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Fresnel integrals corresponding to different distances can be interpreted as scaled fractional Fourier transformations
observed on spherical reference surfaces. We show that by judiciously choosing sample points on these curved
reference surfaces, it is possible to represent the diffracted signals in a nonredundant manner. The change in sample
spacing with distance reflects the structure of Fresnel diffraction. This sampling grid also provides a simple and
robust basis for accurate and efficient computation, which naturally handles the challenges of sampling chirplike
kernels. © 2011 Optical Society of America
OCIS codes: 070.2575, 070.2580, 070.2025, 050.1940, 050.5082, 070.0070.

In this Letter we show that, by appropriately choosing
sampling points on spherical rather than planar surfaces,
it is possible to represent diffracted signals with the mini-
mum possible number of samples. The grid of sample
points reflects the structure of Fresnel diffraction and
also facilitates fast and accurate computation.
Appropriate choice of sampling points depends not

only on propagation parameters, but also on the space
and frequency extents of the signals, and involves proper
scaling of the input. Unlike some other sampling ap-
proaches, this allows representation of the signal nonre-
dundantly and without information loss, using the same
number of samples that are required to represent the
input field.
For simplicity in presentation, we will work with di-

mensionless space and frequency coordinates [1] of a
single variable. Let f̂ ðxÞ and F̂ðσxÞ denote the space and
frequency representation of a signal. We will use f ðuÞ and
FðμÞ to denote corresponding functions with dimension-
less arguments u and μ:

f̂ ðxÞ≡ 1ffiffiffi
s

p f

�
x
s

�
; F̂ðσxÞ≡

ffiffiffi
s

p
FðsσxÞ; ð1Þ

where s is a scaling parameter with dimensions of length.
The fractional Fourier transform (FRT) is a generaliza-

tion of the ordinary Fourier transform (FT) with an order
parameter a. It is well known that the FRT operation cor-
responds to a rotation in the space–frequency plane by
an angle aπ=2. The FRT f aðuÞ of a function f ðuÞ may
be defined as [1]

f aðuÞ ¼ Aa
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where Aa ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − i cotðaπ=2Þp

.
The Fresnel integral describes the propagation of light

from one transverse plane along the optical axis to an-
other. For the one-dimensional case, the output field
ĝðxÞ is related to the input field f̂ ðxÞ by [2]

ĝðxÞ ¼ ei2πd=λe−iπ=4
ffiffiffiffiffi
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where d is the distance of propagation and λ is the
wavelength.

It is known that the Fresnel integral can be decom-
posed into a FRT, followed by magnification, followed
by chirp multiplication [1,3–6]:

ĝðxÞ ¼ ei2πd=λe−iaπ=4
ffiffiffiffiffiffiffi
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where

a ¼ 2
π arctan

λd
s2

; ð5Þ

M ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ λ2d2

s4
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¼ sec
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2
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R ¼ s4 þ λ2d2
λ2d ¼ d csc2

aπ
2
: ð7Þ

If we choose to observe the diffracted light on a spherical
reference surface of radius R, the chirp multiplication
can be dispensed with and we simply observe the FRT
of the input, magnified by M . (The constant phase terms
ei2πd=λe−iaπ=4 are not of significance.) Equation. (4) holds
true regardless of the choice of s.

We assume that the energy of the signal at the z ¼ 0
plane is confined to an ellipse with diameters Δx and
Δσx in the space–frequency plane (phase space), in the
sense that most of the energy lies within this ellipse. For
concreteness, one may employ the Wigner distribution
as a space–frequency representation [1], although this
is not essential for our development. Δx and Δσx also
correspond to the space and frequency extents of the sig-
nal. Since a frequency extent of Δσx implies a sampling
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interval of 1=Δσx, we would need N ¼ Δx=ð1=ΔσxÞ ¼
ΔxΔσx samples to characterize the signal in terms of
its samples, a quantity also referred to as the space-
bandwidth product. In dimensionless coordinates the
diameters of the ellipse become Δx=s and sΔσx.
We now determine the spatial extent of the diffracted

signal observed on the Fresnel output plane by using the
fact that [1,7,8] Fresnel propagation shears the Wigner
distribution Ŵ f ðx; σxÞ into the form Ŵ f ðxþ λdσx; σxÞ. If
the original Wigner distribution occupied an ellipse with
diameters Δx and Δσx in the space–frequency plane, the
sheared Wigner distribution will exhibit a spatial extent
of Δx00 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðλdΔσxÞ2 þΔx2

