
J Glob Optim (2011) 51:607–640
DOI 10.1007/s10898-011-9646-9

Self-adaptive randomized and rank-based differential
evolution for multimodal problems

Onay Urfalioglu · Orhan Arikan

Received: 23 March 2010 / Accepted: 3 January 2011 / Published online: 15 January 2011
© Springer Science+Business Media, LLC. 2011

Abstract Differential Evolution (DE) is a widely used successful evolutionary algorithm
(EA) based on a population of individuals, which is especially well suited to solve problems
that have non-linear, multimodal cost functions. However, for a given population, the set of
possible new populations is finite and a true subset of the cost function domain. Furthermore,
the update formula of DE does not use any information about the fitness of the population.
This paper presents a novel extension of DE called Randomized and Rank-based Differential
Evolution (R2DE) and its self-adaptive version SAR2DE to improve robustness and global
convergence speed on multimodal problems by introducing two multiplicative terms in the
DE update formula. The first term is based on a random variate of a Cauchy distribution, which
leads to a randomization. The second term is based on ranking of individuals, so that R2DE
exploits additional information provided by the population fitness. In extensive experiments
conducted with a wide range of complexity settings, we show that the proposed heuristics
lead to an overall improvement in robustness and speed of convergence compared to sev-
eral global optimization techniques, including DE, Opposition based Differential Evolution
(ODE), DE with Random Scale Factor (DERSF) and the self-adaptive Cauchy distribution
based DE (NSDE).
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1 Introduction

Within the class of Evolutionary Algorithms (EA’s), Differential Evolution (DE) [22,33] is
one of the most robust, fastest [34] and easily implementable methods. It has only three con-
trol parameters, including the population size. A striking property of DE is that it incorporates
self-adaptation by automatically scaling the search area on each phase of the global search
process, which makes DE an efficient global optimizer. One important application domain of
EA’s is the optimization of multimodal functions. For many problems, the required number
of function evaluations increases exponentially with the search space dimension. Therefore,
the efficiency of an EA determines the practical limit at which applications based on those
problems can be realized.

In the literature, DE is the subject of improvement in several publications. In two different
works, Liu and Lampinen [15] and Brest et al. [5], introduce methods for on-line self-adap-
tation of DE’s control parameters for mutation and crossover. Another self-adaptive DE is
proposed in [20]. In a more general framework [25], Qin et al. propose the adaptation of
several strategies and their control parameters at the same time. In [38], Teo applies self-
adaptation to the population size. In [1], Ali and Törn propose an auxiliary population and the
automatic calculation of the mutation scale factor. Tasoulis et al. [37] introduce parallel DE,
where the population is divided into sub-populations, and each sub-population is assigned
to a different processor node. In [30], Shi et al. propose the so called cooperative co-evolu-
tionary differential evolution, where multiple cooperating sub-populations are used and high
dimensional search spaces are partitioned into smaller spaces. Other methods for improv-
ing DE are based on hybridization. In [36], Sun et al. propose a hybrid algorithm using an
estimation of distribution method. This method is based on a probability model to generate
additional solution candidates. Noman and Iba [19] propose a local search to accelerate the
fine tuning phase of DE based on fittest individual refinement which is a crossover-based
local search. In [9], Fan and Lampinen introduced another local search - DE hybrid, which
is called trigonometric mutation, in order to obtain a better tradeoff between convergence
speed and robustness. Kaelo and Ali [12] introduce reinforcement-learning-based DE where
different schemes for the generation of candidate vectors are proposed.

Another approach called Opposition Based Differential Evolution (ODE) based on oppo-
sitional numbers is presented by Rahnamayan et al. [26]. In another work, Das et al. [8],
utilize neighborhood information of individuals and introduce schemes which balance the
exploration and exploitation abilities of DE. In [7], two variants are proposed for the classical
DE: DE with Random Scale Factor (DERSF) and DE with Time Varying Scale Factor (DET-
VSF). In DERSF, the mutation scale factor for the difference vector is replaced by a uniformly
distributed random variable, whereas in DETVSF, the mutation scale factor decreases with
the number of iterations. Random scaling is also discussed in [24], Sect. 2.5.2, p. 79. For
noisy optimization problems, other DE-variants are proposed in [6]. In [48], a chaos based
parameter update scheme is introduced to DE.

DE variants with Normal distributed or Cauchy distributed mutation operators are
described and analyzed in [27,32,44,45,47]. Another DE-variant called NSDE proposed
in [31] uses Cauchy-distributed scale factors and self-adaptation to dynamically adjust some
parameters.

The proposed methods, called Randomized and Rank-based Differential Evolution
(R2DE) and its self-adaptive version SAR2DE, integrate two distinct concepts in producing
the new population: randomization and the utilization of ranking. DE has the property that
the set of possible candidate vectors, which contains all possible results of mutation and
crossover given a population, is finite. Furthermore, the support of the distribution of the
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candidate vectors is finite too. The effect of the randomization is that these attributes become
effectively continuous. The second concept takes advantage of the fitness information of each
individual. This information is not used in classical DE’s mutation and crossover operators.
On a wide range of problems, we show experimentally that these concepts generally improve
the efficiency of the global search when applied to DE.

In this work, we compare the performance of the proposed approaches to that of DE,
DERSF, ODE and NSDE on scalable multimodal problems. DERSF is chosen in order to
compare its uniformly distributed scale factor to our proposed Cauchy distributed scale fac-
tor. ODE is chosen to compare the proposed additional heuristics to a completely different
heuristic and NSDE is chosen to compare the efficiency of SAR2DE, since NSDE also
comprises a Cauchy distributed scale factor. In the experiments, we show the tendency of
the global search efficiency of each method by increasing the number of dimensions of the
search space or varying other complexity parameters, depending on the problem. Since some
methods may be slower in a low dimensional setting but may become more efficient than the
compared method in a higher dimension, taking only one single dimension or complexity
parameter into account is not enough and can lead to wrong conclusions.

The paper is organized as follows. The following Sect. 2 briefly reviews DE. Section 3
introduces the proposed R2DE and SAR2DE methods, followed by Sect. 4, where an over-
view of all other compared DE-variants is given. In Sect. 5, experimental results are presented,
and the paper is concluded in Sect. 6.

2 Brief review of differential evolution

DE is one of the best general purpose evolutionary global optimization methods available. It
is known as an efficient global optimization method for continuous problem spaces. The opti-
mization is based on a population of Np solution candidates xi , i ∈ {1, . . . , Np} where each
candidate has a position in the D-dimensional search space. Initially, the solution candidates
are generated randomly according to a uniform distribution within the provided intervals of
the search space. The population improves by generating new positions iteratively for each
candidate. For each individual xi,G , new trial positions u are determined by

v = xr1,G + F · (xr2,G − xr3,G) (1)

u = C
(
xi,G , v

)
, (2)

where r1, r2, r3 are pairwise different randomly chosen integers from the discrete set
{1, . . . , Np} and F > 0 is the mutation scale factor. The vector v is used together with xi,G

in the crossover operation, denoted by C(). The crossover operator copies coordinates from
both xi,G and v in order to create the candidate vector u. The probability Cr mediates the
crossover operation C to copy coordinates from xi,G . In the other case, coordinates from v
are copied with the probability of 1 − Cr to u. Only if the new candidate u proves to have an
equal or lower cost then it replaces xi,G , otherwise it is discarded.

DE includes an adaptive range scaling for the generation of solution candidates through the
difference term in Eq. (1). This leads to a global search with large step sizes in the case where
the solution candidate vectors are widely spread within the search space due to a relatively
large mean difference vector. In the case of a converging population, the mean difference
vector becomes relatively small and this enables efficient fine tuning at the final phase of
the optimization process. The crossover operator has a complicated role in the dynamics of
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Fig. 1 In this 1-D example of regularly distributed local optima at x1 = a, x2 = a + δ, x3 = a + 2δ, the
additive weighted difference vectors yield, with high probability, new solution candidates which are located
in the vicinity of another local optimum (assuming mutation scale factor F = 0.5)

the population. In some cases, it can help to increase the diversity of the population or it can
also speed up the convergence, depending on the problem.

