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a b s t r a c t

In general, feature points and camera parameters can only be estimated with limited accuracy due to
noisy images. In case of collinear feature points, it is possible to benefit from this geometrical regularity
by correcting the feature points to lie on the supporting estimated straight line, yielding increased accu-
racy of the estimated camera parameters. However, regarding Maximum-Likelihood (ML) estimation, this
procedure is incomplete and suboptimal. An optimal solution must also determine the error covariance of
corrected features. In this paper, a complete theoretical covariance propagation analysis starting from the
error of the feature points up to the error of the estimated camera parameters is performed. Additionally,
corresponding Fisher Information Matrices are determined and fundamental relationships between the
number and distance of collinear points and corresponding error variances are revealed algebraically.
To demonstrate the impact of collinearity, experiments are conducted with covariance propagation anal-
yses, showing significant reduction of the error variances of the estimated parameters.

� 2010 Elsevier Inc. All rights reserved.
1. Introduction

In feature point based structure-from-motion (SFM) methods
[1–11], the accuracy of the estimated camera parameters depends
on the accuracy of the detected features. The knowledge of the
probability density function of feature point positions enables the
use of Maximum-Likelihood (ML) estimation theory [12]. Based on
ML-theory, it is also possible to determine the expected error covar-
iances of the estimated camera parameters [12]. In [13], Bartoli et al.
propose the utilization of collinear features when appropriate. In
synthetic experiments, it is shown that the utilization of collinear
features leads to smaller covariances of estimated camera parame-
ter errors. In [14], a simplified error covariance propagation analysis
for collinear features is presented for SFM, but the analysis is not
based on optimal ML-estimation, therefore a fully ML-based theo-
retical analysis of covariance propagation is missing.

To exploit collinearity, this paper determines an ML-estimate of
a (straight) line which is supported by some feature points. The
feature point positions are then corrected by projecting them onto
the estimated line. The estimation of camera parameters is based
ll rights reserved.
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on the corrected feature points. Thereby, it is proven that the
resulting feature points have smaller error covariances resulting
in higher accuracy of the estimated camera parameters.

Several proposed methods exist for estimating lines and deter-
mining the error covariances of the line parameters and corre-
sponding Cramer–Rao lower bounds analytically [15–17]. In this
paper, the covariance and the Cramer–Rao bound determination
of line parameters is reviewed. The main contribution is an analy-
sis of corrected point positions including the determination of the
error covariances and the Cramer–Rao bounds, which depend both
on the uncertainty of the line as well as on the uncertainty of the
selected point to be corrected. Additionally, the Cramer–Rao terms
are further analyzed to derive fundamental relationships between
the number of supporting points, the line parameter accuracy and
the accuracy of the corrected features.

The focus is on camera parameter estimation, so a complete
theoretical analysis starting from the error of the feature points
up to the error of the estimated camera parameters is presented.

In Section 2, the ML-estimation of a line in an image is
presented. In Section 3, the error covariance propagation for the
corrected feature points is analytically derived. Section 4 describes
the calculation of the Fisher Information Matrix and the
Cramer–Rao bounds for the expected error covariances of cor-
rected feature points. Section 5 describes briefly the propagation
of the error covariances up to the camera parameters followed
by Section 6 in which the usefulness of collinearity is experimen-
tally demonstrated.

https://core.ac.uk/display/52923121?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1016/j.cviu.2010.12.003
mailto:onay@ee.bilkent.edu.tr
mailto:thormae@mpi-inf. mpg.de
mailto:thormae@mpi-inf. mpg.de
mailto:broszio@tnt.uni-hannover.de
mailto:mikulast@tnt. uni-hannover.de
mailto:mikulast@tnt. uni-hannover.de
mailto:cetin@bilkent.edu.tr
http://dx.doi.org/10.1016/j.cviu.2010.12.003
http://www.sciencedirect.com/science/journal/10773142
http://www.elsevier.com/locate/cviu


468 O. Urfalioglu et al. / Computer Vision and Image Understanding 115 (2011) 467–475
2. Maximum-Likelihood estimation of line parameters

A set of feature points is given, which is supposed to lie on a
straight line. However, their locations are erroneous so they actu-
ally are not located on the line exactly.

