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a b s t r a c t

The vendor location problem is the problem of locating a given number of vendors and determining the

number of vehicles and the service zones necessary for each vendor to achieve at least a given profit.

We consider two versions of the problem with different objectives: maximizing the total profit and

maximizing the demand covered. The demand and profit generated by a demand point are functions of

the distance to the vendor. We propose integer programming models for both versions of the vendor

location problem. We then prove that both are strongly NP-hard and we derive several families of valid

inequalities to strengthen our formulations. We report the outcomes of a computational study where

we investigate the effect of valid inequalities in reducing the duality gaps and the solution times for the

vendor location problem.

& 2011 Elsevier Ltd. All rights reserved.
1. Introduction

With a major beverage company about to launch its own
brand for demijohn water, we recently worked on the following
discrete facility location problem.

Unlike drinks sold in regular bottles, demijohn water has the
distinctive feature of making it hard for customers to switch
brands; every brand has its own containers and customers pay for
the first container, replacing it when empty with a full one. In this
way, the customer then continues to only pay for the contents of
the bottles; switching brands would mean they would have to
pay for a full bottle again. Suppliers of bottled gas for cooking and
heating purposes also benefit from this quasimonopoly once the
customer has made her choice of brands.

Water sold in large containers is the rule rather than the
exception in Turkey: in 2008, 80% of consumption was demijohn
water and the remaining 20% was water bottled in smaller
containers. And the market itself is large: about 8.5 billion liters
per year according to the Association of Packaged Water Produ-
cers in Turkey (SUDER [27]) and still expected to grow (by 10%
in 2009).

A recent marketing survey carried out by the beverage com-
pany shows that customers value the quality of the water (taste,
hygiene, chemical composition, etc.) and the quality of the service
the most. The quality of the service is strongly related to service
times and the satisfaction is affected by the presence of compe-
titors in the same region who could provide shorter service times.
ll rights reserved.

fax: þ90 312 266 40 54.
The number of potential customers in a given region mainly
depends on the distance to the assigned vendor and on the
proximity of competitors. This explains why selling in many
locations could increase the market share. This strategy, however,
has a price: some vendors may not reach a given profit. The
beverage company wanted to ensure that each vendor would earn
enough money and that the company would maximize its
market share.

Inspired by this real-life problem, we define the vendor location

problem (VLP) as follows. We are given a set of demand points
corresponding to population zones and a set of possible locations
for vendors. Each vendor can only use a given number of vehicles.
We also know the (fixed) cost of a vendor office (rent, insurance,
salaries of employees at office, etc.) at a given location as well as
the cost (including the salary of the driver) and capacity of a
vehicle.

For a given demand point, there is a set of eligible vendors.
Each demand point has a potential demand. The market share
that our company can have depends on the travel times of its
vendors and the proximity of competitors. The profit (sales
revenue minus the transportation cost) therefore depends on
the vendor that serves a demand point.

The VLP is the problem of locating a given number of vendors
and assigning each demand point to at most one vehicle of an
eligible vendor such that capacities of vehicles are not exceeded
and each vendor achieves at least a determined profit. We
consider two objective functions. In ProfitVLP, the aim is to
maximize the total profit and in CoverageVLP, the aim is to
maximize the coverage, i.e., the total demand served.

Our problem can be seen as a hierarchical facility location
problem where demand points are in level 0, vehicles are level 1
facilities, and vendors are level 2 facilities. Sahin and Sural [28]
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review hierarchical facility location models and propose a classi-
fication scheme. The first attribute in this scheme is flow pattern.
In a single flow pattern, the flow starts from level 0 and ends at
the highest level by passing through all intermediate levels. In a
multiple flow pattern, flows can travel from any lower level to
any higher level. Our problem has a single flow pattern in the
opposite direction. The second attribute is service varieties. Here
in a nested system, a higher level facility provides all services
provided by a lower level facility; in a non-nested system,
facilities in different levels provide different services. Our system
is a non-nested system. As the third attribute, the authors
consider the spatial configuration. In a coherent system, all
demand that is served by a given lower level facility is served
by the same higher level facility. Since in our system, each vehicle
belongs to a vendor, we have a coherent system. The final
attribute is the objective. Here the authors consider the three
common objectives: median, covering, and fixed charge. ProfitVLP

can be considered as a median type problem even though we
maximize profit rather than minimize cost. CoverageVLP is a
maximum covering type problem.

Multi-level facility location problems have been previously
studied by many researchers. Aardal et al. [2] propose some facet
defining and valid inequalities for the polytope associated with
the two level uncapacitated facility location problem. Approxima-
tion algorithms are studied by Aardal et al. [1], Ageev [3], Ageev
et al. [4], Bumb [9], Bumb and Kern [10], Gabor and van
Ommeren [14], Guha et al. [16], Meyerson et al. [22], Shmoys
et al. [26], Zhang [32], and Zhang and Ye [33]. Branch and bound
algorithms are given by Kaufman et al. [18], Ro and Tcha [25],
Tcha and Lee [29], and Tragantalerngsak et al. [31]. Barros and
Labbé [7] present various formulations, a Lagrangean relaxation,
and a primal heuristic. Gao and Robinson [12,13] propose dual-
based solution procedures. Chardaire et al. [11] present two
formulations, valid inequalities, a Lagrangian relaxation, and a
simulated annealing algorithm. Linear and Lagrangian relaxations
are studied by Bloemhof-Ruwaard et al. [8], Marı́n [20], Marı́n and
Pelegrı́n [21], Pirkul and Jayaraman [24], Tragantalerngsak
et al. [30] for different versions of the problem.

A recent work that is closely related to ours is on the capacity
and distance constrained plant location problem by Albareda-
Sambola et al. [5]. In this problem, a set of possible locations is
given. A facility may house a number of identical vehicles. Each
demand point must be assigned to a single vehicle of a facility.
There are capacity restrictions for facilities and restrictions on the
total distance traveled for vehicles. The aim is to determine where
to open facilities, to decide on the number of vehicles for each
facility, and to assign the demand points to vehicles and facilities
with the aim of minimizing the costs of opening facilities, using
vehicles, and assigning demand points to facilities and vehicles.
The authors provide different models and a tabu search algorithm
for this problem. This study is similar to ours in that it is
concerned with assigning demand points to facility vehicles. It
is different from ours in that it has capacity constraints for
facilities and restrictions on the total distance traveled for
vehicles; we have capacity constraints for vehicles and minimum
profit constraints for facilities.

In this paper, we introduce two new two-level facility location
problems, namely ProfitVLP and CoverageVLP, which are motivated
by a real life problem. Different from the classical facility location
problems, here we have minimum profit constraints for open
facilities and capacity constraints for their vehicles. We investi-
gate the computational complexity of these problems and prove
that they are strongly NP-hard. We propose integer programming
formulations, valid inequalities, and extra constraints to be able
to use the cutting planes of off-the-shelf integer programming
solvers. We report the outcomes of a computational study where
we use four types of instances that differ in their demand and
profit functions. We investigate the effect of valid inequalities on
linear programming relaxation bounds and solution times for
these different types of instances. Finally, we analyze the optimal
solutions of ProfitVLP and CoverageVLP and report how the
differences in demand and profit functions effect the service
regions for an example problem. Hence, the contributions of the
paper are two new facility location problems motivated by a real
life problem, resolution of the status of their computational
complexity, and strong mixed integer programming formulations
for these problems.

The paper is organized as follows. In Section 2, we present
integer programming formulations for ProfitVLP and CoverageVLP

and prove that both problems are strongly NP-hard. We propose
some valid inequalities in Section 3. Computational results are
given in Section 4. We analyze the solutions of ProfitVLP and
CoverageVLP for two different types of instances in Section 5.
In Section 6, we conclude the paper.
2. Formulations and complexity

In this section, we first introduce the notation and then
present formulations for ProfitVLP and CoverageVLP. Then we
prove that both ProfitVLP and CoverageVLP are strongly NP-hard.