In case of regularly distributed local optima, due to its differential nature, the mutation
scheme of DE is particularly advantageous. We define the regularity of a distribution by

x and x + δ are local optima ⇒ x + 2δ is also a local optimum. (3)

For a differentiable function f (x), the following condition is equivalent to (3):

∃δ : d f (x)
dx

= d f (x + δ)

dx
= 0 ⇒ d f (x + 2δ)

dx
= 0. (4)

During the convergence process, there is a high probability that individuals are located
within the basins of the local optima. Therefore, the difference vectors are generated approx-
imately between the basins of two selected local optima. In a mesh-like distribution of
the local optima, depending on the mutation scale factor F , the resulting new position
of an individual hits the area around the basin of another local optimum with high prob-
ability. In a one dimensional example, Fig. 1 illustrates this property of DE’s mutation
scheme.

On the other hand, this scheme can become inefficient on search spaces with non-regular
structures, where local optima have a non-regular distribution. However, this scheme is only
one possible aspect of the population dynamics, which is generally a complex matter.

2.1 Separability of functions and the role of Crossover

Some of the cost functions, like Rastrigin or Zeldasine considered in this paper are separable,
i.e., each parameter of the function can be optimized independently. A separable function
fs(x) can be written as [11]:

fs(x) =
D∏

j=1

f j (x j ). (5)
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Applying the Logarithm on both sides of this condition provides the following equivalent
form of separability:

fs(x) =
D∑

j=1

f j (x j ). (6)

Low values for Cr are the most effective for such functions, as also shown in Sect. 5.4.
High values for Cr (e.g. Cr = 0.9) are best suited for optimizing functions with dependent
parameters (like Rosenbrock). Cr = 0.9 is recommended because functions with dependent
parameters comprise the general case and there are faster methods for optimizing separable
functions that are based on decomposition. See also [24], p. 97 for a short discussion of
Cr ’s role in optimization. However, whether the cost function is separable or not is often not
known a priori. Self-adaptive versions of DE such as [31] can adapt Cr to lower values and
are therefore superior in such cases.

3 Randomized and rank-based differential evolution (R2DE)
and self-adaptive R2DE (SAR2DE)

The modifications of DE which make up R2DE are twofold. Two new multiplicative terms are
introduced in the update formula in Eq. (1). The first term is a random variable λwith a heavy
tailed distribution. Here, we will only consider the case where λ has a Cauchy distribution,
which has the following density:

f (λ) = 1

π(1 + λ2)
, λ ∈ R. (7)

Although the density function of the Cauchy distribution has its maximum at zero, due to
its heavy tailed nature, the Cauchy distribution has no finite moments and it is very likely to
have samples which differ significantly from zero. The motivation for this term is to ’fill in’
the gaps in the set of possible candidate vectors produced by DE’s mutation operator. This
way, the mentioned set becomes continuous, which also helps to increase the diversity of the
population.

The second term α, which is in (0, 1] interval, is defined as:

α(xr1,G) = 1 − k(xr1,G)

Np
, (8)

where k(xr1,G) is the rank of the individual xr1,G . Assuming the global minimum is searched
for, the best individual with minimal cost has rank 0, whereas the worst individual has rank
Np−1. This term reflects the fact that, on minimization of multimodal functions, typically, we
need to explore a relatively large area to improve upon a relatively small cost function value.
Figure 2 shows an example with two cost-levels and correponding step lengths required to
reach a new basin with potentially lower cost. The R2DE update formula for the generation
of candidate vectors is given by

v = xr1,G + F · λi · α(xr1,G) · (xr2,G − xr3,G) (9)

u = C
(
xi,G , v

)
, (10)

where α(xr1,G) depends on xr1,G and λi is sampled independently for each individual xi,G

at each iteration.
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A
B

Fig. 2 In these plots, closed curves represent regions of a 2-D function with constant cost A (left) and B
(right), where A > B. The arrows show possible required step lengths for these cost-levels A and B to reach
the basin of a local optimum from the basin of other local optima. For multimodal cost functions, as in this
case, the mean distances typically increase for decreasing cost levels. This means individuals having lower
cost require greater steps (relatively) to reach the basin of a potentially better local optimum

Due to the ranking, R2DE comprises a slightly higher runtime complexity O(Np log(Np))

than DE, which has complexity O(Np).
We also propose a self-adaptive version of R2DE called SAR2DE, which is motivated by

NSDE [31]. In SAR2DE, the vector of function parameters is extended by two additional
parameters ε and γ . These two parameters have special update formulas:

εnext =
{

2 · Uε for 0.1 ≥ Ut,ε

ε else
, γnext =

{
Uγ for 0.1 ≥ Ut,γ

γ else
, (11)

where for each update, the random variables Uε,Uγ ,Ut,ε,Ut,γ are generated using an inde-
pendent uniform distribution in [0,1] interval. The ε parameter generalizes the ranking param-
eter α, and the γ parameter makes the crossover probability adaptive. Finally, the SAR2DE
update formula for the generation of the regular part of the candidate vectors is given by

v = xr1,G + F · λi · (α(xr1,G))
ψεnext · (xr2,G − xr3,G) (12)

u = C
(
xi,G , v

)
, [u is extended by εnext and γnext], (13)

with Cr = γnext and ψ = log(1 + λi ). As in DE, u replaces xi,G only if it proves to have an
equal or lower cost. As a result, only those adaptation parameters ε and γ survive which prove
to enable the generation of better candidates. The motivation for αψε is to be able to adap-
tively adjust the rank-based weighting to each problem. As a special case, ε = 0 switches off
the rank-based weighting. The term εψ regulates the overall scale factor Fλαlog(1+λ)ε . The
main effect of the term εψ is that the overall scale factor has an upper bound for small values
of α. Figure 3 shows three plots for the overall scale factor with α = 0.2, α = e−1 ≈ 0.368
and α = 0.6, all with ε = 1, depending on the Cauchy-distributed random variable λ. As
a result, in contrast to R2DE, the heavy-tail property caused by λ can be ‘switched off’
for high-ranked individuals which yield relatively large cost function results. On the other
hand, it is kept ‘on’ for the other individuals. This further supports the heuristic of larger
step sizes for lower-ranked individuals. In other words, according to Fig. 2, individuals hav-
ing a small α-value (case A) tend to have a bounded, non-heavy-tailed overall scale factor.
On the other hand, individuals having a large α-value (case B) tend to have an unbounded,
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Fig. 3 Three cases for the overall scale factor are plotted, depending on λ. For all cases, it is ε = 1. In case
α = 0.2, the overall scale factor has an upper bound, so that the heavy-tail property is no longer given. In case
α = e−1, the overall scale factor is still bounded and converges to F = 0.5. Finally, case α = 0.6 leads to an
unbounded overall scale factor, having the heavy-tail property

heavy-tailed overall scale factor. In order to determine for which α and ε the overall scale
factor is upper-bounded, we write the overall scale factor as

λαε log(1+λ) = exp[log(λ)+ ε log(α) log(1 + λ)]. (14)

Since log(1 + λ) = log(λ) for λ → ∞, it follows

lim
λ→∞ exp[log(λ)+ ε log(α) log(1 + λ)] = lim

λ→∞ exp[log(λ)(1 + ε log(α))] (15)

=
⎧
⎨

⎩

0 for 1 + ε log(α) < 0 ⇔ 0 < α < exp(−1/ε)
1 for 1 + ε log(α) = 0 ⇔ α = exp(−1/ε)
∞ for 1 + ε log(α) > 0 ⇔ α > exp(−1/ε).

(16)

As a result, the overall scale factor is upper-bounded for α ≤ exp(−1/ε). This means that
the parameter ε controls which α-values are assigned to the heavy-tail property. For ε = 0,
all α-values lead to a heavy-tailed overall scale factor. For ε = 2, which is the maximum
value of ε, the heavy-tail property is given for α > e−1/2 ≈ 0.607.

The adaptation of the crossover probability by γ is the same as found in [31]. One of the
advantages of an adaptive Cr is that given a separable problem, Cr = γ may be adapted to
become small, which enables a more effective search.