The goal is to determine the line parameters by processing
information given by the feature points. A 2D-line l can be de-
scribed by the Hessian parameterization. A point x lies on a line if

n>ða� xÞ ¼ 0; ð1Þ

where

n ¼ ðcosð/Þ; sinð/ÞÞ>; ð2Þ

is the normal vector and a is the base. By defining the homogeneous
point

x ¼ ðx; y;1Þ>; ð3Þ

and

l ¼ ðcosð/Þ; sinð/Þ;�qÞ>; ð4Þ

the homogeneous parameterization of the line is obtained,
satisfying

l>x ¼ 0: ð5Þ

It is assumed that the probability density function (PDF)
describing the uncertainty of the feature points is arbitrary
Gaussian and the covariances are known. The error covariances
can be determined by analyzing the feature tracking method, e.g.
for the KLT tracking method [18,19], the error analysis for the posi-
tion of the detected features can be found in [20]. In order to take
maximum benefit from the knowledge of the PDF, parameters can
be determined using ML-estimation. The position error of a feature
point x has the PDF

pðxjxÞ ¼ e �
1
2ðx�xÞ>C �1ðx�xÞ½ �

2p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðCÞ

p ; ð6Þ

where x is the measured point, x is the true point and C is the
covariance matrix. It is assumed that the position errors of feature
points are statistically independent. Let

z ¼ xð1Þ
>
; . . . ; xðMÞ

>
� �>

; ð7Þ

be the vector of all points belonging to the estimated line. The task
is to estimate the corresponding points x̂ðiÞ on the line, so that the
likelihood L

L ¼
YM

i

p xðiÞjx̂ðiÞ
� �

; ð8Þ

is maximized.
For a specific line (/, q), the estimated point x̂ðiÞ can be deter-

mined directly. For ML-estimation, the maximization of the Likeli-
hood is equivalent to

x̂ðiÞ ¼ arg max
~xðiÞ

p xðiÞj~xðiÞ
� �

; ð9Þ

which yields

x̂ðiÞ ¼ arg max
~xðiÞ

e �1
2ðx
ðiÞ�~xðiÞÞ>CðiÞ�1

xðiÞ�~xðiÞð Þ
� �

2p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det CðiÞ

� �q ; ð10Þ

with the constraint that the point x̂ must lie on the line (/, q). This
constraint is expressed by

x̂ðiÞ ¼
q cosð/Þ
q sinð/Þ

	 

þ kðiÞ

sinð/Þ
� cosð/Þ

	 

¼ aþ kðiÞb; ð11Þ
where k(i) is a scalar, a is a supporting vector and b is the direction
vector. With this constraint and some additional simplifications, the
condition (10) becomes

k̂ðiÞ ¼ arg min
kðiÞ

xðiÞ � a� kðiÞb
� �>

C
ðiÞ�1

xðiÞ � a� kðiÞb
� �

: ð12Þ

In order to minimize Eq. (12), following condition must hold

@

@kðiÞ
xðiÞ � a� kðiÞb
� �>

C
ðiÞ�1

xðiÞ � a� kðiÞb
� �����

kðiÞ¼k̂ðiÞ
¼ 0; ð13Þ

which yields

k̂ðiÞ ¼
xðiÞ � a
� �>

CðiÞ
�1

b

b>CðiÞ
�1

b
: ð14Þ

Apparently, k(i) is a function of (/, q, x(i)): k(i)(/, q, x(i)), and x̂ðiÞ is
a function of kðiÞ : x̂ðiÞ kðiÞ /;q; xðiÞ

� �� �
. Finally, the following cost

function is used for the estimation of the line parameters (/, q)

ð/̂; q̂Þ ¼ arg min
ð/;qÞ

XM

i

xðiÞ � x̂ðiÞ k̂ðiÞ
� �h i>

C
ðiÞ�1

xðiÞ � x̂ðiÞ k̂ðiÞ
� �h i

: ð15Þ

The cost function in (15) can be minimized by iterative optimi-
zation methods.

3. Propagation of error covariance

In order to determine the impact of the collinearity on the accu-
racy of the camera parameters, error covariances are propagated
from the feature points up to the camera parameters. The propaga-
tion is started from the detected points up to the line defined in
Section 3.1 and continued from the line up to the corrected/pro-
jected points in Section 3.2.