Let I be the set of demand points and J be the set of possible
locations for vendors. For a demand point iA I, Ji is the set of
vendors that can serve i. In our problem, we define Ji to be the set
of vendors whose travel time to i does not exceed a given bound.
We also define Ij ¼ fiA I : jA Jig for jA J.

We denote with fj the fixed cost of the vendor office and with
vj the fixed cost of a vehicle for a vendor located at jA J. We
assume that these cost values are non-negative. We define rmin to
be the minimum profit a vendor should achieve.

We denote with p the number of vendors to be located. The
vendor at location jA J may have up to kmax

j vehicles. Let
Kj ¼ f1, . . . ,kmax

j g for jA J. The capacity of a vehicle is equal to g.
Demand point iA I has demand qij and generates profit rij if it

is served by the vendor at location jA Ji. We assume that qij’s are
positive and that rij’s are non-negative.

We define the following decision variables. For iA I, jA Ji, and
kAKj, xijk is 1 if demand point i is assigned to vehicle k of vendor j

and 0 otherwise, for jA J, and kAKj, zjk is 1 if vendor j uses vehicle
k and 0 otherwise, and finally, for jA J, yj is 1 if a vendor is located
at location j and 0 otherwise.

Using these variables, the ProfitVLP can be modeled as follows:

max
X
iA I

X
jA Ji

X
kAKj

rijxijk�
X
jA J

X
kAKj

vjzjk�
X
jA J

fjyj ð1Þ

s:t:
X
jA Ji

X
kAKj

xijkr1 8iA I ð2Þ

X
jA J

yj ¼ p ð3Þ

X
kAKj

xijkryj 8iA I, jA Ji ð4Þ

X
iA Ij

qijxijkrgzjk 8jA J, kAKj ð5Þ

X
iA Ij

rij

X
kAKj

xijkZ

X
kAKj

vjzjkþðrminþ fjÞyj 8jA J ð6Þ

xijkAf0,1g 8iA I, jA Ji, kAKj ð7Þ

zjkAf0,1g 8jA J, kAKj ð8Þ
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yjAf0,1g 8jA J ð9Þ

Constraints (2) ensure that a demand point is assigned to at
most one vehicle of one eligible vendor. Constraint (3) states that
the number of vendors to be located is p. If a vendor is not located
at a given location, then a demand point cannot be served by any
of its vehicles due to constraints (4). Constraints (5) are capacity
constraints for vehicles. At the same time, they ensure that
demand points are not assigned to vehicles that are not in use.
Constraints (6) ensure that each vendor makes a profit of at least
rmin units. Constraints (7)–(9) state that the variables are binary.
Objective function (1) is the total profit of all vendors.

Note here that constraints zjkryj for jA J and kAKj are not
included in the model. Let jA J and kAKj. If there exists iA Ij with
xijk ¼ 1, then constraints (4) force yj to one and constraints (5)
force zjk to one. On the other hand, if xijk ¼ 0 for all iA Ij, then there
exists an optimal solution with zjk ¼ 0 since vj’s are non-negative.
Hence constraints zjkryj for jA J and kAKj are not necessary for
the validity of the model. We do not include them in the model
not to increase the number of constraints. Later, we use them as
valid inequalities and test their performance.

The CoverageVLP can be modeled as follows:

max
X
iA I

X
jA Ji

X
kAKj

qijxijk

s:t: ð2Þ2ð9Þ ð10Þ

Here the objective function (10) is the total demand served.
To conclude this section, we investigate the computational

complexity of problems ProfitVLP and CoverageVLP.

Theorem 1. ProfitVLP and CoverageVLP are strongly NP-hard.

Proof. We prove that the decision versions of ProfitVLP and
CoverageVLP are NP-complete in the strong sense by a reduction
from the decision version of the bin packing problem.

Given a finite set of items U, a size siAZþ for each iAU, a

positive integer bin capacity B, and a positive integer k, the

decision version of the bin packing problem is defined as follows.

Is there a partition of set U into U1, . . . ,Uk such that
P

iAUu
sirB

for all u¼ 1, . . . ,k? This problem is NP-complete in the strong

sense (see problem [SR1] in Garey and Johnson [15]).

First note that when vj ¼ fj ¼ 0 for all jA J and rij ¼ qij for all iA I

and jA Ji, problems ProfitVLP and CoverageVLP become the same

problem. Hence in the remaining part of the proof, we only

consider CoverageVLP with vj ¼ fj ¼ 0 for all jA J and rij ¼ qij for

all iA I and jA Ji.

We define the decision version of CoverageVLP as follows. Given

the parameters of the problem and a positive constant F, does

there exist a feasible solution with coverage at least F? This

problem is in NP.

Given an instance of the bin packing problem, let J be a

singleton, I¼ I1 ¼U, p¼ 1, v1 ¼ 0, f1 ¼ 0, rmin ¼ 0, kmax
1 ¼ k,

ri1 ¼ qi1 ¼ si for iA I, g¼ B, and F¼
P

iA Iqi1. Now there exists a

solution to the decision version of the bin packing problem if and

only if there exists a solution to the decision version of Cover-

ageVLP. Hence, the decision version of CoverageVLP is NP-com-

plete in the strong sense. &

3. Valid inequalities

In this section, we propose some valid inequalities for both
versions of the VLP.

Let F be the set of solutions that satisfy constraints (2)–(9).
We use some substructures in the formulation to derive our valid
inequalities. We also propose some redundant constraints to
convert some structures in our problem into knapsack structures
so that we can use the lifted cover inequalities of off-the-shelf
integer programming solvers.

3.1. Lower bounds on the number of vehicles

Albareda-Sambola et al. [5] propose the optimality cutsP
kAKj

zjkZyj for jA J. These inequalities imply that if a vendor is
open then it should use at least one vehicle. In our problem, since
we have minimum profit constraints, in some cases we can obtain
tighter bounds on the number of vehicles to be used by a vendor.
Note that the resulting inequalities are valid inequalities for our
problem rather than optimality cuts.

For jA J and a positive integer m, consider the following
problem:

djðmÞ ¼max
X
iA Ij

Xm
k ¼ 1

rijaik�
Xm

k ¼ 1

vjbk�fj ð11Þ

s:t:
Xm

k ¼ 1

aikr1 8iA Ij ð12Þ

X
iA Ij

qijaikrgbk 8k¼ 1, . . . ,m ð13Þ

aikAf0,1g 8iA Ij, k¼ 1, . . . ,m ð14Þ

bkAf0,1g 8k¼ 1, . . . ,m ð15Þ

Here, the variable bk takes value 1 if vehicle k¼ 1, . . . ,m is used
and takes value 0 otherwise, and the variable aik takes value 1 if
demand point iA Ij is assigned to vehicle k¼ 1, . . . ,m and takes
value 0 otherwise. Constraints (12) ensure that each demand
point is assigned to at most one vehicle and constraints (13)
ensure that the sum of demands of demand points assigned to a
given vehicle does not exceed the capacity of the vehicle if the
vehicle is in use and no demand points are assigned to this vehicle
if it is not in use. The objective function is equal to the sum of
profits of demand points that are assigned to some vehicle minus
the sum of costs of using vehicles and the vendor office j.

This problem hence maximizes the total profit for vendor j if
vendor j can use at most m vehicles. Let mj be the smallest integer
with djðmjÞZrmin. Then for vendor j to achieve a minimum level
of profit of rmin units, it should have at least mj vehicles. If mj is a
positive integer less than or equal to kmax

j , then the inequalityP
kAKj

zjkZmjyj is a valid inequality. If mj does not exist or if

mj4kmax
j , then vendor j cannot be profitable. Hence we can set

yj ¼ 0.

The above problem is a capacitated facility location problem
with single sourcing, which is an NP-hard problem (see, e.g.,
Neebe and Rao [23], Barcelo and Casanovas [6], Klincewicz and
Luss [19], and Holmberg et al. [17]). As a result, computing the
djðmÞ values may be quite time consuming, hence we propose a
way of computing lower bounds on mj values.

Proposition 1. Let jA J and sj ¼maxiA Ij
rij=qij. The inequality

X
kAKj

zjkZ
rminþ fj

sjg�vj

� �
yj ð16Þ

is valid for F.