On all considered benchmark functions, we apply the following transform to limit vector
components xi into a feasible region [L , R].

xi =
{

L + (L − xi ) mod (R − L) for xi < L
R − (xi − R) mod (R − L) for xi > R

(17)

where mod is the modulo operator. As an example, given a feasible region of [0, 1], x1 = 1.2
becomes 0.8.
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4 Overview of benchmarked DE-variants

In order to evaluate the proposed methods R2DE and SAR2DE, we conduct comparisons
with the methods Opposition-based Differential Evolution (ODE) [26], Differential Evolu-
tion with Random Scale Factor (DERSF) [7] and A Self-Adaptive Strategy for Controlling
Parameters in Differential Evolution (NSDE) [31]. In the following, we give a short intro-
duction to each of these algorithms.

4.1 Opposition-based Differential Evolution (ODE)

Opposition-based Differential Evolution (ODE) is motivated by opposition-based learning.
The main idea behind this is to consider an estimate and its corresponding opposite estimate
simultaneously. Instead of a single estimate, two estimates are to be evaluated. From the
probability theory follows that 50% of the time a guess is further from the solution than
its opposite guess. Therefore, starting with the closer of the two guesses (as judged by its
fitness) has the potential to accelerate convergence. The same approach can be applied not
only to initial solutions but also continuously to each solution in the current population. ODE
is chosen for comparisons due to its additional opposition learning-based heuristic, which
often enables a more efficient search than DE.

4.2 Differential Evolution with Random Scale Factor (DERSF)

Differential Evolution with Random Scale Factor (DERSF) is one of the first DE-variants
incorporating the randomization of the scale factor F . In DERSF, the scale factor is not
constant but is a random variable with a uniform distribution. DERSF is chosen to compare
the different randomization methods of the scale factor.

4.3 A Self-Adaptive Strategy for Controlling Parameters in Differential Evolution (NSDE)

A Self-Adaptive Strategy for Controlling Parameters in Differential Evolution (NSDE) is
based on ideas of self-adaptation. The control parameters F and Cr in DE are constant. In
several works, it is shown that optimal values for these parameters heavily depend on the
problem. Therefore, self-adaptation of these parameters is achieved by extending the candi-
date vectors by additional parameters to adapt F and Cr . These additional parameters are
subject to evolutionary mutation and selection, where better parameters, which map to better
values for F and Cr , survive over time. NSDE is chosen for comparisons with the self-adap-
tive variant of R2DE, named SAR2DE, since it is based on Cauchy distributed random scale
factor too. To obtain a fair comparison, we choose F = 0.5 as the center of the Cauchy
distribution.

5 Experiments

The experiments contain 19 scalable multimodal global optimization problems and an arti-
ficial neural network (ANN) problem (though a smaller number of problems is generally
acceptable for this purpose, e.g., [13]). For all experiments, unless mentioned otherwise, the
utilized settings for the parameters are given by
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– F = 0.5 (as in [1,5,15,26,35,42])
– Cr = 0.9 (as in [1,5,15,26,35,42])
– mutation strategy: DE/rand/1/bin (classic DE) (as in [5,21,24,26,35,36])
– value-to-reach (VTR) = f (x∗)+ 10−6,

where the global optimum of each problem is denoted by x∗. We compare the performance of
the proposed R2DE method with those of DE, ODE [26], DERSF [7], DE with the λ-factor,
denoted as DE-λ and DE with the α-factor, denoted as DE-α. To provide experimental sup-
port for the proposed rank-based factor α(x), we conduct further experiments by applying
a ‘reversed’ rank-based heuristic, using the factor 1 − α(x) instead of α(x). Additionally,
we also compare the performance of the self-adaptive method NSDE with the proposed
SAR2DE.

5.1 Benchmark suite

In the following, 19 multimodal problems are introduced for experiments.

5.1.1 Alpine function

The Alpine function ( f1) consists of multiple global optima and local maxima. One global
minimum is at f1(0) = 0. The number of local optima increases exponentially with the
dimension. It is also used as a benchmark function in [26].

f1(x) =
D∑

j=1

|x j sin(x j )+ 0.1x j |

x j ∈ [−10, 10], f1(x∗) = 0. (18)

Plese note that there are multiple global optima of the Alpine function, one of them is x∗ = 0.

5.1.2 Cosine mixture

The Cosine Mixture function ( f2) has one global optimum. The number of local optima
increases exponentially with the dimension. This function was also used as a benchmark
function in [2,4].

f2(x) = −0.1
D∑

j=1

cos(5πx j )+
D∑

j=1

x2
j

x j ∈ [−1, 1], f2(x∗ = 0) = −0.1D (19)

5.1.3 Epistatic Michalewicz function

The Epistatic Michalewicz function ( f3) (second ICEO) has one global optimum and an
exponentially increasing (with dimension) number of local optima. The location of the global
optimum coordinates depends on the dimension. This function is also used as a benchmark
function in [36].

y2 j−1 = x2 j−1 cos(π/6)− x2 j sin(π/6)
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y2 j = x2 j−1 sin(π/6)+ x2 j cos(π/6), j = 1, . . . , D

if D is odd number: yD = xD

f3(y) =
D∑

j=1

− sin(y j ) ·
(

sin
(

j y2
j /π
))20

x j ∈ [0, π ]. (20)

D x∗ VTR
5 (2.693, 0.258, 2.074, 1.022, 1.720) −4.68765
6 (2.693, 0.258, 2.074, 1.022, 2.275, 0.5) −5.68765
7 (2.693, 0.258, 2.074, 1.022, 2.275, 0.5, 1.458) −6.68088
8 (2.693, 0.258, 2.074, 1.022, 2.275, 0.5, 2.137, 0.793) −7.66375
9 (2.693, 0.258, 2.074, 1.022, 2.275, 0.5, 2.137, 0.793, 1.655) −8.66014
10 (2.693, 0.258, 2.074, 1.022, 2.275, 0.5, 2.137, 0.793, 2.219, 0.532) −9.66014

5.1.4 Foxholes function

The Foxholes function ( f4) is generally customizable and usually has one global optimum.
The location of the global optimum depends on the parameters of the function. It is also used
as a benchmark function in [3].

f4(x) = −
M∑

j=1

(
D∑

k=1

[(xk − a jk)
2 + ck]

)−1

x j ∈ [0, 10], M = 50 (21)

where c j , a jk ∈ [0, 10] are user defined numbers, which are initially sampled from a uniform
distribution in this paper. The elements of ck and a jk are given in Appendix A.

D x∗ VTR
5 (8.625, 5.285, 6.203, 1.657, 1.196) −4.7986
6 (0.782, 8.543, 4.427, 6.041, 1.068, 4.986) −3.94122
7 (0.954, 1.456, 2.826, 1.361, 8.020, 8.692, 0.776) −3.28514

5.1.5 Griewank function

The Griewank function ( f5) has the property that its complexity has a peak at a finite dimen-
sion [16], although the total number of local optima increases with the dimension.

f5(x) =
⎛

⎝
D∑

j=1

x2
j /4000

⎞

⎠−
⎛

⎝
D∏

j=1

cos(x j/
√

j)

⎞

⎠+ 1

x j ∈ [−600, 600], f5(x∗ = 0) = 0. (22)

5.1.6 Inverted cosine wave

The Inverted Cosine Wave function ( f6) has one global optimum and an exponentially
increasing (with dimension) number of local optima. It is also used as a benchmark function
in [26].
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f6(x) =
D−1∑

j=1

⎧
⎨

⎩
exp

⎛

⎝
−
(

x2
j + x2

j+1 + 0.5x j x j+1

)

8

⎞

⎠ ·

cos
(

4
√

x2
j + x2

j+1 + 0.5x j x j+1

)}

x j ∈ [−5, 5], f6(x∗ = 0) = −D + 1. (23)

5.1.7 Michalewicz function

The Michalewicz function ( f7) has one global optimum and an exponentially increasing
(with dimension) number of local optima. It is also used as a benchmark function in [26].