3.1. Error covariance of line parameters

The cost function (15) has the form

f ð/̂ðzÞ; q̂ðzÞ; zÞ ¼
XM

i¼1

dðiÞ
>
C
ðiÞ�1

dðiÞ; ð16Þ

with

dðiÞ ¼ xðiÞ � x̂ðiÞ: ð17Þ

A necessary condition is that the gradient becomes zero

h ¼ grad f ¼ d
dð/;qÞ f ð/ðzÞ;qðzÞ; zÞj/¼/̂;q¼q̂¼

! 0: ð18Þ

It is not possible to resolve this equation for ð/̂; q̂Þ algebraically
in a trivial way. This means that there is no closed form solution for
a mapping g with

R2M ! R2 : ð/̂; q̂Þ> ¼ gðzÞ; ð19Þ

where ð/̂; q̂Þ 2 R2 and z 2 R2M . On the other hand, the implicitly de-
fined function hðgðzÞ; zÞ¼! 0 enables the calculation of the Jacobian
dg
dz by utilizing the theorem about implicit functions in order to
determine the first order approximation of the desired function g

@xðiÞg1 @yðiÞg1

@xðiÞg2 @yðiÞg2

 !
¼ �

@/h1 @qh1

@/h2 @qh2

	 
�1 @xðiÞh1 @yðiÞh1

@xðiÞh2 @yðiÞh2

 !
ð20Þ

where @a � @
@a

and @a;b � @2

@a@b
. This yields

@zg ¼ �ð@ghÞ�1
@zh ð21Þ

¼ �ð@/;qhÞ�1
@zh: ð22Þ
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The linearized function is

gðz þ eÞ � /̂

q̂

 !
þ

@xð1Þg1 @yð1Þg1 � � � @xðMÞg1 @yðMÞg1

@xð1Þg2 @yð1Þg2 � � � @xðMÞg2 @yðMÞg2

 !
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

A

e

ð23Þ

gðz þ eÞ � ð/̂; q̂Þ> þ Ae: ð24Þ

After determining the first order approximation the error
covariance of the line parameters can be specified

covð/̂; q̂Þ ¼ K ¼ A

C
ð1Þ
11 C

ð1Þ
12

C
ð1Þ
21 C

ð1Þ
22

. .
.

C
ðMÞ
11 C

ðMÞ
12

C
ðMÞ
21 C

ðMÞ
22

0BBBBBBBB@

1CCCCCCCCA
A
>: ð25Þ
3.2. Error covariance of corrected point position

In this section, the position error covariance of a corrected point
is determined. Given line parameters, let P the function which pro-
jects a point onto the line. This is also referred to as correcting a
point. This function is determined by Eqs. (11) and (14)

x̂ðiÞ ¼ P /;q; xðiÞ
� ���

/¼/̂;q¼q̂

¼ að/;qÞ þ kðiÞ /;q; xðiÞ
� �

bð/;qÞ
���
/¼/̂;q¼q̂

:
ð26Þ

To calculate the error, the first order Taylor series of P yields

P /̂;q̂;xðiÞ;yðiÞ
� �>

þd

	 

� x̂ðiÞ

ŷðiÞ

 !
þ

@/P1 @qP1 @xðiÞP1 @yðiÞP1

@/P2 @qP2 @xðiÞP2 @yðiÞP2

 !
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

BðiÞ /;q;xðiÞ ;yðiÞð Þ

d;

ð27Þ

where

d ¼

d/

dq
dxðiÞ

dyðiÞ

0BBB@
1CCCA: ð28Þ

The error covariance of a projected point can be approximated
by

bCðiÞ ¼ covðx̂ðiÞÞ ¼ B
ðiÞ K 0

0 CðiÞ

	 

B
ðiÞ>; ð29Þ

where B
(i) is a function of /̂; q̂; xðiÞ; yðiÞ

� �
: BðiÞ /̂; q̂; xðiÞ; yðiÞ

� �
. Fig. 1

shows an example of the error ellipses before and after the error
covariance propagation.