Proof. For jA J, sjqijZrij for all iA Ij. Multiplying constraints (5)

with sj and summing over kAKj yields
P

iA Ij
sjqij

P
kAKj

xijkr

sjg
P

kAKj
zjk. Since sjqijZrij for all iA Ij, this implies

P
iA Ij

rijP
kAKj

xijkrsjg
P

kAKj
zjk. Now combining this with constraint (6),
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we obtain

sjg
X
kAKj

zjkZ

X
iA Ij

rij

X
kAKj

xijkZ

X
kAKj

vjzjkþðrminþ fjÞyj

which gives

ðsjg�vjÞ
X
kAKj

zjkZ ðrminþ fjÞyj

This implies that if yj ¼ 1, i.e., if a vendor is located at location j,
then

P
kAKj

zjkZðrminþ fjÞ=ðsjg�vjÞ. Since the left hand side is
integer in a feasible solution, we can round up the right hand side.

If yj ¼ 0, then (16) becomes redundant. Hence we can conclude

that inequality (16) is valid for F. &

For jA J, sj can be computed in OðjIjjÞ time.

3.2. Cover inequalities for vehicle capacity constraints

For iA I, jA Ji, and kAKj, inequality

xijkrzjk ð17Þ

is a valid inequality for F. These inequalities are often dominated
by cover inequalities that may be generated using the knapsack
structure of the capacity constraints (5) for the vehicles. Cover
inequalities that are valid for each of these knapsack constraints
are also valid for F. Let jA J, kAKj, and CD Ij be such thatP

iACqij4g. Then the cover inequality
P

iACxijkrðjCj�1Þzjk is a
valid inequality for F. These inequalities can be strengthened by
lifting.

Most of the integer programming solvers recognize knapsack
constraints and use lifted cover inequalities as cutting planes. So
here we limit our attention to some lifted cover inequalities that
are not many in number so that they can be added to the
formulation before giving it to the solver.

For a given location jA J, we first consider all demand points
with demand larger than half of the capacity of a vehicle. Then we
know that at most one of these points may be assigned to a given
vehicle of vendor j. This leads to the following set of inequalities.

Proposition 2. For jA J and kAKj, the lifted cover inequalityX
iA Ij :qij 4g=2

xijkrzjk ð18Þ

is valid for F.

Next, we generate lifted cover inequalities for each demand
point iA Ij with demand not more than half the capacity.

Proposition 3. Let iA Ij be such that qijrg=2. Define Cij ¼ flA Ij :

qijþqlj4gg. Then the lifted cover inequality

xijkþ
X
lACij

xljkrzjk ð19Þ

is valid for F.

Proof. If xijk ¼ 1, then as qijþqlj4g for each lACij, none of these
demand points can be served by the same vehicle. If xijk ¼ 0, then
as qljþqmj4g for l and m in Cij, we know that

P
lACij

xljkrzjk. &

Notice that if Cij is empty, then inequality (19) reduces to (17).

3.3. Cover inequalities for the minimum profit constraints

Finally, we propose to model the minimum profit constraints
in a different way so that we can use the lifted cover cuts of
off-the-shelf solvers. To this end, we complement sums of assign-
ment variables and rewrite the minimum profit constraints as
0–1 knapsack constraints as follows.
Let jA J. For iA Ij, define the variable xij ¼ 1�
P

kAKj
xijk. Notice

that x ij is a 0–1 variable. Now the minimum profit constraint (6)
can be rewritten asX
iA Ij

rijZ

X
iA Ij

rijx ijþ
X
kAKj

vjzjkþðrminþ fjÞyj ð20Þ

which is a 0–1 knapsack inequality.
Now based on this substructure, we can derive cover inequal-

ities that are valid for F.

Proposition 4. Let jA J, S1D Ij, and S2DKj with jS2jvjþðrminþ fjÞ4P
iA Ij\S1

rij. The inequalityX
kAS2

zjkr
X
iA S1

X
kAKj

xijkþðjS2j�1Þyj ð21Þ

is valid for F.

Proof. Let jA J. Consider the knapsack inequality (20). Suppose
that yj ¼ 1. Let S1D Ij and S2DKj. If

P
iAS1

rijþjS2jvjþðrminþ fjÞ4P
iA Ij

rij, then the cover inequality
P

iAS1
x ijþ

P
kAS2

zjkr jS1jþ

jS2j�1 is valid. We can rewrite this inequality as
P

iA S1
ð1�P

kAKj
xijkÞþ

P
kAS2

zjkr jS1jþjS2j�1, which simplifies to
P

kA S2

zjkr
P

iA S1

P
kAKj

xijkþjS2j�1.

If yj ¼ 0, then xijk ¼ 0 for all iA Ij and kAKj and zjk ¼ 0 for all

kAKj. Hence inequality (21) is valid for F. &

4. Computational results

In this section, we report the outcomes of our computational
study. Here, we investigate for which sizes we can solve the
formulations to optimality in reasonable times and the effect of
valid inequalities on the quality of upper bounds of linear
programming relaxations and the solution times.

4.1. The data set and models

We use the data from the demijohn water company. The data
includes 84 demand points, their estimated demands, the dis-
tances, and cost parameters. The set of possible locations for the
vendors is the same as the set of demand points. Moreover, there
is the additional restriction that if a vendor is located at a given
demand point, then the demand of this point should be served by
itself. To handle this, we added the constraintX
kAKj

xjjk ¼ yj 8jA J ð22Þ

We can also use this information to break the symmetry. We
impose that if a vendor is located at a demand point, then the
point should use its vehicle indexed as its first vehicle by adding
the constraints

xjj1 ¼ zj1 8jA J ð23Þ

xjj1 ¼ yj 8jA J ð24Þ

Let PM0 and CM0 be the models obtained by adding the above
constraints to ProfitVLP and CoverageVLP, respectively. Let PM1
and CM1 be the models PM0 and CM0 strengthened with the valid
inequalities (16), which provide lower bounds on the number of
vehicles for each vendor.

The fact that if a vendor is located at a demand point, then the
point should use its first vehicle can further be used to obtain
stronger lifted cover inequalities for the first vehicles:

X
iA Ij\fjg:qijþqjj 4g

xij1 ¼ 0 8jA J ð25Þ
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X
iA Ij\fjg:qij 4 ðg�qjjÞ=2

xij1rzj1 8jA J ð26Þ

xij1þ
X

lA Ij\fjg:qijþqlj 4g�qjj

xlj1rzj1 8jA J, iA Ij\fjg : qijr
g�qjj

2
ð27Þ

We add the above cover inequalities for the first vehicles and
inequalities (18) and (19) for the remaining vehicles to models
PM1 and CM1 and call the resulting models PM2 and CM2,
respectively.

We remove constraints (6) from models PM2 and CM2 and
add the following variables and constraints to obtain models PM3
and CM3:

xij ¼ 1�
X
kAKj

xijk 8iA I,jA Ji ð28Þ

X
iA Ij

rijxijþ
X
kAKj

vjzjkþðrminþ fjÞyjr
X
iA Ij

rij 8jA J ð29Þ

xijAf0,1g 8iA I, jA Ji: ð30Þ

The aim is to enable the solver to see the knapsack structure in
the minimum profit constraints so that it can generate cover
inequalities as discussed in Section 3.3.

We add the simple valid inequalities

zjkryj 8jA J, kAKj ð31Þ

to models PM3 and CM3 to obtain models PM4 and CM4.
Finally, analyzing the results of our computational study, we

also decided to repeat our experiment with additional models for
ProfitVLP and CoverageVLP. For ProfitVLP, we tested model PM5,
which is obtained by removing the cover inequalities obtained
using vehicle capacity constraints, i.e., inequalities (18), (19),
(25)–(27), from model PM4. For CoverageVLP, model CM5 is
obtained by adding only valid inequalities zjkryj for all jA J and
kAKj to model CM0.

In Tables 1 and 2, we give the constraints of the different
models for ProfitVLP and CoverageVLP, respectively.

