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1. Introduction

Fractional order system models have been widely studied over
the past two decades (see e.g., [1-7] and their references), where
stability analysis and controller design problems are studied.
Another line of research in this context is the design of fractional
order controllers, including fractional order PID controllers, for
fractional order as well as rational (finite dimensional) systems
[8-14].

Fractional order systems appear in various engineering appli-
cations, see, e.g., [15-20]. It is interesting to see that they might
appear in two ways. First, through theoretical modeling of phys-
ical phenomena and second from frequency domain experiments
when traditional integer order models do not fit the data (for in-
stance when Bode diagrams do not show slopes of integer multi-
ples of 20dB/decade [21]). Many fields are concerned. In electric-
ity, models of polarization emittance of metal electrodes [22] as
well as capacitor models (based on purely empirical Curie’s law of
1889) [23] are of fractional type. In material sciences, fractional
order derivatives are used to model visco-elastic materials [24],
non-laminated ferromagnetic components [25] or magnetic core
coils [21]. Other physical phenomena such as heat conduction [26]
or flexible structures [27] give rise to transfer functions with frac-
tional powers of s (typically square root of s).
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The topic of the present work is the design of classical proper
PID controllers for fractional order systems.

Many different PID controller design techniques are available
for rational (finite dimensional) systems with time delays;
e.g. [28-31]. In this paper, we extend the approach of [28] to
fractional order systems with time delays.

The class of plants considered and the feedback control problem
studied are defined in Section 2. The proposed PID controller design
method is described in Section 3. A numerical example is given in
Section 4, and concluding remarks are made in Section 5.

2. Problem definition

Consider the standard single input-single output feedback
system shown in Fig. 1, where C is the controller to be designed
for the plant P.

We assume that the plant is linear and time invariant. Its
dynamical behavior is represented by the transfer function

_ps G(™)

s —p
where s is the Laplace transform variable, h > 0 is the total
input-output time delay, « € (0, 1) is the fractional order,p > 0
(p"/* being the location of the unstable pole of the plant), and
G(w) is a rational stable transfer function in the variable w = s¢
with G(p) # 0 and G(0) # 0. Such a plant was considered with
h = 0 in [25] when modeling non-laminated electromagnetic
suspensions.

P(s)=e (1)
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Fig. 1. Standard feedback system.

It is clear that we need G(0) # O for stabilizability of (1) by
a controller which includes an integrator. We assume that « is
a rational number, i.e., we are restricting ourselves to the class
of fractional systems of commensurate order, [6]. There is a simple
stability test for this type of systems, which can be seen below.

Given all the parameters of plant (1), our goal is to design a
classical Proportional + Integral + Differential (PID) controller in
the form

S
38 + 1

where K, K;, Ky are free parameters and 7 is an arbitrarily small
positive number making the controller proper.

The feedback system formed by the controller C and the plant
P is stable if (1 + PC)~!, C(1 + PC)~! and P(1 + PC)~! are stable
transfer functions. These transfer functions are indeed fractional
delay systems of retarded type and it has been proven [32] that
H..-stability of these systems is equivalent to their BIBO-stability,
a necessary and sufficient condition being that the system has no
poles in the right half-plane (including no pole of fractional order at
s = 0) and a numerical algorithm to test this property is available
in [33]. In the case of fractional systems of commensurate order,
checking stability can be done as follows (see e.g. [3,6]). Let w = s
and assume that T (w) is a rational function with poles wy, . .., wy.
Enumerate the poles so that wy, ..., wy,, are complex conjugate,
with wy. 1 = W, and wy = |wy|e where § € (0, n) for
k=1,...,n.,and wy, 41, ..., wy arereal. Then, the system T (s%)
is stable if and only if

K;
C(s) =K, + ?' + Ky (2)

T
aj <6 fork=1,...,n.,and

wy <0 fork=2n.+1,...,n

We say that C is a stabilizing controller for the plant P if the
feedback system formed by this pair is stable.