Algorithm 1 gives a summary of the methods we propose to correct
collinear points and update the corresponding error covariances.
Fig. 1. Point error ellipses before and after projection.
Algorithm 1. Correcting collinear points and updating error
covariances

detect collinear feature points x(i) [18,19,13]

for all lines lk supported by points xðiÞk do

estimate the corresponding line l̂k [see Eq. (15)]

calculate the error covariance Kk of the estimated line l̂k

[see Eq. (25)]

for all points xðiÞk supporting the line l̂k do

point correction: project point xðiÞk onto estimated line l̂k

[see Eq. (26)]

update the error covariance bCðiÞk of the corrected point x̂ðiÞk

[see Eq. (29)]
end for

end for
camera parameter estimation: for collinear points, use

corrected positions and
updated error covariances [see Eq. (69)]
calculate camera parameter errors [see Eq. (74)]

It can be intuitively verified that the error covariance compo-
nent perpendicular to the line shows maximal decrease, whereas
the component parallel to the line does not encounter any change.
Furthermore, the error covariances are higher for the outer points
on the line, compared with the points in the near vicinity of the
centroid. However, these properties are observed only by experi-
ments. In the following Sections, we derive these properties analyt-
ically from the Cramer–Rao bounds.
4. Cramer–Rao bounds

There are universal bounds for the accuracy of the estimated
parameters determined by the Cramer–Rao bounds, so no estimator
can yield parameter estimates which have lower error covariances
than the Cramer–Rao bounds. In Section 4.1 the error covariance
bounds for the line parameters are determined and in Section 4.3
the error covariance bounds for the projected point positions are
specified. In Sections 4.2 and 4.4, obtained results are further ana-
lyzed and some fundamental properties are extracted.

4.1. Cramer–Rao bounds for the error covariances of line parameters

In order to calculate the lower bounds of the line parameter
error covariances we need to determine the Fisher Information
Matrix F

l which is defined as

F
l ¼ �E @/;q@

>
/;q ln pðzj/̂; q̂Þ

h ih i
; ð30Þ

where @/;q@
>
/;q is the operator generating the Hessian and the super-

script l represents the line. The components of the Fisher Informa-
tion Matrix are defined as

F
l
m;n ¼ �E @m@n ln pðzj/̂; q̂Þ

h ih i
; ð31Þ

with m, n = 1, 2 and @1 � @/, @2 � @q. Replacing pðzj/̂; q̂Þ yields

F
l
m;n ¼ �E @m@n ln

YM
i

e �1
2dðiÞ

>
CðiÞ
�1

dðiÞ
� �

2p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðCðiÞÞ

q
264

375
264

375; ð32Þ

¼
XM

i

1
2
E @m@ndðiÞ

>
C
ðiÞ�1

dðiÞ
h i

; ð33Þ

¼
XM

i

1
2

Z
e �1

2ðx̂�xðiÞÞ>CðiÞ�1
x̂�xðiÞð Þ

� �
2p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðCÞ

p @m@ndðiÞ
>
C
ðiÞ�1

dðiÞ
h i

dx̂

8<:
9=;: ð34Þ
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The Cramer–Rao bounds are obtained by

covð/̂; q̂Þm;n P ðF�1Þm;n: ð35Þ

As an example, in the case of isotropic covariance matrices for
the point position error of the form

C
ðiÞ ¼ r2 0

0 r2

 !
; ð36Þ

the components of the Fisher Information Matrix result in

Fl
1;1 ¼ �

PM
i

2ðyðiÞÞ2 cos2ð/ÞþxðiÞ cosð/Þq
r2

�
PM

i

4yðiÞxðiÞ cosð/Þ sinð/Þ
r2

�
PM

i

ðyðiÞÞ2þyðiÞ sinð/Þq
r2

�
PM

i

�2ðxðiÞÞ2 cos2ð/ÞðxðiÞÞ2
r2

Fl
1;2 ¼ �

PM
i

sinð/ÞxðiÞ�cosð/ÞyðiÞ
r2

Fl
2;2 ¼ �

PM
i

1
r2 :

ð37Þ
4.2. Interpretation of Cramer–Rao bounds for the error covariances of
line parameters