To evaluate the performances of the models defined above, we
used the following test set. We let pAf4,6,8g, kmax

j ¼ kmaxA
f6,8,10g for all jA J, and rminAf50,100,150g.

For each value of p, kmax, and rmin, we have four problems with
different demand and profit structures. In A-type problems, we
take qij ¼ qi and rij ¼ ri for all jA Ji and iA I. So in A-type instances,
Table 1
Constraints of the models for ProfitVLP.

PM0 PM1 PM2 PM3

(2)–(9) (2)–(9) (2)–(9) (2)–

(22)–(24) (22)–(24) (22)–(24) (22

(16) (16) (16

(18), (19), (25)–(27) (18

(28

Table 2
Constraints of the models for CoverageVLP.

CM0 CM1 CM2

(2)–(9) (2)–(9) (2)–(9)

(22)–(24) (22)–(24) (22)–(24)

(16) (16)

(18), (19), (25)–(27)
the demand and profit are independent of the distance between
the demand point and its vendor. In B-type problems, we take
qij ¼ qi and rij ¼ cijqi for all jA Ji and iA I where cij is the unit profit
that vendor j gains if it serves demand point i and is a function of
the distance between i and j. In C-type problems, we take qij to be
a function of the distance between i and j and rij ¼ cqij for all jA Ji

and iA I where c is the unit profit and does not depend on
distances. In this case, we let qij ¼ qi for vendors j that are within
a short traveling time of i and then let qij decrease with the
distance between i and j for other eligible vendors. Precisely, for
iA I, we let Ji ¼ fjA J : dijr10g, where dij is the distance between
the demand point i and the vendor j. For iA I and jA Ji, we let
qij ¼ qiminf1,ð1:5�0:1dijÞg. Hence the demand generated by point i

is equal to qi if the vendor j is within 5 km of point i and is equal
to qið1:5�0:1dijÞ if j is farther. Finally, in D-type problems, we take
both the demands and the profits as functions of the distances.

Both problems ProfitVLP and CoverageVLP are infeasible for
r¼ 150, p¼ 8, and all four demand and profit structures. These
instances are removed from the results.

All models are solved using GAMS 22.5 and CPLEX 11.0.0 on an
AMD Opteron 252 processor (2.6 GHz) with 2 GB of RAM operat-
ing under the system CentOS (Linux version 2.6.9-42.0.3.ELsmp).
We have a time limit of 1 h.

4.2. Results for ProfitVLP

In Tables 3–6, we report the results for ProfitVLP and the four
types of instances, A, B, C, and D, respectively. For each instance
and model, we report the percentage gap between the upper
bound obtained by solving the linear programming relaxation of
the corresponding model and the best lower bound for the integer
problem in the column LP gap. Then we report the cpu times in
seconds. If the problem is not solved to optimality in 1 h, then we
report the remaining percentage gap in parentheses. Finally, we
report the number of nodes in the branch and cut tree for each
model and instance. The best results are marked bold.

Each table has a summary, where we can see the averages of
linear programming relaxation gaps, final optimality gaps, cpu
times, number of nodes, the number of instances solved to
optimality with each model, and the number of times each model
was among the best for the considered criterion.

In these tables we observe that the initial model PM0 has huge
duality gaps and adding the valid inequalities (16), which impose
PM4 PM5

(5), (7)–(9) (2)–(5), (7)–(9) (2)–(5), (7)–(9)

)–(24) (22)–(24) (22)–(24)

) (16) (16)

), (19), (25)–(27) (18), (19), (25)–(27)

)–(30) (28)–(30) (28)–(30)

(31) (31)

CM3 CM4 CM5

(2)–(5), (7)–(9) (2)–(5), (7)–(9) (2)–(9)

(22)–(24) (22)–(24) (22)–(24)

(16) (16)

(18), (19), (25)–(27) (18), (19), (25)–(27)

(28)–(30) (28)–(30)

(31) (31)



Table 3
Results for ProfitVLP and A-type instances.

Parameters LP gap (%) Cpu time (s)/optimality gap (%) Number of nodes

rmin kmax p PM0 PM1 PM2 PM3 PM4 PM5 PM0 PM1 PM2 PM3 PM4 PM5 PM0 PM1 PM2 PM3 PM4 PM5

50 6 4 76.77 76.77 29.21 29.21 6.48 6.48 397.61 203.00 284.25 454.59 261.57 177.23 29387 13208 14983 28200 13612 8503
50 8 4 48.05 48.05 8.56 8.56 5.89 25.82 411.81 127.10 562.07 2874.28 866.48 1002.29 20792 7760 26693 103257 23868 43420

50 10 4 42.51 42.51 3.92 3.92 3.92 42.31 244.58 153.81 32.81 12.25 9.46 43.52 27254 17360 3119 248 85 780

50 6 6 58.36 58.36 9.26 9.26 5.04 21.57 116.99 110.11 123.83 196.02 166.54 110.79 3847 2575 4269 4660 3846 2894

50 8 6 50.91 50.91 4.80 4.80 4.15 50.91 1180.66 568.44 60.53 112.02 91.72 653.58 49637 20099 929 1621 1683 28500

50 10 6 49.93 49.93 4.12 4.12 4.12 49.93 287.11 772.12 149.12 84.97 215.28 407.10 14542 25647 1890 1496 2853 10654

50 6 8 55.24 55.24 2.01 2.01 1.91 55.24 128.86 143.02 105.59 161.81 130.32 285.60 2767 2380 1437 2094 1617 3476

50 8 8 55.09 55.09 1.93 1.93 1.93 55.09 262.26 280.51 286.32 218.60 318.31 471.21 5330 3551 4569 2248 3228 6962

50 10 8 55.09 55.09 1.93 1.93 1.93 55.09 2062.02 996.55 1013.52 871.82 838.39 1068.35 57867 20087 19222 17513 8925 21266

100 6 4 76.77 76.77 29.21 29.21 6.48 6.48 99.38 224.41 214.90 226.33 174.20 161.32 6639 13122 10132 12692 9235 7816

100 8 4 48.05 48.05 8.56 8.56 5.89 25.82 907.42 330.63 1712.14 718.57 630.69 859.88 58284 13090 96939 39225 26042 39542

100 10 4 42.51 42.51 3.92 3.92 3.92 42.31 93.30 67.80 20.82 10.61 7.48 30.33 7063 3413 504 274 64 533

100 6 6 58.36 58.36 9.26 9.26 5.04 21.57 85.56 168.24 108.66 113.17 248.37 121.41 1947 7306 3870 2791 5043 2483

100 8 6 50.91 50.91 4.77 4.77 4.12 50.91 565.66 593.62 73.19 80.21 117.88 312.07 18574 24299 1034 1032 1598 12511

100 10 6 49.93 49.93 4.09 4.09 4.09 49.93 326.92 292.73 176.99 100.61 139.74 477.56 9777 11121 4441 1315 1655 14364

100 6 8 55.24 55.24 1.84 1.84 1.82 55.24 270.22 159.86 330.99 310.32 408.94 285.72 4837 2495 4595 3669 4189 2963

100 8 8 55.24 55.24 1.84 1.84 1.84 55.24 3259.19 1315.94 608.58 460.38 467.88 472.78 66262 30370 10986 3431 4171 4406

100 10 8 55.24 55.24 1.84 1.84 1.84 55.24 (0.05) (0.05) (0.05) 741.72 897.38 742.00 54635 50175 47481 4803 5475 5494

150 6 4 76.77 76.77 29.21 29.21 6.48 6.48 427.28 205.37 340.14 142.27 166.03 132.58 34745 10641 23289 6411 7191 5580
150 8 4 48.05 48.05 8.56 8.56 5.89 25.82 282.47 883.12 976.47 961.01 164.50 398.14 20508 46832 54511 38617 5468 22293

150 10 4 42.51 42.51 3.92 3.92 3.92 42.31 27.77 25.76 19.65 9.84 36.53 52.64 738 690 638 160 555 661

150 6 6 61.23 61.23 11.02 11.02 6.85 23.77 242.70 256.54 141.90 97.67 125.62 120.08 11248 6592 4629 1580 1757 3557

150 8 6 55.77 55.77 7.06 7.06 6.76 55.77 366.69 249.83 619.59 52.91 139.67 108.36 10633 11690 23780 652 666 198
150 10 6 54.73 54.73 6.35 6.35 6.35 54.73 979.08 2620.63 (0.04) 202.62 279.85 163.29 35910 64156 115684 877 928 981

Average 55.14 55.14 8.22 8.22 4.45 38.92 691.24 597.88 631.76 383.94 287.62 360.74 23051 17027 19984 11604 5573 10411

Avg. opt. gap (%) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)
# of solved ins. (/24) 23 23 22 24 24 24
# of best solutions (/24) 10 10 24 3 2 4 3 10 4 1 2 4 2 9 4 3
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Table 4
Results for ProfitVLP and B-type instances.