f7(x) =
D∑

j=1

− sin(x j ) ·
(

sin
(

j x2
j /π
))20

x j ∈ [0, π ]. (24)

D x∗ VTR
5 (2.203, 1.571, 1.285, 1.923, 1.72) −4.68765
6 (2.203, 1.571, 1.285, 1.923, 1.72, 1.571) −5.68765
7 (2.203, 1.571, 1.285, 1.923, 1.72, 1.571, 1.454) −6.68088
8 (2.203, 1.571, 1.285, 1.923, 1.72, 1.571, 1.454, 1.756) −7.66375
9 (2.203, 1.571, 1.285, 1.923, 1.72, 1.571, 1.454, 1.756, 1.656) −8.66014
10 (2.203, 1.571, 1.285, 1.923, 1.72, 1.571, 1.454,

1.756, 1.656, 1.571)
−9.66014

11 (2.203, 1.571, 1.285, 1.923, 1.72, 1.571, 1.454,
1.756, 1.656, 1.571, 1.498)

−10.6574

12 (2.203, 1.571, 1.285, 1.923, 1.72, 1.571, 1.454,
1.756, 1.656, 1.571, 1.498, 1.697)

−11.6495

5.1.8 Periodic function

The Periodic function ( f8) has one global optimum and an exponentially increasing (with
dimension) number of local optima. It is also used as a benchmark function in [2,23].

f8(x) =
D∑

j=1

sin2(x j )− 0.1 exp

⎛

⎝−
D∑

j=1

x2
j

⎞

⎠,

x j ∈ [−10, 10], f8(x∗ = 0) = 0.9. (25)

5.1.9 Perm function (D = 4)

The Perm function ( f9) has one global optimum. It has an additional parameter β, which
also affects the complexity of the function. The smaller β, the more difficult this problem
becomes since the global minimum is difficult to distinguish from local minima near permuted
solutions. It is also used as a benchmark function in [26].

123



618 J Glob Optim (2011) 51:607–640

f9(x) =
D∑

j=1

[
D∑

k=1

(
j k + β

)
([

x j

j

]k

− 1

)]2

x j ∈ [−D, D], β ∈ {4, 5, . . . , 13}, f9(x∗ = (1, 2, . . . , D)) = 0. (26)

5.1.10 Perm0 function (D = 4)

The Perm0 function ( f10) has one global optimum and an additional parameter β. It has
similar characteristics like the Perm function 5.1.9.

f10(x) =
D∑

k=1

⎡

⎣
D∑

j=1

( j + β)

(

xk
j −

[
1

j

]k
)⎤

⎦

2

x j ∈ [−1, 1], β ∈ {70, 80, . . . , 100}, f10(x∗ = (1/1, 1/2, . . . , 1/D)) = 0. (27)

5.1.11 Rastrigin function

The Rastrigin function ( f11) is a widely used benchmark function having one global optimum
and an exponentially increasing (with dimension) number of local optima. It is also used as
a benchmark function in [26,39].

f11(x) = 10D +
D∑

j=1

x2
j − 10 cos(2πx j )

x j ∈ [−5.12, 5.12], f11(x∗ = 0) = 0. (28)

5.1.12 Salomon function

The Salomon function ( f12) is rotation symmetric and comprises no single points but regions
(hyperspheres) as local optima. It has one global optimum. It is also used as a benchmark
function in [2,28].

f12(x) = − cos(2π ||x||)+ 0.1||x|| + 1

x j ∈ [−100, 100], f12(x∗ = 0) = 0. (29)

5.1.13 Schaffer1 function

The Schaffer1 function ( f13) is rotation symmetric and comprises no single points but regions
(hyperspheres) as local optima. It has one global optimum. It is also used as a benchmark
function in [2,17].

f13(x) = 0.5 + sin2(||x||)− 0.5

1 + 0.001||x||2
x j ∈ [−100, 100], f13(x∗ = 0) = 0. (30)
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5.1.14 Schaffer2 function

The Schaffer2 function ( f14) is rotation symmetric and comprises no single points but regions
(hyperspheres) as local optima. It has one global optimum. It is also used as a benchmark
function in [2,17].

f14(x) = ||x||0.25 [sin
(
sin
(
(50||x||)0.1))+ 1

]

x j ∈ [−100, 100], f14(x∗ = 0) ≈ 0.00012. (31)

5.1.15 Shifted Schaffer2 function

The Shifted Schaffer2 function ( f15) is the shifted version of the Schaffer2 function 5.1.14.

u = 100(
√

2/5 − 1) ≈ −71.71573

s =
D∑

j=1

(x j − u)2

f15(x) = s0.25 [sin
(
sin
(
(50s)0.1

))+ 1
]

x j ∈ [−100, 100], f15(x∗ = (−71.71573, . . . ,−71.71573)) ≈ 0.00012. (32)

5.1.16 Schubert function

The Schubert function ( f16) has multiple local and global optima [2,14]. The number of
local optima increases exponentially with the dimension.

f16(x) =
D∏

j=1

5∑

k=1

k cos((k + 1)x j + k)

x j ∈ [−10, 10]. (33)

Plese note that there are multiple global optima of the Schubert function.

D x∗ VTR
2 Varies −186.7309
3 Varies −2709.1
4 Varies −39303.6
5 Varies −570215.8
6 Varies −8.2726

5.1.17 Schwefel’s problem (2.26)

The Schwefel function (2.26) ( f17) has one global optimum and an exponentially increasing
(with dimension) number of local optima. It is also used as a benchmark function in [2].

f17(x) =
D∑

j=1

−x j sin(
√|x j |)

x j ∈ [−500, 500], f17(x∗ = (420.9687, . . . , 420.9687)) ≈ −D · 418.9829. (34)
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5.1.18 Zeldasine function

The Zeldasine function ( f18)has multiple local and global optima. The optima count increases
exponentially with the dimension. It is also used as a benchmark function in [2,46].

f18(x) = −A
D∏

j=1

sin(x j − z)−
D∏

j=1

sin(B · (x j − z))

A = 2.5, B = 5, z = π/6

x j ∈ [−10, 10], f18(x∗) = 0. (35)

Plese note that there are multiple global optima of the Zeldasine function.

5.1.19 Rosenbrock function

The Rosenbrock function ( f19) is a widely used benchmark function. According to [29], it is
unimodal for D ≤ 3 and multimodal for higher dimensions. Due to a saddle point, it is very
difficult to locate the global minimum. It is also used as a benchmark function in [2,18].

f19(x) =
D−1∑

j=1

(1 − x j )
2 + 100

(
x j+1 − x2

j

)2

x j ∈ [−30, 30], f19(x∗ = (1, . . . , 1)) = 0. (36)

5.1.20 Robust estimation of artificial neural network (ANN) parameters

The performance of the proposed R2DE method is investigated on the estimation of param-
eters of an Artificial Neural Network (ANN), which is commonly used in engineering appli-
cations. For this purpose, we utilize feed forward networks which can be described by the
1-D–1-D mapping 
(x):

y = 
(x) =
N∑

j=1

w j e(ν j , τ j , x), (37)

where e(ν j , τ j , x) is a sigmoidal ’basis function’ or neuron:

e(ν j , τ j , x) = 1

1 + exp(−ν j x + τ j )
. (38)

The scalars w j and ν j represent weights and τ j is a threshold. Here, we consider a 1-D to
1-D ANN with one input neuron, N hidden layer neurons and one output neuron, which has
3N parameters in total. In this experiment, for the training of the ANN, we used the sinc data
set, which contains the input/output pairs (xi , yi ), i = 1, . . . ,M generated by

xi = −6.1

M
i + 12, yi = sin(xi )

xi
+ vi , i = 1, . . . ,M, (39)

where vi is a zero mean normal distributed random variable with standard deviation σv =
0.001 and M = 30. Additionally, the data set also contains a varying number of outlier points
(x̃i , ỹi ) generated by:

x̃i = −6.1 + 12U (0, 1), ỹi = −2 + 4U (0, 1), (40)
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Fig. 4 Typical dependence of the robustness ρ on the population size Np , drawn on the example of the
Rastrigin cost function

where U (0, 1) is a uniform random number generator for sampling numbers within [0,1].
The minimization for an ANN with N = 4 hidden layer neurons with 12 parameters is based
on the following robust cost function [40,41,43]:

�R(θ) =
N∑

i=1

− log

⎧
⎪⎨

⎪⎩

0.5e
(yi − f (θ ,yi ))

2

2·10·σ2
v

√
2π · 10 · σ 2

v

+ 0.5

4

⎫
⎪⎬

⎪⎭
, (41)

where θ contains the parameters of the ANN and f (θ , yi ) represents the ANN mapping. The
VTR’s were chosen so that the MSE using the inliers (points which conform to the underlying
model, the opposite of outliers) only is below 0.05. The settings of the EA’s are the same as
in 5, and 50 independent runs are carried out on each EA and data set.