In order to achieve more insight into the relationships between
the number of points, their accuracy and the accuracy of the esti-
mated line, we further analyze the terms for the Cramer–Rao
bounds. Without loss of generality, we assume that the estimated
line lies on the x-axis:

/̂ ¼ p
2
; q̂ ¼ 0: ð38Þ

By using Eqs. (38) and (37), we get

F
l
1;1 ¼

XM

i

�ðŷðiÞÞ2 þ ðx̂ðiÞÞ2

r2 ; ð39Þ

F
l
1;2 ¼ F

l
2;1 ¼

XM

i

x̂ðiÞ

r2 ; ð40Þ

F
l
2;2 ¼

M
r2 : ð41Þ

For the Fisher Information Matrix follows:

F
l ¼ 1

r2

PM
i
�ðŷðiÞÞ2 þ ðx̂ðiÞÞ2

PM
i

x̂ðiÞ

PM
i

x̂ðiÞ M

0BBB@
1CCCA: ð42Þ

Determining the inverse matrix F
l�1 yields

F
l�1 ¼ m �

M �
PM

i
x̂ðiÞ

�
PM

i
x̂ðiÞ

PM
i
� ŷðiÞ
� �2 þ x̂ðiÞ

� �2

0BBB@
1CCCA; ð43Þ

where

m ¼ r2

M �
PM

i � ŷðiÞð Þ2 þ x̂ðiÞð Þ2
� �

�
PM

i x̂ðiÞ
� �2 : ð44Þ

To further simplify the terms, we assume that each point has
the same distance a to its neighbor and that x̂ð1Þ ¼ a. This means
x̂ðiÞ ¼ a � i; ŷðiÞ ¼ 0; i ¼ 1; . . . ;M: ð45Þ

This assumption leads to the following Fisher Information
Matrix

F
l�1 ¼ r2

MS1 � S2

M �S3

�S3 S1

	 

; ð46Þ

where S1, S2 and S3 are given by

S1 ¼
XM

i

x̂ðiÞ
� �2 ¼

XM

i

a2i2 ¼ 1
3

a2M3 þ 1
2

a2M2 þ 1
6

a2M
	 


; ð47Þ

S2 ¼
XM

i

x̂ðiÞ
 !2

¼
XM

i

ai

 !2

¼ 1
4

a2ðM þ 1Þ2M2; ð48Þ

S3 ¼
XM

i

x̂ðiÞ ¼
XM

i

ai ¼ 1
2

aM2 þ 1
2

aM: ð49Þ

By defining S4 as

S4 ¼ MS1 � S2 ¼
1

12
a2ðM4 �M2Þ; ð50Þ

and using the following identities

S3

S4
¼ 6

aMðM � 1Þ ;
S1

S4
¼ 2ð2M þ 1Þ

MðM � 1Þ ; ð51Þ

we get the final simplified lower bounds for the errors of /̂; q̂,
respectively, from (46):

F
l�1 ¼ r2

12
Ma2ðM2�1Þ �

6
aMðM�1Þ

� 6
aMðM�1Þ

4Mþ2
MðM�1Þ

 !
: ð52Þ

Following results can be deduced from Eq. (52). The error of the
line parameters /̂; q̂ is unbiased, because

lim
M!1

F
l�1 ¼

0 0
0 0

	 

: ð53Þ

Furthermore, the error variance of /̂ is proportional to 1
a2, i.e.

greater distance a leads to smaller error of /̂. In contrast, the error
of q̂ does not depend on the distance between the supporting
points. This means that widening the supporting point set only in-
creases the accuracy of the angle, but not the accuracy of the dis-
tance to the origin of the coordinate system. Both parameters of
the estimated line become more accurate with increasing number
M of supporting points.