Parameters LP gap (%) Cpu time (s)/optimality gap (%) Number of nodes

rmin kmax p PM0 PM1 PM2 PM3 PM4 PM5 PM0 PM1 PM2 PM3 PM4 PM5 PM0 PM1 PM2 PM3 PM4 PM5

50 6 4 77.61 77.61 29.38 29.38 6.93 7.78 118.79 243.27 403.13 435.34 394.87 157.66 6510 14967 26960 26043 23355 6967

50 8 4 48.76 48.76 8.72 8.72 6.04 26.82 1004.05 2726.00 858.60 664.81 140.27 483.59 73179 103608 66030 33633 3897 16495

50 10 4 43.51 43.51 4.32 4.32 4.32 43.31 80.74 185.76 10.28 19.22 20.70 54.16 4358 10526 278 396 368 690

50 6 6 59.28 59.28 9.42 9.42 5.33 22.89 378.75 173.11 108.48 302.37 206.38 204.76 17782 8094 4562 7770 5924 10605

50 8 6 52.04 52.04 5.12 5.12 4.55 52.02 368.67 119.70 149.56 71.49 147.88 165.26 14233 4161 5163 1678 2169 5203

50 10 6 51.17 51.17 4.53 4.53 4.53 51.17 1969.78 350.27 118.53 144.66 203.60 1920.13 82051 13989 2111 2356 4122 51737

50 6 8 57.31 57.31 2.38 2.38 2.21 57.23 277.26 308.33 101.84 172.87 178.26 213.94 7455 5374 1530 2400 1923 2837

50 8 8 56.75 56.75 2.03 2.03 2.02 56.74 245.46 285.58 147.91 314.23 417.90 306.81 4151 4682 2970 4010 4293 4268

50 10 8 56.75 56.75 2.04 2.04 2.04 56.75 765.83 680.23 428.27 563.48 1128.88 847.33 16686 13179 5266 6304 9672 9794

100 6 4 77.61 77.61 29.38 29.38 6.93 7.78 625.21 392.02 168.70 187.98 204.20 698.42 49140 29850 10168 8666 14426 6520
100 8 4 48.76 48.76 8.72 8.72 6.04 26.82 371.98 836.81 356.90 782.17 568.03 340.19 25341 37881 18964 34894 22507 14522
100 10 4 43.51 43.51 4.32 4.32 4.32 43.31 148.09 44.02 8.64 17.50 39.84 68.94 10875 1288 307 348 576 1074

100 6 6 59.28 59.28 9.41 9.41 5.33 22.89 201.71 256.55 218.15 239.38 428.11 180.65 10180 10857 8823 9104 18007 6085
100 8 6 52.10 52.10 5.11 5.11 4.53 52.08 626.96 380.98 398.19 75.75 167.60 246.32 49338 28355 40180 1286 3042 10095

100 10 6 51.23 51.23 4.52 4.52 4.52 51.23 539.51 338.08 222.25 148.77 189.52 755.32 28173 22321 9924 2428 3587 25125

100 6 8 58.33 58.32 2.81 2.81 2.70 58.25 861.99 1562.33 1284.50 661.40 506.51 447.86 30967 35979 24283 6785 4620 6645

100 8 8 57.53 57.53 2.29 2.29 2.27 57.53 (0.21) (0.03) 2493.71 743.06 775.63 1250.77 80039 112763 56433 7183 7549 14744

100 10 8 57.31 57.31 2.15 2.15 2.15 57.31 (0.06) (0.01) (0.05) 1384.88 1296.78 1069.77 70320 87082 101959 9137 9011 11935

150 6 4 77.61 77.61 29.38 29.38 6.93 7.78 1263.19 107.18 154.69 217.05 214.49 156.04 76293 6924 7789 11128 12527 6577
150 8 4 48.76 48.76 8.72 8.72 6.04 26.82 1382.57 2057.22 869.85 508.54 795.61 407.60 86130 120951 42405 31613 32705 19499
150 10 4 43.51 43.51 4.32 4.32 4.32 43.31 147.35 32.47 22.35 11.43 18.68 77.87 13428 550 685 214 339 1622

150 6 6 61.61 61.61 10.30 10.30 6.71 24.69 544.47 132.41 117.53 120.22 167.07 94.94 19639 4502 3275 2975 4778 3757

150 8 6 56.82 56.82 6.78 6.78 6.50 56.80 (0.01) 125.11 1006.17 88.80 124.49 152.24 113245 901 53107 664 660 1605

150 10 6 55.87 55.87 6.15 6.15 6.15 55.87 111.98 (0.00) 167.07 138.64 53.78 137.25 2345 89894 3173 743 573 764

Average 56.38 56.38 8.43 8.43 4.73 40.30 951.44 922.41 558.98 333.91 349.55 434.91 37161 32028 20681 8823 7943 9965

Avg. opt. gap (%) (0.01) (0.00) (0.00) (0.00) (0.00) (0.00)
# of solved ins. (/24) 21 21 23 24 24 24
# of best solutions (/24) 8 8 24 1 1 9 6 2 5 1 7 6 5 5
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Table 5
Results for ProfitVLP and C-type instances.

Parameters LP gap (%) Cpu time (s)/optimality gap (%) Number of nodes

rmin kmax p PM0 PM1 PM2 PM3 PM4 PM5 PM0 PM1 PM2 PM3 PM4 PM5 PM0 PM1 PM2 PM3 PM4 PM5

50 6 4 36.40 36.40 34.53 34.53 3.99 3.99 415.66 545.82 908.56 808.90 235.64 137.35 21173 29775 25878 16029 4582 5389

50 8 4 13.23 13.23 11.75 11.75 11.27 12.69 (0.20) (0.77) (1.46) 1823.53 (1.39) (0.39) 263317 210493 33642 55561 113821 195620

50 10 4 13.27 13.27 11.80 11.80 11.80 13.27 (1.31) (2.43) (2.19) (3.42) (1.38) (1.16) 153821 125472 46926 64855 58345 115305

50 6 6 21.78 21.78 17.42 17.42 14.10 14.80 (0.06) (0.02) (1.82) (0.23) 2466.03 (0.35) 89914 81063 22019 25754 25452 66734

50 8 6 12.88 12.88 9.04 9.04 9.04 12.88 1029.34 (0.86) (1.15) (0.16) (0.02) (0.68) 33616 52149 25086 65312 41496 57322

50 10 6 12.88 12.88 9.04 9.04 9.04 12.88 (0.88) (0.81) (0.71) (0.86) (0.81) (0.58) 60059 55828 24680 31578 22146 67819

50 6 8 18.37 18.37 11.74 11.74 10.90 17.56 (1.72) (1.47) (1.30) (4.04) (5.18) (0.68) 29311 25123 18448 17679 24301 57322

50 8 8 16.49 16.49 9.96 9.96 9.96 16.49 (0.63) (0.74) (1.19) (1.10) (1.01) (0.55) 22195 21204 15233 14515 14275 21764

50 10 8 16.53 16.53 10.01 10.01 10.01 16.53 (1.05) (1.26) (1.74) (1.96) (1.76) (1.18) 21175 21012 12847 11431 13802 18843

100 6 4 36.40 36.40 34.53 34.53 3.99 3.99 901.64 1212.46 690.56 1312.17 227.35 157.72 44662 52312 21072 23443 3208 5496