3. PID controller design
In this section, we design classical PID controllers in form (2) for
plant (1). As in [28], the design will be done in two steps: first, PD

controllers will be investigated, and then the integral action will be
added.

3.1. PD controller design

A typical PD controller can be written in the form

~ s
G =K, (1+K . 3
pd(S) p( + drd5+1) (3)

We can express the non-delayed part of the plant as the ratio of
two stable factors:

o

ST —p
Y+ X

P(s) = e ™Y(s)"'X(s) withY(s) =

G(s%)

X(s) =
(s) P

where x > 0 is the free parameter. While it is an arbitrary positive
number at this stage, x plays an important role in the controller
design.

With the notation introduced in (4), the feedback system
stability is equivalent to stability of U~!, where

U(s) := Y(s) + e ™X(5)Cpu(s). (5)
Inserting C,q, X and Y into (5), we have
X G(s* ~ s
U(s):l—(p+) e s ( )Kp 1+ Ky )
s* +x ¥ 4 Xx 3 + 1
By choosing
K, = (p +0G0)™" (6)
we obtain
UGs) = 1— D+x
s 4 x
x (1 — e 1G(s*)G(0) ! (1 F R — ))
s+ 1
_q_ 08
- ¥ 4+ x
1—eMG(s)GO)™!  KyeMG(se) s
X — .
¥ G(0) (tas + 1)
(7)
Since || %Hm = 1forall x > 0, by the small gain theorem, U~ is
stable if
1— e—hSG s)G(0 -1 ~ 1—«
GO ) _ Kq e ™G(s*)G(0)™!
s* s+ 1|,
1
< .
(p+%)

The following results are immediate consequences of the above
discussion.

Lemma 1. For plant (1) there exists a stabilizing proportional
controller, C(s) = K, if

-1

= Y. (8)

oo

H 1— e MG(s*)G0)!
<<
SO(

When (8) holds, all proportional controllers in the form (6) are
stabilizing, where x satisfies0 < x < (Y, —p). O

Lemma 2. Suppose there exist I?d € Rand ty > 0, such that

H (1 — e mG(s*)G(0)!
p <

) — Ky e ™G(s*)G(0)~!

SC(
Sl—a -1
= . 9
1 Ya 9
Then, the controller Cyy(s) = Kp(1 + Ky rassﬁ) is a stabilizing

controller for plant (1) with K, = (p + X)G(0)™! for all x satisfying
O<x<@Wyg—p). O
From the PD controller design method proposed in Lemma 2,

we see that the allowable values of the proportional gain are in the
range

KM = pG(0) " < K, < ¥aG(0)~" =: K.



20 H. Ozbay et al. / Systems & Control Letters 61 (2012) 18-23

Therefore, we would like to maximize /4 in order to maximize the
allowable range for K. This problem is equivalent to finding the

optimal Ky € R so that
_ 1— e ™G(s*)G(0)~!
' =|(

SO[

) — Ky e ™G(s*)G(0)~!

Slfa
’ (10)

X
s+ 1

is minimized for a given fixed t; > 0. A similar problem has been
studied in [30] for the case « = 1, i.e., for rational systems with
time delays. In general, minimization of v/, !is a two-dimensional
search: for each fixed Ed € R, compute the infinity norm by
a frequency sweep. In [30], it is shown that, for a large class
of rational systems with time delays, this computation can be
reduced to a one dimensional search. Currently, we do not know
if a similar result can be obtained for the class of plants studied
here; we leave this problem open for a future study.

Once 4 is maximized, we would like to choose K, so that the
gain margin is maximized, i.e.,

K K max
min n:m, P

Kiin® K,
is maximized, [34]. Clearly, the optimal choice is K, =
/K;“i“ K;nax_ ie.