p
and a frequency extent of

Δσ00x ¼ Δσx. The output spatial extent Δx00 will begin
to be significantly larger than the input spatial extent
Δx beyond the distance d ¼ Δx=ðλΔσxÞ. We refer to this
distance as the “knee-of-the-curve” point along the z axis.
This distance is easy to interpret if we note that the an-
gular divergence of the input signal is Δθ ≈ λΔσx, so that
the spatial spreading of the signal after propagating a
distance d will be dΔθ ¼ λdΔσx. This begins to exceed
Δx at d ¼ Δx=ðλΔσxÞ.
We will now rederive the spatial extent of the dif-

fracted signal by working our way through Eq. (4). In
dimensionless coordinates, the diameters of the original
ellipse will be Δx=s and sΔσx. Fractional Fourier trans-
formation of order a will rotate this ellipse by an angle
α ¼ aπ=2, producing an ellipse with dimensionless spa-
tial extent

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðsΔσx sin αÞ2 þ ðΔx cos α=sÞ2

p
. Going back to

dimensional coordinates and multiplying this with the
parameter M gives us the spatial extent of the diffracted
signal on the spherical reference surface:

Δx0 ¼ M
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðs2Δσx sin αÞ2 þ ðΔx cos αÞ2

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðλdΔσxÞ2 þΔx2

q
; ð8Þ

where we have inserted the expressions for α andM from
Eqs. (5) and (6). We observe that the final expression ob-
tained for Δx0 does not depend on s and is exactly the
same as Δx00 derived in the previous paragraph using the
Wigner distribution. The spatial extent on the Fresnel
output plane is equal to that on the spherical reference
surface since there is only a multiplicative factor be-
tween these surfaces.
Now, we turn our attention to the spatial frequency ex-

tent Δσ0x of the diffracted signal on the spherical refer-
ence surface. Again from the geometry of the rotated
ellipse, we find that the dimensionless frequency extent
is

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðsΔσx cosαÞ2 þ ðΔx sinα=sÞ2

p
, which after going back

to dimensional coordinates and dividing by M , gives us
the spatial frequency extent of the diffracted signal on
the spherical reference surface:

Δσ0x ¼ cos α
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðΔσx cos αÞ2 þ ðΔx sin α=s2Þ2

q
: ð9Þ

Notice that the spatial frequency extent Δσ00x ¼ Δσx on
the Fresnel output plane would be different from this,
due to the final chirp multiplication.
The space-bandwidth product N 0 ¼ Δx0Δσ0x on the

spherical reference surface can be calculated by using

Eqs. (8) and (9). N 0 is the minimum number of Nyquist
samples required to characterize the diffracted signal
on the spherical reference surface. It can be shown that
N 0 is always greater than or equal to N ¼ ΔxΔσx, with
equality if and only if s ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δx=Δσx

p
(except in the

special cases d ¼ 0 and d ¼ ∞). With this choice of s, on
the reference surface we have Δx0 ¼ MΔx and Δσ0x ¼
Δσx=M so that their product is equal to the original
space-bandwidth product N ¼ ΔxΔσx.

We can also write the space-bandwidth product on
the Fresnel output plane as N 00 ¼ Δx00Δσ00x ¼ Δx0Δσx.
We always have N 0

≥ N and N 00
≥ N . Whether N 00 > N 0

holds depends on whether Δσx > Δσ0x holds, which in
turn can be shown to depend on whether 2s4 >
ðΔx=ΔσxÞ2 − λ2d2. In particular, this condition holds
when s ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δx=Δσx

p
so that for this value of s we

have N 00 > N 0 ¼ N .
Fresnel propagation results in horizontal shearing in

the space–frequency plane, which increases the spatial
extent, but does not decrease the bandwidth. This in-
creases the space-bandwidth product and number of
samples at the output plane, despite the fact that Fresnel
transformation is a unitary and information-preserving
operation. Moreover, we have seen that this remains
the case, even if we take our output reference surface
to be the spherical surface with radius R, unless s is cho-
sen equal to s ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δx=Δσx

p
. This choice of s equates

the spatial extentΔx and the frequency extentΔσx in the
dimensionless space–frequency plane, where they both
become equal to

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΔxΔσx

p
¼ ffiffiffiffi

N
p

. In this case, the origi-
nal ellipse becomes a circle with this diameter. Since FRT
corresponds to rotation in the space–frequency plane
[1,9], this circular region will not change shape or size
after an FRT operation. Therefore, when we go back to
dimensional coordinates, the space extent will merely be
M times the space extent of the original signal, and the
frequency extent will merely be the frequency extent of
the original signal divided by M . Consequently, the sam-
ples on the spherical reference surface will be spaced
M=Δσx apart covering an extent of MΔx. The number
of samples N 0 needed to characterize the signal will be
MΔx=ðM=ΔσxÞ ¼ ΔxΔσx ¼ N .