100 8 4 13.23 13.23 11.75 11.75 11.27 12.69 3191.66 (0.81) (0.67) (0.75) (0.58) (0.39) 119696 182370 183491 72687 67202 217651

100 10 4 13.27 13.27 11.80 11.80 11.80 13.27 (3.44) (2.10) (2.07) (2.41) (2.58) (1.37) 94767 153907 61780 52502 42564 116855

100 6 6 21.78 21.78 17.41 17.41 14.10 14.80 (0.58) (0.02) (0.06) (0.41) 2271.14 1773.18 111839 75878 32600 28226 27477 24158
100 8 6 12.88 12.88 8.95 8.95 8.95 12.88 (0.74) (0.47) (0.55) (0.06) (0.52) (0.48) 69973 73212 43094 68349 41428 85315

100 10 6 12.88 12.88 8.95 8.95 8.95 12.88 (0.66) (0.59) (0.96) (0.76) (0.78) (0.81) 87953 57383 25728 26137 46347 49519

100 6 8 20.07 20.07 13.44 13.44 12.61 19.38 (1.68) (1.32) (0.64) (1.49) (2.55) 1.97 29552 23039 17985 14123 18713 22312

100 8 8 16.49 16.49 9.95 9.95 9.95 16.49 (0.53) (0.30) (2.43) (0.81) (1.58) (0.91) 23977 27750 13911 11026 11332 15121

100 10 8 16.53 16.53 10.00 10.00 10.00 16.53 (2.09) (1.31) (1.82) (2.36) (1.17) (2.99) 20528 18319 9930 11658 9690 17731

150 6 4 36.40 36.40 34.53 34.53 3.99 3.99 350.66 1091.24 783.26 3397.84 213.28 126.14 17131 61934 24382 106412 3816 4747

150 8 4 13.23 13.23 11.75 11.75 11.27 12.69 2749.68 (0.73) (0.95) 3295.62 3170.46 (0.57) 245267 114423 85248 91799 118125 189367

150 10 4 13.27 13.27 11.80 11.80 11.80 13.27 (1.16) (2.20) (2.20) (2.19) (1.25) (1.16) 149194 132028 52135 82438 50298 153399

150 6 6 21.78 21.69 17.20 17.20 14.10 14.80 1725.05 (0.02) 2271.70 (0.39) (0.52) 1430.80 46143 67638 31197 26376 32231 17171

150 8 6 14.34 14.34 10.18 10.18 10.18 14.34 (1.34) (1.34) (1.18) (0.99) (1.55) (1.14) 80373 82554 52963 44136 42435 77732

150 10 6 14.34 14.34 10.18 10.18 10.18 14.34 (1.86) (1.77) (1.77) (1.77) (1.41) (1.49) 48787 58336 30143 34224 53502 67901

Average 18.28 18.28 14.49 14.49 10.14 13.23 2982.99 3268.79 3194.00 3293.33 3057.75 3001.11 78518 75133 37934 41510 36941 69608

Avg. opt. gap (%) (0.83) (0.89) (1.49) (1.09) (1.09) (0.78)
# of solved ins. (/24) 7 3 4 5 6 5

# of best solutions (/24) 13 13 24 3 5 2 1 3 3 11 8 4 11 1
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Table 6
Results for ProfitVLP and D-type instances.

Parameters LP gap (%) Cpu time (s)/optimality gap (%) Number of nodes

rmin kmax p PM0 PM1 PM2 PM3 PM4 PM5 PM0 PM1 PM2 PM3 PM4 PM5 PM0 PM1 PM2 PM3 PM4 PM5

50 6 4 36.72 36.72 34.79 34.79 4.31 4.77 561.12 488.34 633.79 1956.61 232.02 160.37 28765 25766 15534 34652 5139 7266

50 8 4 13.44 13.44 11.93 11.93 11.47 12.93 1164.72 455.10 (0.28) (1.16) (1.09) 2809.47 67315 28114 94733 100649 56289 170833

50 10 4 13.48 13.48 11.98 11.98 11.98 13.48 (3.12) (2.15) (2.67) (2.30) (1.64) (2.26) 100368 110347 68070 28127 66041 111921

50 6 6 21.92 21.92 17.43 17.43 13.98 14.99 (0.01) (0.01) (0.60) (0.70) 1757.17 2004.23 84878 98031 62948 22232 14977 26490

50 8 6 13.27 13.27 9.32 9.32 9.32 13.27 (1.58) (0.74) (0.73) (0.54) (0.71) (0.09) 81713 56679 29972 30236 45316 72111

50 10 6 13.27 13.27 9.32 9.32 9.32 13.27 (1.04) (0.75) (0.86) (0.79) (0.62) (0.82) 52052 47068 19260 18872 40327 57108

50 6 8 20.76 20.76 13.77 13.77 12.87 19.87 (3.12) (2.14) (2.17) (2.63) (4.98) (2.56) 32632 29856 21022 16450 26431 29340

50 8 8 17.01 17.01 10.25 10.25 10.25 17.01 (1.10) (0.90) (1.36) (1.71) (1.25) (1.53) 29339 18631 13130 15488 12540 22387

50 10 8 17.03 17.03 10.27 10.27 10.27 17.03 (1.33) (1.62) (1.69) (1.61) (2.39) (3.12) 23767 20408 11139 11722 13368 20784

100 6 4 36.72 36.72 34.79 34.79 4.31 4.77 3386.70 507.64 1106.28 1203.65 698.44 164.79 121859 20229 30277 20402 13817 7294
100 8 4 13.44 13.44 11.93 11.93 11.47 12.93 1712.80 (1.62) 3393.36 (0.21) 3577.48 2669.71 143447 187751 115416 91689 133343 154873

100 10 4 13.48 13.48 11.98 11.98 11.98 13.48 (2.29) (2.14) (3.88) (1.46) (2.42) (0.82) 150628 127016 61970 70603 47248 164907

100 6 6 21.92 21.92 17.42 17.42 13.98 14.99 (0.58) (0.01) (0.01) (0.58) 1718.09 1618.76 90554 77487 56953 24518 14288 17998

100 8 6 13.27 13.27 9.21 9.21 9.21 13.27 (0.71) (0.09) (0.32) 3097.56 (0.91) (0.64) 72710 67244 35361 40838 80211 71418

100 10 6 13.27 13.27 9.21 9.21 9.21 13.27 (0.93) (1.19) (0.81) (0.73) (0.81) (0.73) 48044 44638 31362 31477 21707 52541

100 6 8 20.60 20.60 13.74 13.74 12.86 19.86 (1.25) (0.47) (0.04) (2.09) (2.89) (1.35) 28266 29342 28226 15084 18162 19170

100 8 8 17.01 17.01 10.24 10.24 10.24 17.01 (0.60) (0.78) (0.76) (2.54) (1.35) (1.71) 25717 19918 13032 10990 14204 20374

100 10 8 17.01 17.01 10.24 10.24 10.24 17.01 (1.10) (1.22) (1.29) (2.77) (3.31) (1.22) 22651 17197 11800 10205 11563 18160

150 6 4 36.72 36.72 34.79 34.79 4.31 4.77 419.46 290.98 801.11 1717.41 224.96 178.18 23992 14481 38333 27987 4510 7150

150 8 4 13.44 13.44 11.93 11.93 11.47 12.93 2384.95 (0.62) (1.68) 932.03 (0.53) 1703.53 118142 116417 99826 32216 110576 113171

150 10 4 13.48 13.48 11.98 11.98 11.98 13.48 (2.10) (2.74) (2.99) (1.81) (2.42) (2.40) 118407 194520 49374 75712 64753 86667

150 6 6 22.45 22.45 17.82 17.82 14.60 15.60 (0.72) (0.01) (0.00) (2.17) 3056.64 1750.43 59335 83396 46790 19144 25628 22813

150 8 6 14.78 14.78 10.49 10.49 10.49 14.78 (1.40) (1.33) (1.48) (1.35) (0.83) (1.41) 80001 83067 53054 39108 43934 53446