5.2 Comparison methodology

For each problem, 100 independent optimization runs were carried out at different complexity
settings such as search space dimension or other specific cost function parameters. The task
is to achieve a robustness (also known as success rate) of ρ ≈ 0.99, i.e., at most one of the
100 runs may fail to find the global optimum in average. The global optimum is declared as
found when the VTR is reached. Figure 4 shows the typical relationship between robustness
and population size, where each measurement of ρ is the result of 2,000 independent runs. It
can be seen that the sensitivity of ρ over Np decreases, i.e., the first derivative dρ

d Np
becomes

smaller for ρ ≈ 0.99. We also assume that the error δρ of the measurement decreases at the
same time. As a result, to find a N̂p with ρ ≈ 0.99|Np=N̂p

, we propose to conduct 100 runs

with at most 1 failure. The step size δNp to find N̂p should be chosen such that the difference
of the mean function evaluations (MFE) by adjusting Np is not greater than the standard
deviation of the MFE:
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|MFE(Np + δNp)− MFE(Np)| ≤ σMFE(Np). (42)

For each complexity setting on each cost function, the population size is manually adjusted
to minimize the required MFE and to meet the robustness constraint of ρ ≈ 0.99. This
approach for comparison shows the scalability of each EA-method and reveals the depen-
dence of the required population size on the robustness. We believe that this enables a compact
but exhaustive analysis of the methods.

5.3 Obtained results

The Figs. 5 and 6 show the results of the comparisons between the proposed R2DE method
and DE, DERSF, ODE, DE-λ and DE-α. Plots of convergence characteristics at highest
complexity settings for DE and R2DE are shown in Figs. 7 and 8. Regarding the required
MFE, R2DE outperforms DE at high complexity settings on 15 out of 19 problems, DERSF
is outperformed in 15 out of 19 problems and ODE is outperformed in 13 out of 19 problems.
In our experiments, DERSF outperforms DE on 8 out of 19 problems, but the required MFE’s
are generally close to DE. ODE outperforms DE in 10 out of 19 problems.

The results (MFE’s) of the ANN-parameter estimation problem are shown in Fig. 9 at a
robustness of β = 0.98. More detailed results including the standard deviations of the mea-
sured MFE’s and corresponding t-test based hypotheses rejections are shown in Table 1. In
this experiment, R2DE significantly outperforms DE. One important property of the ANN-
based cost function is the permutation symmetry of the neuron-level parameter blocks [10].
Additionally, each neuron parameter block comprises a point symmetry. This means there
are several partitions in the search space each with a global optimum. For K neurons in the
hidden layer, there are 2K K ! global optima. Principally, this corresponds to the Zeldasine
function ( f18), where R2DE also shows very good results.

It can be seen from the results that the difference of the MFE’s increases with the com-
plexity settings. Table 2 shows detailed measurements including the population sizes and the
standard deviations of the MFE’s. Note that R2DE generally requires a greater population
of individuals to achieve the same robustness. On the other hand, it requires a much smaller
number of iterations for global convergence, and outperforms DE, DERSF and ODE on the
majority of the presented problems. In Table 3, results from the DE-λ and DE-α methods are
compared. It can be seen that the randomization of the scale factor yields stronger improve-
ments than the introduction of the rank-based factor. However, it should be noted that the
rank-based factor rescales the Cauchy distribution, so that their combination in R2DE shows
the most consistent improvement over DE, compared to DE-α and DE-λ. In Table 4, we pro-
vide experimental support for the proposed rank-based factor α(x) by applying a ’reversed’
rank-based heuristic, using the factor 1 − α(x) instead of α(x). Using the first 11 test-func-
tions, it is clearly shown that the ’reversed’ rank-based heuristic leads to significantly and
consistently inferior results.

In Table 5, comparisons of the self-adaptive methods NSDE and the proposed SAR2DE
are shown. As a general observation, NSDE outperforms SAR2DE on 4 functions, whereas
SAR2DE outperforms NSDE on 10 functions at the most complex settings. On the remaining
5 functions, there is no statistically significant difference between the two methods.

In order to better classify the results, we cluster the set of utilized cost functions and
provide respective results about which method performs best at each cost function in Table 6.
The functions are grouped by the following properties: rotation symmetry, multiple global
optima, rough sphere, (exactly or approximately) regular local optima and general. The ’rough
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Fig. 5 Required mean function evaluations (MFE’s) to find the global optimum with a robustness of ρ ≈ 0.99
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Fig. 6 Required mean function evaluations (MFE’s) to find the global optimum with a robustness of ρ ≈ 0.99
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Fig. 7 Convergence plots of the cost functions at highest complexity settings
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Fig. 8 Convergence plots of the cost functions at highest complexity settings
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Fig. 9 MFE’s to solve the robust estimation of ANN

Table 1 Comparison table of robust ANN estimation results on the sinc data set

Outliers VTR [Population size] MFE ±σMFE NOT rejected
total points hypotheses by t-test

DE R2DE

12/42 77.74 [450] 4403700 ± 1355800 [400] 3314540 ± 2219280 HR2DE

13/43 82.35 [700] 7648350 ± 2886830 [800] 4897040 ± 2793990 HR2DE

14/44 86.86 [4900] 30988800 ± 1290950 [2500] 13266400 ± 2262700 HR2DE

The t-test results (p-value = 0.01) are for the three hypotheses HE : (MFEDE = MFER2DE ), HDE :
(MFEDE < MFER2DE ) and HR2DE : (MFEDE > MFER2DE ) at robustness ρ ≈ 0.98. Note that the
bracketed numbers in the second, third and fourth columns denote the population sizes. The smallest MFE
values for each setting are printed in boldface

sphere’ property corresponds to functions which have the form f (x) = ||x||2 +μ(x), where
μ(x) is a multimodal function.

The classification of the results obtained by comparing the methods DE-λ and DE-α
yields the following conclusions. On problems having multiple global optima or a rotation
symmetry, DE-λ consistently proves to be the superior method. On the other hand, prob-
lems having the ’rough sphere’ property or having regular local optima are best solved by
the DE-α method. This fact underlines the motivation for the rank-based heuristic given in
Sect. 3, since such functions comprise a local optima pattern where the global optimum can
be reached by iteratively jumping from one basin to a better basin.

