�t
sx

Z Q1�sxF�1
ðsÞ

�1

j Q1�m2

sx

� �
gðm2Þdm2Z0: ðA30Þ
Thus, H(Q1) is increasing in Q1. By (A28), the right side of (A26)
exceeds the right side of (A25). Comparing (A25) and (A26), and
considering (A30), it follows that, when B4c1Qu

1, the optimal Q1

satisfying (A26) should be greater than or equal to Qu
1. &

Proof of Proposition 5. To prove the result, we show that the
expected profit function EP(Q1) is supermodular in (Q1, c2).
Supermodularity follows when the mixed partial derivative
q2EP/qQ1qc2 is nonnegative (Topkis, 1979). From (A10), we obtain

@2EPðQ1Þ

@Q1@c2
¼Fð

W�sxF�1
ðsÞ�m1

s
Þ�F

Q1�sxF�1
ðsÞ�m1

s

 !

þ

Z 1
W�sxF�1

ðsÞ

@

@c2

c2�c1

c2

� �
pþp�ðpþp�tÞF W�m2

sx

� �� �
gðm2Þdm2

þ

Z 1
W�sxF�1

ðsÞ

c2�c1

c2

� �
�
ðpþp�tÞ

sx

@W

@c2
j W�m2

sx

� �� �
gðm2Þdm2:

ðA31Þ

Observe that

@

@c2

c2�c1

c2

� �
40,

@W

@c2
o0: ðA32Þ

Since WZQ1, the sum of the first two terms on the right-side of
(A31) is nonnegative. By (A32), the third and fourth terms on the
right-side of (A31) are both positive. Hence it follows that ((q2EP)/
(qQ1qc2))Z0. &

Proof of Proposition 6. It can be shown that B2(Q1,Q2,m2)defined
in (16) is jointly concave in (Q11,Q12,y,Q1p,Q21,Q22,y,Q2p). Since
the constraint is linear in (Q1,Q2), (16) is a convex program. Then
by convexity preservation theorem (e.g., Proposition B-4, Heyman
and Sobel, 1984) and the fact that

Pp
i ¼ 1 c1iQ1i is linear in Q1i, it

follows that EP(Q1) defined in (18) is jointly concave in Q1i, i¼1,
y, p. &
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