4.3. Cramer–Rao bounds for the error covariances of corrected point
positions

The projection mapping (26) is a function of (/, q, x, y): P(/, q, x,
y). Since the Cramer–Rao bounds for /̂; q̂ are already determined
and the true PDF’s of x(i) are assumed to be known, Eq. (3.30) from
[21] is used in order to obtain the inverse Fisher Information Ma-
trix ðFp̂ðiÞ Þ�1 regarding the lower bounds of the covariances of the
corrected points:

F
p̂ðiÞ

� ��1
¼ ½@hPðhÞ� F�1ðhÞ @hPðhÞ½ �> ð54Þ

where h ¼ ð/̂; q̂; x; yÞ>. The term F
�1(h) represents the inverse Fisher

Information Matrix containing the Cramer–Rao bounds for the
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estimated line parameters /̂; q̂ and the feature point coordinates x,
y. The Fisher Information Matrix F(h) is defined as

FðhÞ ¼

Fl
1;1 Fl

1;2 0 0

Fl
2;1 Fl

2;2 0 0

0 0 CðiÞ
�1

� �
1;1

CðiÞ
�1

� �
1;2

0 0 CðiÞ
�1

� �
2;1

CðiÞ
�1

� �
2;2

0BBBBBBB@

1CCCCCCCA: ð55Þ

Since the term @hP(h) is already defined in (27) as B, it may be
written

F
p̂ðiÞ

� ��1
¼ BðhÞ F�1ðhÞ BðhÞ>: ð56Þ
Fig. 2. Distribution of error variances of the y-component. The vertical lines
indicate the corresponding variances.
4.4. Interpretation of Cramer–Rao bounds for the error covariances of
corrected point positions

For further analysis of the position error of a corrected feature
point x̂ðiÞ, we start at the corresponding covariance matrix from
Eq. (29). Since the Jacobian B

(i) does not depend on the error covar-
iances, the lower bound ðFp̂ðiÞ Þ�1 for bCðiÞ is determined by

F
p̂ðiÞ

� ��1
¼ B

ðiÞ

Fl
1;1 Fl

1;2 0 0

Fl
2;1 Fl

2;2 0 0

0 0 CðiÞ
�1

� �
1;1

CðiÞ
�1

� �
1;2

0 0 CðiÞ
�1

� �
2;1

CðiÞ
�1

� �
2;2

0BBBBBBB@

1CCCCCCCA

�1

B
ðiÞ>:

ð57Þ

With the assumption of isotropic covariance matrices, as indi-
cated by Eq. (36), it follows that

F
p̂ðiÞ

� ��1
¼ B

ðiÞ

Fl
1;1 Fl

1;2 0 0

Fl
2;1 Fl

2;2 0 0

0 0 1
r2 0

0 0 0 1
r2

0BBBB@
1CCCCA
�1

B
ðiÞ>: ð58Þ

Again, we assume that the estimated line lies on the x-axis and
the points are equidistant:

xðiÞ ¼ a � i; yðiÞ ¼ 0; i ¼ 1; . . . ;M: ð59Þ

With the additional weak assumption

a� r ð60Þ

and the use of Eqs. (52) and (58) follows:

F
p̂ðiÞ

� ��1
¼ r2

1 0
0 2þ4M2�12Miþ6Mþ12i2�12i

M3�M

 !
: ð61Þ

One result from Eq. (61) is that the covariance component cor-
responding to the direction of the estimated line is unchanged by
the correction:

F
p̂ðiÞ �1� �

1;1
¼ C

ðiÞ
1;1 ¼ r2: ð62Þ

On the other hand, the y-component Fp̂ðiÞ �1� �
2;2

is decreased. In

order to determine which corrected feature point has the least

error, we determine the i-derivative of Fp̂ðiÞ �1� �
2;2

, which is sup-

posed to yield zero. For a constant M, the denominator may be dis-
carded. The numerator is a 2-nd degree polynomial in i
@ið2þ 4M2 � 12Miþ 6M þ 12i2 � 12iÞ ¼ �12M þ 24i� 12

¼ 0) i ¼ M þ 1
2

: ð63Þ

From this follows that points with i ¼ Mþ1
2 in the vicinity of the

centroid

a Mþ1
2

0

 !
; ð64Þ

of supporting points have smallest error variance in the y-compo-
nent. The error variance increases with the distance to the centroid
symmetrically, since it is

F
p̂ðjÞ �1� �

2;2
¼ F

p̂ðM�jþ1Þ �1� �
2;2
: ð65Þ

This is simply shown by the substitution of i = M � j + 1 in
Fp̂ðiÞ �1� �

2;2

F
p̂ðM�jþ1Þ �1� �

2;2
¼ 2þ 4M2 � 12MðM � jþ 1Þ þ 6M

þ 12ðM � jþ 1Þ2 � 12ðM � jþ 1Þ
¼ 2þ 4M2 � 12Mjþ 6M þ 12j2 � 12j

¼ ðFp̂ðjÞ �1
Þ2;2: ð66Þ

In an example with 5 points, Fig. 2 shows the symmetric distri-
bution of the variances of the y-component.