150 10 6 14.78 14.78 10.49 10.49 10.49 14.78 (1.86) (1.61) (1.45) (1.44) (1.53) (1.71) 48006 61615 24584 26854 36213 61914

Average 18.72 18.72 14.81 14.81 10.44 13.73 3101.29 3072.64 3247.35 3221.22 3019.44 2794.21 68858 65801 43007 33965 38358 57922

Avg. opt. gap (%) (1.04) (0.92) (1.05) (1.19) (1.24) (0.93)

# of solved ins. (/24) 6 4 4 5 7 9
# of best solutions (/24) 13 13 24 4 3 1 5 4 8 1 5 10 7 1
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lower bounds on the number of vehicles, has almost no impact on
these gaps. The average gaps are 55.14%, 56.38%, 18.28%, and
18.72% for A, B, C, and D instances, respectively. Here we remark
that even though they are still very large, the instances of types C
and D (instances where demands depend on the distances) have
much smaller gaps compared to the instances of types A and B.
This may be due to the fact that capacity constraints for vehicles
are tighter for instances of type A and B. Indeed, the average gaps
for the model with cover inequalities, PM2, are 8.22%, 8.43%,
14.49%, and 14.81% for A, B, C, and D, respectively. Here we see
that these inequalities have reduced the gaps considerably for A-
and B-type instances whereas their effect was much smaller for C
and D-type instances. After all the valid inequalities are added,
with model PM4, the average gaps are 4.45%, 4.73 %, 10.14%, and
10.44% for A, B, C, and D, respectively. Here we see that the valid
inequalities are more effective in improving the quality of linear
programming upper bounds for A- and B-type instances.

Except for D-type instances, model PM4 gives the smallest
number of nodes on the average. If we compare the average
number of nodes for the original model PM0 and the ones for
model PM4, we observe that the reductions are 75.82%, 78.63%,
52.95%, and 44.29% for A, B, C, and D instances, respectively. We
can conclude that our valid inequalities are more effective in
reducing the size of the branch and cut tree for A- and B-type
instances.

For A-type instances, models PM1 and PM2 could solve 23
instances, model PM3 22 instances, and models PM4, PM5, and
PM6 24 instances to optimality in 1 h. The remaining gaps are
quite small for the unsolved instances. The best average cpu time
is given by model PM4 and is 58.39% less than the average cpu
time of the original model PM0. Model PM4 has given the best cpu
for only four instances, whereas model PM3 has given the best
cpu for 10 instances out of 24. This model has the best average
cpu time for B-type instances. It is interesting to note that for
these instances, model PM2 has given the best cpu time for nine
instances and model PM3 has given the best cpu time for six
instances. But one of the instances could not be solved to
optimality with model PM2. Models PM0 and PM1 could not
solve three instances to optimality. The average cpu time of PM3
is 64.90% less than the average cpu time of PM0. For these
instances, we see that both cover inequalities based on the vehicle
capacities and the knapsack inequalities for minimum profit
constraints are quite effective in reducing the cpu times on the
average.

ProfitVLP is harder for instances of types C and D, where the
demands are functions of distances. Here our valid inequalities
are not useful in reducing cpu times and final gaps for unsolved
instances. We see that models PM0 and PM5 are the best in terms
of cpu times and the number of instances solved to optimality, for
C and D instances, respectively. The largest final gap for C
instances is 1.41%, and for D instances it is 2.14%.
4.3. Results for CoverageVLP

We report the results for CoverageVLP and the four types of
instances, A, B, C, and D in Tables 7–10, respectively. CoverageVLP

turned out to be easier to solve compared to ProfitVLP for our
instances. First of all, the duality gaps were smaller for the
original formulation. The average gaps are 16.62%, 16.71%,
5.02%, and 5.03% for A, B, C, and D instances, respectively. Again,
the instances of types C and D have smaller gaps. Our valid
inequalities reduced the average duality gaps to 1.22%, 1.26%,
1.06%, and 1.09% for A, B, C, and D instances, respectively. Even
though it looks like the reduction in the duality gaps is mostly due
to the use of valid inequalities (31), the differences between the
average gaps of models CM4 and CM5 show that some of the
remaining valid inequalities are also effective in strengthening
the original model for A- and B-type instances.

In terms of number of nodes, CM4, the model with all valid
inequalities, has given the best average results, decreasing the
number of nodes by 78.77%, 75.51%, 72.79%, and 86.52% com-
pared to CM0 for A, B, C, and D instances, respectively.

Only model CM4 could solve all 24 type A instances to
optimality in 1 h of cpu time. Its average cpu is 78.14% less than
the average cpu of the original model CM0. Similar results are
obtained for B-type instances. For both types of instances, CM4
performs much better than all other models in terms of average
cpu times.

All our models solve the 24 C-type instances to optimality
within the time limit. Among these, CM5 has the best average cpu
time. Our model with all valid inequalities has an average cpu
time of 96.23 s, whereas model CM5 has an average cpu time of
68.41 s. Hence for these instances, we can conclude that even
though the valid inequalities are effective in reducing the duality
gaps and the sizes of the branch and cut trees, other than the
simple inequalities zjkryj for all jA J and kAKj, they are not very
useful in reducing the cpu times.

Finally, for D-type instances, the model CM4 gives the best
average cpu time, which is 73.04% less than the average cpu time
for the original model. It is interesting to note that for these
instances, model CM5 could not solve two problems to optimality.

4.4. Improvements in linear programming bounds

Here, we report the percentage improvement in linear pro-
gramming bounds obtained by adding families of valid inequal-
ities. We first solve the linear programming relaxation of the
model without any valid inequalities. Then we add each family of
valid inequalities separately to the original model. We use the
inequalities (16), which impose lower bounds on the number of
vehicles, cover inequalities (18), (19), (25)–(27), and the simple
valid inequalities (31). We compute the percentage improve-
ments in the linear programming bounds. The averages are
reported in Table 11.

Here we observe that the inequalities (16), which impose
lower bounds on the number of vehicles, do not improve the
linear programming bounds. The cover inequalities result in
significant improvements for ProfitVLP, especially for A- and
B-type instances. However, they are not as useful for CoverageVLP.
The valid inequalities (31) improve the linear programming
bounds for all problems, more for A- and B-type instances and
less for C- and D-type instances.

4.5. Comparison of profit and coverage values

In Table 12, we report the best profit and coverage values for
all ranges of parameters considered in our experiment. Here, we
observe that for a given rmin value, best profit and coverage values
are achieved with medium or large kmax and p values. We depict
the profit values for A-type instances in Fig. 1. Similar behavior is
observed for the other types of instances.

For CoverageVLP, the best coverage values are achieved with
p¼ 8 and kmax ¼ 8,10 for rmin ¼ 50,100 and with p¼ 6 and
kmax ¼ 10 for rmin ¼ 150. Increasing p and kmax has a significant
effect on the best coverage values.

5. Analysis of example optimal solutions

In this section, we analyze the optimal solutions for problems
ProfitVLP and CoverageVLP for an example instance with



Table 7
Results for CoverageVLP and A-type instances.