KP = \/p ¥4 G(O) ™. (1m

o0

3.2. Adding integral action to the PD controller

Assume that condition (9) of Lemma 2 is satisfied and hence a
stabilizing PD controller C,4 can be found for plant (1). We now try
to find

Gi(s) = Ki (12)
S

so that G,ig(s) = Gpa(s) + Gi(s) is a stabilizing controller for the
plant. This is a two step design process and it works as follows; see
e.g.[28,35]. Define

H(s) == P(s)(1 + P(s)Cpa(s)) " (13)

and note that H(0) = G(0)/x which is non-zero by the assumption
that G(0) # 0 and by design x > 0. If C; defined by (12) is
a stabilizing controller for the “new plant” H (13), then G4 is a
stabilizing controller for the original plant P. Now let

K== yH(@©)™', withy >0 (14)
then
(14 Gi(s)H(s) ™
< CH@ESHO) T — 1\
(e (MmO
s+vy s+y s¥

Let us define

y s
Ry(y) = . 16
) S+VHOO (16)

Then by the small gain theorem C;(s) = yH(0)~'/s is a stabilizing
controller for H(s) if
-1

-1 _
H(s)H(0) 1 ‘ (17)

sOl

0 <Ry(y) < H

oo

10%

—a=0.1
—a=0.25
10 F ——a=0.5
a=0.75
—a=1.0

Fig. 2. R,(y) versus y.

Note that for « = 1 we have R(y) = y, and for the rational case
the function (H(s)H(0)~! — 1) /s is stable. However, when H(s) is a
fractional transfer function, (H(s)H(0)~! — 1) /s might be unstable
due to problems of boundedness at zero. Therefore, writing

(1+G()H(s) ™!

_ 1
_ s <1+ ys (H(S)H(O) ]—1>> ’ (18)
s+vy s+vy S

rather than (15), and then applying the small gain theorem, as was
done in [28], does not work in the case of fractional systems. So, we
have to compute R, (y) as a function of y for the specific « value
appearing in the plant transfer function. It is a simple exercise to
show that

Ro(y) = a*? (1 — a)1"0/2 2, (19)

The graphs of R, (y) versus y for different values of « are shown
in Fig. 2. Another observation we can make from (15) is that if
|H(s)H(0)™!' — 1]loc < 1thenall G;(s) = yH(0)'/s stabilize H,
forany y > 0.

The above discussion is summarized with the following results.

Lemma 3. Assume that condition (8) of Lemma 1 is satisfied and the
proportional controller K, = (p + x)G(0)~! is designed to stabilize
the plant P(s) = e ™G(s*)(s* — p)~'. Then the PI controller
H(©0)™! X
Coi(s) = K, + % - ((p X+ VT ) G(0)~! (20)

is a stabilizing controller for the plant P for all y satisfying

-1

(21)

H(s)HO0)™ ' —1 ‘
SO(

0 <Ry(y) < H

o0

where H(s) = P(s)(1 + KyP(s)) .

Lemma 4. Assume that condition (9) is satisfied for some Ed e R
and tq > 0. Let Cyq be a stabilizing controller for the plant, P(s) =
e MG(s%)(s* —p)~, as designed in Lemma 2. Then the PID controller

H(0)!
Coa(s) = Gua(s) + LEO

=((p+x)<1+1?d )+VT")G<0>*1 (22)

s+ 1
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is a stabilizing controller for P for all y satisfying

-1

-1 _
H(s)H(0) ' — 1 ‘ 23)

0 <Ry(y) < ”
sa

where H(s) = P(s)(1+ Coa(s)P(s))"!. DO

The above PI and PID controller design methods lead to an
interesting question: what are the optimal choices of x > 0 such
that the ranges of allowable y, i.e. the right hand sides of (21) and
(23), are the largest possible? For example, in the PI design, for
each fixed x in the range 0 < x < (v, — p), one can compute the
upper bound in (21) numerically. Therefore, the largest allowable
y range and the corresponding optimal x can be found from a one
dimensional numerical search. Clearly, it is not possible to find an
analytical solution for this problem.