One expects no improvement of the accuracy in case of only
M = 2 supporting points. This is shown by

F
p̂ð1Þ �1

¼ F
p̂ð2Þ �1

¼ r2 1 0
0 1

	 

: ð67Þ

It is also easily shown that for the case M > 2, the accuracy of all
points improves. We simply have to test for

2þ 4M2 � 12Miþ 6M þ 12i2 � 12i

M3 �M
< 1; ð68Þ

which is true for all M > 2.

5. Maximum-Likelihood estimation and covariance propagation
of camera parameters

ML-estimation of camera parameters is performed by the bun-
dle adjustment method [12], in which the 3D-feature points and
the camera parameters are estimated simultaneously. In order to
determine the error covariances, a brief review of the basic princi-
ples of the estimation process are given.



Fig. 3. Error variances and Cramer–Rao bounds of the y-components of corrected points located on the x-axis. The error variance before correction is r2 = 0.04 pel2. Top left: 2
collinear points, top right: three collinear points, bottom left: five collinear points and bottom right: 10 collinear points.

Fig. 4. Synthetic camera and 3D-point setup.
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Let there be V views and N 3D-points. The ML-estimation is then
defined by

bQ ¼ arg min
Q

XV

i

XN

j

d xði;jÞ;P qðiÞ;XðjÞ
� �� �2

Cði;jÞ
; ð69Þ

where x(i, j) is the jth 2D-point of the ith view, P is the projection
function, q(i) is the vector containing r camera parameters,

XðjÞ ¼ XðjÞ1 ;X
ðjÞ
2 ;X

ðjÞ
3

� �>
is the jth 3D-point, Q the vector representing

all parameters to be estimated

Q ¼ qð1Þ1 ; . . . ; qðVÞr ;Xð1Þ1 ; . . . ;XðNÞ3

� �>
; ð70Þ

and dð. . . Þ
Cði;jÞ is the Mahalanobis distance according to the covari-

ance matrix C
(i, j). Let f ð bQ Þ be the function projecting all estimated

3D points onto the camera plane

f ð bQ Þ ¼ P q̂ð1Þ; X̂ð1Þ
� �

; . . . ;P q̂ðVÞ; X̂ðNÞ
� �� �>

ð71Þ

¼ n̂ð1;1Þ; . . . ; n̂ðV ;NÞ
� �>

: ð72Þ

By collecting the covariance matrices as

R ¼
Cð1;1Þ

. .
.

CðV ;NÞ

0B@
1CA; ð73Þ

the covariance of the estimated parameters is obtained [12] by

covð bQ Þ ¼ ðJ>R�1
JÞ�1

; ð74Þ

with the Jacobian

J ¼ df
dQ

����
Q¼bQ : ð75Þ
In order to determine the covariance in presence of collinear
points, each collinear point x(i, j) is replaced by its corrected point
x̂ði;jÞ and each corresponding covariance matrix C

(i, j) is replaced
by the covariance matrix bCði;jÞ, as determined in (29).

6. Experimental results

To demonstrate the impact of collinear features on the expected
analytic covariances, camera parameter estimation is performed
utilizing simulated data as well as real data image sequence. It is
assumed that the estimated parameter errors are unbiased, so that
they have zero means. The estimation of camera parameter errors
is done by the method presented in Section 5.

6.1. Simulated data tests

First, the error analysis is verified by simulation experiments
based on 2D-points. Fig. 3 shows the results for varying number



Fig. 5. Rotation angle error variance (left) and normalized translation error variance.

Fig. 6. Reprojection RMSE (left) and 3D-reconstruction error variance.