Comparing the methods DE, ODE, DESRF and R2DE yields the following conclusions.
On unshifted rotation symmetric functions, other DE-variants outperform R2DE. Applying
a shift to the Schaffer2 function ( f15) increases its complexity significantly, where R2DE
again outperforms the other DE-variants. On functions with multiple global optima, R2DE
outperforms the other methods in two of three cases. On functions having the ’rough sphere’
property, R2DE consistently outperforms all other methods.
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Table 3 Comparison table for DE-λ and DE-α including the t-test results (p-value = 0.01) for the three
hypotheses HE : (MFEDE−λ = MFEDE−α), HDE−λ : (MFEDE−λ < MFEDE−α) and HDE−α :
(MFEDE−λ > MFEDE−α) at robustness ρ ≈ 0.99

Cost function [Population size] MFE ±σMFE NOT rejected
hypotheses by t-test

DE-λ DE-α

f1 [D = 10] [20]9026 ± 1161 [40]15820 ± 3379 HDE−λ
f1 [D = 30] [40]55697 ± 7011 [70]100913 ± 24305 HDE−λ
f1 [D = 50] [100]163693 ± 13032 [90]200999 ± 50608 HDE−λ
f2 [D = 80] [1400]1821850 ± 18341 [220]281142 ± 5030 HDE−α
f2 [D = 100] [1900]2927040 ± 29399 [260]419853 ± 6786 HDE−α
f2 [D = 120] [3600]6550250 ± 55177 [300]585834 ± 9542 HDE−α
f3 [D = 8] [3900]1701140 ± 101500 [1300]1611690 ± 155089 HDE−α
f3 [D = 9] [7000]4051600 ± 253748 [2200]5123950 ± 413014 HDE−λ
f3 [D = 10] [1700]14196300 ± 1062500 [3200]18487800 ± 1822640 HDE−λ
f4 [D = 5] [70]6605 ± 424 [40]5063 ± 260 HDE−α
f4 [D = 6] [100]11139 ± 664 [60]7200 ± 364 HDE−α
f4 [D = 7] [11000]1513490 ± 49831 [9000]1374300 ± 48004 HDE−α
f5 [D = 7] [500]236535 ± 23174 [180]151358 ± 21451 HDE−α
f5 [D = 8] [840]475616 ± 46144 [200]174374 ± 26320 HDE−α
f5 [D = 9] [1000]581400 ± 62510 [220]179626 ± 29946 HDE−α
f6 [D = 11] [940]584642 ± 140394 [290]371081 ± 52692 HDE−α
f6 [D = 12] [1400]966448 ± 72141 [360]605239 ± 78378 HDE−α
f6 [D = 13] [1700]1292480 ± 103123 [420]850395 ± 118731 HDE−α
f7 [D = 10] [1100]639584 ± 35803 [500]517100 ± 57467 HDE−α
f7 [D = 11] [1600]1140210 ± 73695 [800]1243100 ± 112959 HDE−λ
f7 [D = 12] [2100]1915220 ± 112176 [900]2062950 ± 196482 HDE−λ
f8 [D = 2] [30]1904 ± 386 [60]5482 ± 1694 HDE−λ
f8 [D = 3] [130]31279 ± 8820 [140]67039 ± 20451 HDE−λ
f8 [D = 4] [440]302971 ± 159374 [250]457585 ± 142376 HDE−λ
f9 [β=6] [580]172991 ± 27167 [660]233389 ± 84555 HDE−λ
f9 [β=5] [800]234160 ± 38003 [1200]419892 ± 115837 HDE−λ
f9 [β=4] [1300]414440 ± 63574 [2100]817719 ± 301176 HDE−λ
f10 [β=90] [20]6385 ± 2569 [140]33945 ± 5245 HDE−λ
f10 [β=80] [20]6455 ± 2578 [200]54842 ± 12469 HDE−λ
f10 [β=70] [20]5705 ± 2698 [210]55652 ± 11504 HDE−λ
f11 [D = 14] [560]395931 ± 23380 [310]543982 ± 59938 HDE−λ
f11 [D = 15] [610]460288 ± 27274 [310]600238 ± 67900 HDE−λ
f11 [D = 16] [730]597542 ± 29252 [290]609412 ± 65534 (All)

f12 [D = 3] [210]64682 ± 21257 [270]108584 ± 28792 HDE−λ
f12 [D = 4] [700]462392 ± 258076 [580]1041140 ± 303856 HDE−λ
f12 [D = 5] [1500]4668870 ± 373085 [2200]12069200 ± 2568920 HDE−λ
f13 [D = 2] [220]35853 ± 7063 [70]10284 ± 2005 HDE−α
f13 [D = 3] [700]430472 ± 176140 [220]482346 ± 119952 HDE−λ
f13 [D = 4] [3200]10132500 ± 8565000 [3900]28461000 ± 6270310 HDE−λ

123



632 J Glob Optim (2011) 51:607–640

Table 3 continued

Cost function [Population size] MFE ±σMFE NOT rejected
hypotheses by t-test

DE-λ DE-α

f14 [D = 5] [550]326002 ± 21842 [470]304137 ± 23644 HDE−λ
f14 [D = 6] [770]698775 ± 41897 [650]714941 ± 57742 HDE−λ
f14 [D = 7] [920]1246810 ± 103926 [770]1357950 ± 136098 HDE−λ
f15 [D = 1] [20]1211 ± 107 [30]1689 ± 148 HDE−λ
f15 [D = 2] [1000]112180 ± 3985 [1800]182016 ± 6864 HDE−λ
f15 [D = 3] [110000]18323800 ± 421798 [160000]23966400 ± 582319 HDE−λ
f16 [D = 4] [40]10487 ± 1977 [40]25273 ± 5282 HDE−λ
f16 [D = 5] [80]34734 ± 6538 [70]98028 ± 18977 HDE−λ
f16 [D = 6] [100]52674 ± 11799 [110]341402 ± 73845 HDE−λ
f17 [D = 28] [530]514195 ± 29507 [240]301997 ± 30513 HDE−α
f17 [D = 29] [540]540869 ± 30714 [370]333285 ± 32820 HDE−α
f17 [D = 30] [600]618888 ± 38051 [370]379944 ± 36327 HDE−α
f18 [D = 9] [40]12724 ± 2649 [140]1369540 ± 387731 HDE−λ
f18 [D = 10] [40]14311 ± 3100 [180]2877480 ± 1057040 HDE−λ
f18 [D = 11] [40]16090 ± 3601 [200]4667010 ± 2052570 HDE−λ
f19 [D = 6] [160]54771 ± 6825 [550]188419 ± 48222 HDE−λ
f19 [D = 8] [200]111354 ± 9494 [700]412461 ± 68292 HDE−λ
f19 [D = 10] [220]178330 ± 13249 [750]620700 ± 72078 HDE−λ
Note that the bracketed numbers in the second, third and fourth columns denote the population sizes. The
smallest MFE values for each problem and setting are printed in boldface

Table 4 Comparison table for R2DE and R2DE with ‘reversed’ rank-based heuristic (R2DE-I) using the
factor 1 − α(x) instead of α(x) at robustness ρ ≈ 0.99

Cost function [Population size] MFE ±σMFE

R2DE R2DE-I

f1 [D = 10] [20] 8520 ± 1417 [30] 16639 ± 3225

f2 [D = 20] [160] 61009 ± 1467 [700] 185934 ± 4197

f3 [D = 5] [400] 52660 ± 2815 [1600] 114784 ± 9846

f4 [D = 5] [70] 6889 ± 417 [120] 9912 ± 781

f5 [D = 6] [400] 159048 ± 14008 [8500] 1139170 ± 75559

f6 [D = 7] [250] 66040 ± 6181 [3500] 411950 ± 30223

f7 [D = 5] [400] 52660 ± 2815 [1600] 114784 ± 9846

f8 [D = 2] [30] 1872 ± 381 [250] 7235 ± 1187

f9 [D = 4,β = 13] [240] 59844 ± 13613 [800] 131280 ± 46875

f10 [D = 4,β = 100] [30] 8802 ± 3822 [40] 47278 ± 34781

f11 [D = 9] [180] 63451 ± 4352 [1200] 194256 ± 8052

Note that the bracketed numbers in the second and third columns denote the population sizes. The smallest
MFE values are printed in boldface
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Table 5 Comparison table for NSDE and SAR2DE including the t-test results (p-value = 0.01) for the
three hypotheses HE : (MFEN SDE = MFES AR2DE ), HN SDE : (MFEN SDE < MFES AR2DE ) and
HS AR2DE : (MFEN SDE > MFES AR2DE ) at robustness ρ ≈ 0.99