On the other hand, we can find a suboptimal analytical solution
as follows. Recall that H(0) = G(0)/x and

H(s) = e MG(s*)((s* —p) + x —x + (p + x)G(0) e MG(s*)) 7.
Then we have
H(s)H(O0)™ 1 -1
o
e MsG(s*)G(0)~1x (1 _ ((p+x)s“) 1—eM5G(s*)G(0) ! )_1 1

s%+x S¥4x s¥

sOl
p (pe*hSc(s“)c(orl)_ 1

(s*+x) ¥ ¥ 4x

1 — s (Fe*hsc(sa)c(orl)
S(X

sY4x

Recall that
1— e ™G(s*)G(0)!
SO{

-1

wo=

So, from the above
” H(s)H(0)™ ' —1

-1 .1 B
sp‘/’°x+ (1-@+0y, ")

Thus we have the following lower bound for the upper bound
in(21),

~ Y= (@+x HH(S)H(O)_1 -1
Y i=x <
Yo+ D s*

Now we can maximize Y by an appropriate choice of x. It is a simple
exercise to show that the optimal choice of x maximizing ¥ is

%—P
2

sa

‘ o0

-1

(24)

[ee}

Xopt = (25)

2
Xopt .
Joip® This means that, by (19),

and the corresponding maximal ¥ is
y should be in the range

2/a
O<y< _ Cafopt Y,
- max
(Yo + P
where ¢, i= (o (1 — )70/ )_1 ) (26)
For example ¢y 5 = 2. We propose to choose
Y
Yopt = n;x (27)

as the (sub)optimal y value to be used in the PI controller. Inserting
(25) into the PI controller expression (20), we obtain
Yopt

() = (14 72 xope G0~ (28)

as the suboptimal PI controller, where Xqp is given by (25) and yopt
is determined from (26) to (27).

0.2 0.4 0.6 0.8 1
o

0.8
0

Fig.3. ¢(e) = h=*y, ! versus o.

4. Examples

Example 1. We will first consider the plant

efhs
P(s) = ,
s“—p

withh > 0,p >0 (29)

and design PID controllers using the method developed in
Section 3.
For P and PI controller design we need to compute the quantity

1— e ™G(s)Go) " |~

SC(

1sbo:H

o]

When o = 1, we have ¢/, = h™'.Inthecase 0 < a < 1, we
compute v, from

¥ = sup ﬂ = h% V/2 sup 7”—0%(5)).
° wek  |(jw)¥| eR ¥
Therefore,
1 — cos(w
h™y ' = /2 sup T() = ¢(a). (30)
weR

Fig. 3 shows how ¢ («) varies with «. As expected, for@ = 1 we
have ¢ = 1.Butitis interesting to observe that behavior of ¢ is not
monotonic, and there is a minimum value near ¢ = 0.9.

According to Lemma 1, there is a stabilizing controller for plant
(29)ifp < v, e, if

o 1
-
¢ (@)

where ¢ (o) is as shown in Fig. 3. In particular, fora = 0.5, we have
¢ = 1.2 and we can find a stabilizing proportional controller using
Lemma 1 if

1 0.6944
h< ——=—7°—.

1.22 p2 pz

Recall that the sufficient conditions of Section 3 are obtained using
the small gain arguments, so there is some conservatism. We can
also use the results of [36] and find that there exists a stabilizing
proportional controller for all h < hy,x as follows.

The stability for h = 0 is guaranteed with K, > p. When h
increases, the position of the infinite number of new poles poses
no restriction, since for a delay system of retarded type (the closed-
loop [P, K;] is indeed a fractional delay system of retarded type)
they appear in the left-half plane. The exact value of the delay for

ph
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Table 1
c 0.10 0.17 0.28 0.46 0.77 1.29 2.15 3.59 5.99 1.00
Rmax 4.14 3.13 2.35 1.75 1.29 0.94 0.68 0.48 0.34 0.23
hmax [37] 4.58 3.56 2.78 2.17 1.68 1.35 1.05 0.83 0.64 0.46
Ky 0.46 0.59 0.78 1.01 1.31 1.78 2.32 3.18 4.44 6.50

which some poles cross the imaginary axis are related to the non-
negative real roots wy of the quasi-polynomial