Recall that we have a magnified FRT relationship be-
tween the input plane and the output spherical reference
surface. With the choice of s above, the only effect of the
magnification on sampling is to magnify the spacing and
extent of the samples by M . Therefore, the N samples,
spaced M=Δσx apart on the spherical reference surface,
constitute a “natural sampling grid” for diffraction cal-
culations. These samples are sufficient to reconstruct
the continuous diffracted field in the Nyquist–Shannon
sense. The same number of samples would not have been
sufficient on other reference surfaces or with other va-
lues of s. Thus s ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δx=Δσx

p
may be referred to as the

“natural scale parameter.”
It is known that the discrete FRT approximately maps

the samples of a function to the samples of its FRT in
the same sense that the ordinary discrete FT does for the
ordinary FT [10–13]. Therefore, the values of the dif-
fracted field at the natural sampling grid points can be
well approximated by the discrete FRT of the samples
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of the input field. With this observation, diffraction

computation is seen to be reduced to discrete FRT.
We observe that all three of Eqs. (5)–(7) exhibit signif-

icant change of behavior around d ∼ s2=λ. (a changes
from linear increasing to saturation, M changes from
saturation to linear increasing, and R changes from de-
creasing to increasing.) Thus, all three parameters share
a common knee-of-the-curve. We now compare this
knee-of-the-curve with that encountered during our cal-
culation of Δx00 with the Wigner distribution. Equating
the two knee-of-the-curves asΔx=ðλΔσxÞ ¼ s2=λ, we find
that both approaches yield the same knee-of-the-curve
location when s ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δx=Δσx

p
, which is the same special

value of s found before.
We note that the parameters M , a, and R are indepen-

dent of the input signal. Their dependence on wavelength
λ, distance d, and scale s define the spherical surfaces
that reflect the physical structure of diffraction. They
are parameters which characterize the system we are in-
vestigating. On the other hand, the parameters Δx; Δσx;
and, hence, s characterize the signal and are not related
to the physics of diffraction. They are parameters char-
acterizing the signal passing through our system. The nat-
ural sampling grid has two ingredients: the spherical
surfaces on which the samples are taken and the sample
spacings on the spherical surfaces. The general structure
of the spherical surfaces is determined by the nature of
diffraction as a system, through the parametersM , a, and
R. The set of signals determine the parameter s, which in
turn matches the spherical surfaces to the signals, and
determines the sample spacings. Since the spherical
surfaces and the sample spacings together completely
define the grid, we may also say that choice of s matches
the grid to the set of signals. The fact that the same value
of s matches the common knee-of-the-curve of the struc-
ture-defining parameters M , a, and R, with the knee-
of-the-curve of the diffracting signal, reinforces this
observation.
Sampling for purposes of digital computation of the

Fresnel integral can be approached in a number of ways
[14–21]. We have seen that, despite the spreading of light
and the space–frequency shearing behavior of the Fres-
nel integral, accurate representation and efficient com-
putation does not require an increase in the number of
samples. Our method employs the minimal number of
samples at the input and output and fast ∼N logN com-
putation between these samples is possible [10]; further-
more, the accuracy of computation is the same as that in
computing the FT with the fast Fourier transform (FFT)
[6]. In this sense, representation and computation based
on the natural sampling grid is optimal. We also note that
our formulation does not depend on the algorithm used
for computing the FRT. Therefore, improved algorithms

or enhancements (such as in [22]) can be used without
any modification of our formulation.

In conclusion, by defining the output on spherical
reference surfaces, and with appropriate scaling, we can
recover the output field from the same number of sam-
ples as the input. This minimum number of samples
would not have been sufficient with other reference
surfaces or with other values of s, despite the fact that
the Fresnel integral is unitary and preserves space–
frequency area and number of degrees of freedom.
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