Cost function [Population size] MFE ± σMFE NOT rejected hypotheses
by t-test

NSDE SAR2DE

f1 [D = 10] [10] 4621 ± 514 [10] 4111 ± 730 HS AR2DE

f1 [D = 30] [10] 14357 ± 1615 [15] 17460 ± 1994 HN SDE

f1 [D = 50] [10] 31270 ± 4879 [20] 34212 ± 3496 HN SDE

f2 [D = 80] [70] 140410 ± 2323 [110] 114005 ± 1363 HS AR2DE

f2 [D = 100] [80] 196713 ± 2583 [130] 159025 ± 1735 HS AR2DE

f2 [D = 120] [80] 227508 ± 3608 [140] 195912 ± 1777 HS AR2DE

f3 [D = 8] [180]188129 ± 15661 [320] 197338 ± 19497 HN SDE

f3 [D = 9] [210] 250507 ± 20457 [340]236912 ± 17929 HS AR2DE

f3 [D = 10] [240] 529099 ± 33953 [370]467166 ± 35140 HS AR2DE

f4 [D = 5] [30] 4373 ± 539 [40] 4688 ± 648 HN SDE

f4 [D = 6] [60] 11103 ± 845 [120] 16890 ± 1367 HN SDE

f4 [D = 7] [9000] 2702430 ± 71217 [10000] 2450100 ± 125543 HS AR2DE

f5 [D = 7] [60] 43035 ± 4196 [90] 37323 ± 3796 HS AR2DE

f5 [D = 8] [60] 44751 ± 4214 [90] 37650 ± 4063 HS AR2DE

f5 [D = 9] [60] 45402 ± 4898 [90] 37204 ± 4142 HS AR2DE

f6 [D = 11] [70] 144500 ± 18875 [120] 128069 ± 14648 HS AR2DE

f6 [D = 12] [80] 193044 ± 22938 [150] 183614 ± 19198 HS AR2DE

f6 [D = 13] [100] 278254 ± 33453 [180] 245677 ± 22993 HS AR2DE

f7 [D = 10] [110] 42417 ± 1683 [150] 38607 ± 1312 HS AR2DE

f7 [D = 11] [110] 46780 ± 1877 [160] 44689 ± 1787 HS AR2DE

f7 [D = 12] [110] 55139 ± 2142 [160] 52384 ± 2014 HS AR2DE

f8 [D = 2] [30] 3043 ± 827 [60] 5067 ± 1424 HN SDE

f8 [D = 3] [70] 26949 ± 7018 [120] 31161 ± 9331 HN SDE

f8 [D = 4] [180] 154681 ± 46398 [280] 183140 ± 61538 HN SDE

f9 [β=6] [240] 199277 ± 25671 [380] 186436 ± 31307 HS AR2DE

f9 [β=5] [400] 360540 ± 49711 [590] 291690 ± 42360 HS AR2DE

f9 [β=4] [700] 705159 ± 100991 [800] 436704 ± 64915 HS AR2DE

f10 [β=90] [10] 8393 ± 3637 [20] 10779 ± 4547 HN SDE

f10 [β=80] [10] 9185 ± 3745 [20] 10558 ± 4617 (All)

f10 [β=70] [10] 9331 ± 3774 [20] 10616 ± 4314 (All)

f11 [D = 14] [50] 31728 ± 1312 [80] 31788 ± 1302 (All)

f11 [D = 15] [50] 34131 ± 1486 [70] 29680 ± 1295 HS AR2DE

f11 [D = 16] [50] 36630 ± 1405 [80] 36404 ± 1385 (All)

f12 [D = 3] [80] 50284 ± 15371 [150] 59931 ± 26129 HN SDE

f12 [D = 4] [200] 383558 ± 259494 [280] 323540 ± 278935 (All)

f12 [D = 5] [600] 2790140 ± 2244530 [1100] 2494510 ± 2309880 (All)

f13 [D = 2] [100] 27108 ± 5816 [140] 27388 ± 7002 (All)

f13 [D = 3] [300] 380097 ± 158502 [350] 305490 ± 201493 HS AR2DE

f13 [D = 4] [1300] 4259400 ± 2164820 [2000] 3681140 ± 2430140 (All)
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Table 5 continued

Cost function [Population size] MFE ± σMFE NOT rejected hypotheses
by t-test

NSDE SAR2DE

f14 [D = 5] [450] 719514 ± 94907 [700] 1018090 ± 169516 HN SDE
f14 [D = 6] [900] 3059110 ± 429092 [1200] 3986230 ± 1108980 HN SDE
f14 [D = 7] [1200] 7903030 ± 1302780 [1500] 10990800 ± 10080900 HN SDE

f15 [D = 1] [30] 2583 ± 165 [30] 2298 ± 166 HS AR2DE

f15 [D = 2] [2800] 521668 ± 14428 [2400] 376656 ± 12265 HS AR2DE

f15 [D = 3] [12000] 22996300 ± 31749400 [35000] 21623600 ± 13975300 (All)

f16 [D = 4] [30] 18023 ± 4109 [15] 3673 ± 753 HS AR2DE

f16 [D = 5] [30] 22335 ± 3979 [20] 6560 ± 1441 HS AR2DE

f16 [D = 6] [30] 24949 ± 3650 [20] 7306 ± 1488 HS AR2DE

f17 [D = 28] [50] 50514 ± 1284 [70] 43220 ± 1001 HS AR2DE

f17 [D = 29] [50] 52078 ± 1273 [70] 44447 ± 991 HS AR2DE

f17 [D = 30] [55] 59704 ± 1377 [80] 52485 ± 1101 HS AR2DE

f18 [D = 9] [8] 6171 ± 2275 [11] 5370 ± 1154 HS AR2DE

f18 [D = 10] [9] 8591 ± 2707 [11] 6217 ± 1291 HS AR2DE

f18 [D = 11] [9] 9182 ± 3144 [12] 7498 ± 1627 HS AR2DE

f19 [D = 6] [60] 41481 ± 5316 [60] 34530 ± 7641 HS AR2DE

f19 [D = 8] [60] 69522 ± 9020 [80] 72263 ± 17367 (All)

f19 [D = 10] [60] 99340 ± 13948 [100] 130137 ± 24795 HN SDE

Note that the bracketed numbers in the second, third and fourth columns denote the population sizes. The
smallest MFE values for each problem and setting are printed in boldface

On the other hand, DE outperforms R2DE on Alpine ( f1), Periodic ( f8), Schaffer2 ( f14)
and Rosenbrock ( f19) functions. The Alpine function approximately satisfies the condition
of regularly distributed local optima (3), (4), whereas the Periodic function (almost) exactly
satisfies it. These results support the regularity condition assumptions.

One test function where R2DE yields particularly good results is Zeldasine ( f18), which
comprises several global optima exactly satisfying the regularity condition. Due to the fixed
mutation scale factor F = 0.5, DE explores several modes (global optima) and is not able
to quickly switch to ’local convergence’, i.e., the average difference vectors remain large for
a long period of iterations. In contrast, R2DE is able to quickly ’pick’ a mode and switch
to local convergence due to its stochastic mutation scale. This behavior can also be verified
from the convergence plot of Zeldasine in Fig. 8.

On functions which do not fit in one of the mentioned categories, R2DE outperforms
all other DE-variants in 6 out of 7 cases. This observation supports the assumption that a
stochastic mutation scale factor in DE’s update formula can lead to increased efficiency of
global convergence.

The classification of the results obtained from the self-adaptive methods NSDE and
SAR2DE yields similar conclusions. SAR2DE is to be preferred on problems comprising a
’rough sphere’ property, on problems having multiple global optima and on problems having
the property ’regular local optima’. Also, on problems which fall into the ’others’ category,
SAR2DE clearly performs better than NSDE.