Fig. 7. Real data image sequence: images (numbers 1, 3, 5 and 7) with detected collinear feature points.
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of simulated collinear points located on the x-axis. The application
of the error analysis is compared to statistical measurements,
showing a very good conformance. The measured error variances
are obtained by 100 simulations.
As predicted, the minimum error variance is found in the
vicinity of the centroid. For example, with five collinear points,
the error variance of the corrected point in the vicinity of the
centroid decreases by a factor of 1/5. Also, the dependency on



Fig. 8. Estimated camera parameters corresponding to the noise-free real data image sequence.
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the number of collinear points is demonstrated by an overall
decrease.

The second part of simulated data based experiments consists
of regularly positioned 3D-points within a cube, as shown in
Fig. 4. There are 12 line segments detected, vertical ones as well
as horizontal ones. Therefore, the error of corrected points shows
a consecutive decrease of covariance in both directions. Experi-
ments are done with increasing standard deviations for the posi-
tion error of the 2D-points, which are determined in two camera
views. Each plot shows three curves for the parameter error: one
without exploiting the collinearity of the 2D-points, a second for
exploiting collinearity by only correcting points and a third curve
for correcting points with full covariance update. Fig. 5 shows
the results for the error variance of camera rotation and normal-
ized translation, respectively. The normalized translation error var-
iance is calculated from the translation unit vector. Fig. 6 shows the
reprojection RMSE and the 3D-reconstruction error variance,
respectively.

In all cases, exploiting the collinearity results in a considerable
decrease in the error of camera parameters. Updating the error
covariances decreases the errors even more.

6.2. Real data tests

The real data based experiment consists of 10 � 100 images.
There are 10 camera positions and on each position, 100 images
are taken. The focal length is f = 6.85 mm. Using the 100
images per camera position, a mean image is calculated. Since a
zero mean Gaussian error for the pixel intensities is assumed, the
mean image is supposed to be approximately noise-free. The
noise-free image is used to determine the PSNR of the noisy
images. Using all 10 noise-free images, the ground truth camera



Fig. 9. Measured error variance of estimated camera rotation parameters. The first
estimation does not exploit collinearity. The second estimation is done by
correcting collinear feature points. The third estimation is done by correcting and
updating the corresponding error covariances. PSNR = 38.4 dB, r = 0.2 pel.

Fig. 10. Measured error variance of estimated camera translation parameters. The
first estimation does not exploit collinearity. The second estimation is done by
correcting collinear feature points. The third estimation is done by correcting and
updating the corresponding error covariances. PSNR = 38.4 dB, r = 0.2 pel.
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parameters are calculated. Using one noisy image per camera posi-
tion, the camera parameter errors are determined.

Because of many collinear features in the images this image se-
quence is well suited to test the improvement of the accuracy by
exploiting the collinearity. Fig. 7 shows some images from the se-
quence. Fig. 8 shows the estimated camera parameters. The camera
motion consists mainly of a forward translation and small rota-
tional motions due to manhandling.

Figs. 9 and 10 show the measured error variance of the camera
rotation and camera translation parameters, respectively. The error
variance of the rotation angle # is decreased by 20% (correction
only) and 40% (correction + covariance update). Error variances of
the other rotation angles show no significant change. The error
variances of the translation parameters are decreased by 15–30%
(correction only) and 40–60% (correction + covariance update). In
average, correction with covariance update decreases the error var-
iance of the rotation parameters by approximately 30%. Error var-
iance of translation parameters is decreased by approximately 50%
in average.

7. Conclusions

In this paper an algebraic error covariance propagation for cam-
era parameter estimation in presence of collinear feature points is
presented. The ML-estimation of the supporting lines and the cor-
responding covariance propagation is reviewed. Furthermore, the
correction of collinear points and the corresponding covariances
is determined.

By determining the Fisher information matrix the lower bounds
for the error covariance of the corrected point positions are ob-
tained. Further analysis of the Cramer–Rao bounds reveal funda-
mental properties of the relationship of error covariances, the
number of supporting points and their distance. It is shown that
the maximal gain in accuracy by correcting collinear points is
encountered in the vicinity of their centroid. Furthermore, it is
shown that the error covariance component perpendicular to the
supporting line shows maximal decrease whereas the component
parallel to the supporting line does not encounter any change.

Finally, algebraic as wall as experimental investigations show
how much the accuracy of camera parameters can be increased
by taking advantage of the information about the collinearity of
feature points.
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