W(w) = o — pv2w +p* —K?

which leads to wg = K? + p,/2K2 — p2.
The maximum delay h is given by

1 V2
h = — arcsin @R (31)
WR 2K,

and, maximizing (31) with respect to K, > p results in K, — p,
and hence h — hy,x With

b/ 0.7854

ap - p

The value of hp, is exact, in the sense that if h > hy.x then
there does not exist a stabilizing proportional controller. Thus the
level of conservatism in our approach is less than 12% (to be exact
(0.7854 — 0.6944),/0.7854 = 0.1159).

hmax =

The suboptimal PI controller (28) for P(s) = 5;:, can be
computed from
1 Yo — D

= —, X = —
12vh ot 2

1 <wo—p)2 <wo—p)2
o= Yo+ 2 )

In particular, when p = 0, we have

i) = —— (14 /18
P o 4un 122 hs )~

For the optimal PD controller proposed in Section 3, we need to
find the optimal K; € R, say K;™", so that v, ', (10), is minimized
for a small fixed value of 7; > 0.

Considering h = 1, we calculated the oPtimal PD control which

results in the parameters 7y = 4.2 and K;"" = —1.7346, and hence
%_l = 0.9873. Then the optimal PD controller is given by

~ s
G(0) 'Y/ 14 K™
0) P Yy < d s+ 1
where stability is assured for all systems with p < 4 = 1.0165.
Notice that with just the proportional controller, we could only
guarantee stability for systems with p < 0.8333, which indicates
an increase of about 22%.

Example 2. Now consider the following plant modeling a non-
laminated magnetic suspension system as studied in [25]:

—hs G(Sa) — efhs 1

so p (Sa)S + (Sa)4 —c
where c is a positive real constant and in the ideal case h = 0. This
system has exactly one real positive pole and four poles in the left-
half plane; see [25]. Hence, the techniques presented in Section 3
are applicable. We investigate the largest allowable time delay
h (which may exist due to communication constraints between
the controller and the plant) for which the PD controller design
technique proposed in this paper gives a stable feedback system.

Py(s) =e a=05 (32)

Table 1 shows the results for 10 values of ¢ logarithmically
spaced between 0.1 and 10. For each one of those points, a
PD controller that maximizes the allowable value of delay was
calculated using the results of Section 3. The maximal allowable
delay for which our technique finds an admissible PD controller
is denoted by hp,.x. The optimal PD controller determined using
the techniques of Section 3, has the proportional gain K, = c,
and Ky is shown in Table 1 for various values of ¢, for the delay
hmax- For the PD controllers designed, the exact value of maximal
allowable delay, denoted by hpa., can be calculated using the
numerical techniques presented in [37]. We see that the degree of
conservatism (i.e. the gap between hp.x and hpay) is low.

5. Conclusions

In this paper, we developed a method to design classical PID
controllers (with proper derivative action) for a class of fractional
order plants with time delays. The main idea behind this approach
was to use the small gain type of arguments used in [28]. The
fractional order plant is factored into a stable part and an unstable
part, where the unstable part is in the form (s* — p)~! withp > 0.
There is no restriction on the stable part G(s*) except that G(0) #
0 and G(p) # 0. It may be possible to extend this method to
fractional order plants with a higher degree unstable part, but in
that situation there are some technical difficulties even for the case
of rational plants; see [28] and its references.

The (sub)optimal PD and PI controller design method proposed
here also works for rational plants with time delays and single pole
in Ry ; see [30]. However, in the case of fractional systems, there is
a major difference for the minimization of 1//d’1, (10): when o # 1
we cannot let t; = 0, because, otherwise slj'j term multiplying I?d
will make the norm equal to infinity unless K; = 0. Therefore, the
selection of a small positive 74 plays an important role in this case,
and hence, search for the optimal K; and 74 pair is more difficult
compared to the problem studied in [30]. On the other hand, having
a positive t; makes the “proper PD controller” a stable first order
controller. So, in this sense optimization of K; and 4 solves the
optimal first order stable controller design problem.
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