However, the underlying principles to exactly explain the results are rather complex.
Unfortunately, there is no algebraic analysis available of DE’s global search behavior which
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Table 6 Assignment of all test functions to one or more attributes

Rotation symmetry Multiple global optima Rough sphere Regular local optima Others

f12 (DE-λ) f1 (DE-λ) f2 (DE-α) f1 (DE-λ) f3 (DE-λ)

f13 (DE-λ) f16 (DE-λ) f5 (DE-α) f2 (DE-α) f4 (DE-λ,DE-α)

f14 (DE-λ) f18 (DE-λ) f11 (DE-λ,DE-α) f5 (DE-α) f6 (DE-α)

f15 (DE-λ) f8 (DE-α) f7 (DE-λ,DE-α)

f11 (DE-λ,DE-α) f9 (DE-λ)

f18 (DE-λ) f10 (DE-λ)

f17 (DE-α)

f19 (DE-λ)

f12 (ODE) f1 (DE) f2 (R2DE) f1 (DE) f3 (R2DE)

f13 (ODE) f16 (R2DE) f5 (R2DE) f2 (R2DE) f4 (R2DE)

f14 (DERSF) f18 (R2DE) f11 (R2DE) f5 (R2DE) f6 (ODE)

f15 (R2DE) f8 (ODE) f7 (R2DE)

f11 (R2DE) f9 (R2DE)

f18 (R2DE) f10 (R2DE)

f17 (R2DE)

f19 (DE)

f12 (NSDE,SAR2DE) f1 (NSDE) f2 (SAR2DE) f1 (NSDE) f3 (SAR2DE)

f13 (NSDE,SAR2DE) f16 (SAR2DE) f5 (SAR2DE) f2 (SAR2DE) f4 (SAR2DE)

f14 (NSDE) f18 (SAR2DE) f11 (NSDE,SAR2DE) f5 (SAR2DE) f6 (SAR2DE)

f15 (NSDE,SAR2DE) f8 (NSDE) f7 (SAR2DE)

f11 (NSDE, f9 (SAR2DE)

SAR2DE)

f18 (SAR2DE) f10 (NSDE,

SAR2DE)

f17 (SAR2DE)

f19 (NSDE)

Each function is marked with the method which performs best on the function at its highest considered com-
plexity setting. In the upper part, DE-λ and DE-α are compared. In the middle, DESRF, ODE, DE and R2DE
are compared. In the lower part, only NSDE and SAR2DE are compared

would help to interpret the results analytically. Empirically, the overall results indicate that
randomization and the utilization of the rank information seems to generally improve DE’s
performance on multimodal problems.

5.4 Sensitivity to parameters F and Cr

Depending on the cost function, R2DE can be sensitive to its parameters F and Cr . Figure 10
shows some examples of the dependency of R2DE’s performance on these parameters by
measuring the MFE at a robustness of ρ ≈ 0.99. As in previous experiments, for each set-
ting, we manually adapt the optimal population size to reach the robustness condition and to
minimize the MFE number at the same time. On Rastrigin and Zeldasine, there is a strong
sensitivity on Cr , where small values for Cr tend to improve the convergence speed, although
it is generally advised to set Cr = 0.9 [1,5,15,26,35,42]. This is because both functions are
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Fig. 10 Required mean function evaluations (MFE’s) to find the global optimum with a robustness ofρ ≈ 0.99
on different settings of the parameters F and Cr

separable, but this property is a special case and in general functions are not expected to be
separable.

We assume that the sensitivity of R2DE on Cr is comparable to DE, since the application
of the crossover operator is identical in both methods.

The dependence on F can be different compared to DE, as shown in the case of the Ro-
senbrock cost function, where an optimum is found for F ≈ 3. In contrast, values of F > 1
do generally not yield better results in DE. The cost function Alpine represents a case where
values F ∈ [0.5, 1.5] do not significantly influence the MFE.

6 Conclusions

A novel Evolutionary Algorithm, Randomized and Rank-based Differential Evolution
(R2DE) and a self-adaptive version, SAR2DE, are presented as a modification to the well
known Differential Evolution (DE) method. The application domain of R2DE contains
highly complex, multimodal functions. In the presented experiments, R2DE is compared
to DE, DE with Random Scale Factor (DERSF) and Opposition Based Differential Evolu-
tion (ODE) techniques, respectively. Each problem is evaluated at several complexity set-
tings, such as the dimension, to determine the tendency of global search efficiency for each
method.

Regarding the required mean function evaluations (MFE’s), the empirical results indi-
cate that R2DE outperforms DE and DERSF in 15 and ODE in 13 out of 19 bench-
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mark problems. On problems with exactly-regular distribution of local optima with a
unique global optimum or unshifted rotation symmetric problems, other DE-variants out-
perform R2DE. On the other hand, R2DE is superior on problems with a large num-
ber of global optima, problems with approximately-regular distribution of local optima,
rough sphere type of problems or problems having a more complex pattern of local optima
distributions.

According to the presented experimental results, R2DE generally requires a greater pop-
ulation of individuals to achieve the same robustness. On the other hand, it requires a much
smaller number of iterations for global convergence, and outperforms DE, DERSF and ODE
on the majority of common global optimization problems. Furthermore, the MFE-differences
increase with the complexity of the problem.

The self-adaptive version of R2DE (SAR2DE) is compared to NSDE, since both methods
use Cauchy distributed scale factors. NSDE outperforms SAR2DE on 4 out of 19 test func-
tions, whereas SAR2DE outperforms NSDE on 10 functions. On the remaining 5 functions,
there was no statistically significant difference.

Experiments on robust estimation of artificial neural network (ANN) based problems show
that R2DE clearly outperforms DE. Furthermore, the performance improvement of R2DE
over DE increases with increasing number of outliers.

Generally, the stochastic mutation scale factor can improve global convergence in the
majority of the cost functions considered in this paper. Furthermore, according to pre-
sented experiments, R2DE yields particularly good results on functions having a large
number of global optima, such as the Zeldasine problem and the robust estimation of
ANN.

Acknowledgments We would like to thank all the reviewers, especially Reviewer 3 for the valuable com-
ments and inspirations. Thanks to Reviewer 3, this paper was enriched by a self-adaptive version of R2DE
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Appendix

A parameters of the foxholes function

In the Foxholes cost function ( f4), ck and a jk are defined by:

c =
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, a =
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7.577 7.406 7.431 4.748 3.922
4.221 6.555 1.739 1.712 3.019
7.06 7.973 0.3183 3.166 2.769

8.724 0.4617 1.491 0.9713 9.941
8.235 8.219 6.948 1.252 3.171
7.638 9.502 4.906 0.3445 6.636
4.387 1.259 3.816 2.102 7.655

0.5122 7.952 0.3644 1.869 4.087
4.898 4.58 4.456 4.876 6.463
7.94 7.094 9.209 7.547 8.075
2.76 7.058 6.797 0.02818 6.551
7.107 1.626 6.44 1.19 4.56
4.984 7.739 9.597 5.738 3.404
8.768 5.853 8.082 2.238 0.1777
7.513 8.212 2.551 8.208 5.06
9.401 6.991 4.127 8.909 4.232
9.593 5.81 5.472 1.581 1.386
7.617 1.493 2.302 2.575 8.097
8.407 9.885 2.543 3.324 8.143
2.998 2.435 0.1354 9.293 2.172

3.5 9.074 1.966 8.485 2.511
9.55 6.16 7.789 4.733 9.875
3.517 0.676 8.308 7.936 5.853
5.945 5.497 7.328 9.172 6.952
2.858 6.798 7.572 3.923 7.537
5.616 3.804 2.081 5.678 5.274

0.7585 4.042 0.5395 3.528 5.308
5.928 7.792 3.563 9.34 9.65
1.299 1.544 5.688 3.949 4.694
3.873 0.119 7.27 3.371 3.886
1.622 9.275 7.943 4.361 3.112
8.627 5.285 6.204 1.656 1.195
6.02 4.72 2.63 3.402 6.541
5.298 6.892 7.161 7.482 9.884
4.505 7.205 0.8382 9.126 2.29
5.055 9.133 5.583 1.524 5.032
8.258 4.625 5.383 5.466 9.961
4.476 0.7818 8.545 4.427 6.042
1.067 4.985 9.619 9.799 0.04634

0.3432 7.749 9.77 8.173 3.632
8.687 6.795 0.8444 3.462 3.998
8.559 2.599 0.4506 8.001 6.601
4.314 7.499 9.106 1.33 1.818
9.824 2.638 0.9536 1.455 2.827
1.361 8.021 8.693 0.7756 5.797
6.274 5.499 0.08094 1.45 6.803
8.53 5.339 6.221 4.387 3.51
1.996 5.132 1.38 4.018 3.823

0.7597 7.624 2.399 0.4047 1.233
2.53 1.839 5.048 2.4 8.226
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