Parameters LP gap (%) Cpu time (s)/optimality gap (%) Number of nodes

rmin kmax p CM0 CM1 CM2 CM3 CM4 CM5 CM0 CM1 CM2 CM3 CM4 CM5 CM0 CM1 CM2 CM3 CM4 CM5

50 6 4 54.24 53.24 53.83 53.83 1.91 1.91 261.90 175.16 374.14 246.76 146.60 113.41 19701 13054 25542 11277 8610 6198
50 8 4 23.05 23.05 22.71 22.71 1.58 7.26 255.51 811.10 801.58 260.04 51.14 203.96 17862 53197 71304 15729 2597 8852

50 10 4 5.77 5.77 5.66 5.66 0.62 5.64 17.32 10.26 14.79 24.50 15.63 8.96 863 811 745 654 715 629
50 6 6 30.68 30.68 30.34 30.34 1.31 5.78 85.34 61.67 89.38 88.92 79.11 53.68 4634 2807 3692 2097 1910 1710
50 8 6 9.27 9.27 9.27 9.27 1.15 9.27 71.74 49.29 39.93 99.65 68.32 42.57 1907 843 685 1333 570 752

50 10 6 0.00 0.00 0.00 0.00 0.00 0.00 6.21 3.54 1.74 2.69 1.71 0.61 211 20 0 0 0 0
50 6 8 9.21 9.21 9.21 9.21 0.44 9.21 1329.72 1996.49 (0.29) (0.30) 106.77 148.13 233085 32144 40052 31589 625 3298

50 8 8 0.00 0.00 0.00 0.00 0.00 0.00 3.79 16.66 4.00 13.34 12.14 33.74 0 250 0 8 10 380

50 10 8 0.00 0.00 0.00 0.00 0.00 0.00 5.16 13.68 5.78 6.94 5.64 3.02 80 150 0 0 0 134

100 6 4 54.24 54.24 53.70 53.70 1.91 1.91 219.06 209.80 183.54 339.86 131.53 88.21 16737 15631 9254 13453 6647 2866
100 8 4 23.05 23.05 22.69 22.69 1.58 7.26 571.61 696.36 1687.35 543.48 78.93 888.37 32944 29950 66906 35824 6046 49649

100 10 4 5.77 5.77 5.66 5.66 0.62 5.64 22.05 19.96 7.91 15.94 7.65 16.25 1326 945 257 690 544 1141

100 6 6 30.68 30.68 30.34 30.34 1.31 5.78 44.16 63.87 75.78 112.94 97.16 52.00 1473 2951 2647 2710 2328 1069
100 8 6 9.44 9.44 9.44 9.44 1.32 9.44 58.18 67.67 87.82 214.85 32.86 50.73 1426 2435 830 4594 425 1163

100 10 6 0.00 0.00 0.00 0.00 0.00 0.00 8.88 4.77 2.19 3.38 1.66 1.28 381 67 0 0 0 0
100 6 8 9.78 9.78 9.78 9.78 0.96 9.78 3412.02 (0.63) (0.57) (0.57) 952.09 3014.50 29703 30739 30454 27678 8222 35885

100 8 8 0.00 0.00 0.00 0.00 0.00 0.00 (0.88) 220.31 25.54 142.29 199.87 (0.33) 12777 1615 40 557 800 14182

100 10 8 0.00 0.00 0.00 0.00 0.00 0.00 131.76 625.47 73.83 20.53 22.89 202.88 1516 7030 519 103 30 2267

150 6 4 54.24 54.24 53.62 53.62 1.91 1.91 105.72 189.55 262.52 242.02 137.16 92.46 8900 15466 18429 8928 6324 5142
150 8 4 23.05 23.05 22.69 22.69 1.58 7.26 947.77 88.44 238.58 1361.99 113.91 235.52 44811 5313 11125 40893 6276 9365

150 10 4 5.77 5.77 5.66 5.66 0.62 5.64 19.76 23.46 20.99 8.33 13.13 13.19 1085 1275 968 576 611 800

150 6 6 31.32 31.32 29.10 29.10 1.78 6.30 387.94 96.44 108.43 87.50 130.49 146.91 21164 2363 3592 1955 2730 1854
150 8 6 12.38 12.38 10.35 10.35 3.69 12.38 765.14 (0.34) 759.93 198.72 171.76 505.64 24278 78776 18036 963 809 18144

150 10 6 6.99 6.99 5.08 5.08 5.08 6.99 188.60 916.46 189.82 135.33 158.56 278.16 3086 18242 642 480 491 4892

Average 16.62 16.62 16.21 16.21 1.22 4.97 521.64 565.15 510.66 473.76 114.03 408.10 11248 13170 12738 8420 2388 7099

Avg. opt. gap (%) (0.04) (0.04) (0.04) (0.04) (0.00) (0.01)

# of solved ins. (/24) 23 22 22 22 24 23

# of best solutions (/24) 6 6 7 7 24 9 2 1 2 4 7 8 1 1 6 5 10 9
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Table 8
Results for CoverageVLP and B-type instances.

Parameters LP gap (%) Cpu time (s)/optimality gap (%) Number of nodes

rmin kmax p CM0 CM1 CM2 CM3 CM4 CM5 CM0 CM1 CM2 CM3 CM4 CM5 CM0 CM1 CM2 CM3 CM4 CM5

50 6 4 54.24 54.24 53.75 53.75 1.91 1.91 193.65 249.32 443.58 229.15 182.90 93.13 16136 19605 26851 9866 5938 5315
50 8 4 23.05 23.05 22.69 22.69 1.58 7.26 217.40 250.88 1371.16 326.72 100.75 653.08 15880 24977 58418 19454 6358 28674

50 10 4 5.77 5.77 5.66 5.66 0.62 5.64 18.51 16.73 14.12 8.75 19.83 5.49 1125 898 658 622 968 498
50 6 6 30.68 30.68 30.34 30.34 1.31 5.78 85.60 70.00 108.38 91.01 85.15 92.55 5087 3068 4460 2661 2254 3648

50 8 6 9.27 9.27 9.27 9.27 1.15 9.27 46.20 58.52 70.34 126.16 35.54 43.66 1618 962 666 920 410 733

50 10 6 0.00 0.00 0.00 0.00 0.00 0.00 2.78 3.43 1.96 1.58 1.49 1.62 20 49 0 0 0 0
50 6 8 9.21 9.21 9.21 9.21 0.44 9.21 993.46 2832.36 (0.31) 997.20 106.86 85.75 13939 34035 38492 10581 974 874
50 8 8 0.00 0.00 0.00 0.00 0.00 0.00 71.84 73.22 9.42 26.15 17.15 23.76 845 786 20 50 10 400

50 10 8 0.00 0.00 0.00 0.00 0.00 0.00 10.22 6.66 4.26 5.42 5.18 6.82 220 59 0 0 0 190

100 6 4 54.24 54.24 53.65 53.65 1.91 1.91 193.65 351.52 270.66 303.63 138.82 58.47 16136 24076 15971 10857 7955 2824
100 8 4 23.05 23.05 22.69 22.69 1.58 7.26 217.40 2141.64 300.77 1272.10 77.90 446.48 15880 129486 23257 73610 5558 24236

100 10 4 5.77 5.77 5.66 5.66 0.62 5.64 17.30 22.74 11.46 20.61 15.67 11.45 978 1065 714 653 968 902

100 6 6 30.68 30.68 30.28 30.28 1.31 5.78 67.19 63.94 113.23 106.41 76.37 65.47 3114 2682 6621 2508 1761 2360

100 8 6 9.44 9.44 9.44 9.44 1.32 9.44 108.21 79.64 145.11 173.98 52.91 100.91 3842 2313 1113 1836 521 4664

100 10 6 0.00 0.00 0.00 0.00 0.00 0.00 11.27 14.70 2.25 2.51 1.48 5.31 418 492 0 0 0 89

100 6 8 9.78 9.78 9.78 9.78 0.96 9.78 (0.44) (0.46) (0.47) (0.36) 2115.30 2009.85 29528 29173 31932 21391 15394 18291

100 8 8 0.00 0.00 0.00 0.00 0.00 0.00 (0.88) 1016.32 2016.47 686.79 481.46 1789.27 20365 11097 6476 1574 1477 10274

100 10 8 0.00 0.00 0.00 0.00 0.00 0.00 725.10 343.28 42.00 11.03 58.59 (1.14) 7686 3190 100 20 19 15575

150 6 4 54.24 54.24 53.62 53.62 1.91 1.91 113.95 233.72 227.44 259.32 95.73 73.11 7836 18333 12214 10286 3105 4149

150 8 4 23.05 23.05 22.69 22.69 1.58 7.26 1028.98 598.60 160.18 232.00 71.69 18.17 68400 32616 8133 13838 4084 5525

150 10 4 5.77 5.77 5.66 5.66 0.62 5.64 23.13 23.08 9.60 10.04 8.53 18.17 1200 1301 491 466 645 776

150 6 6 31.32 31.32 28.23 28.23 1.76 6.30 100.34 52.67 162.01 62.76 64.42 96.12 7090 1542 7745 1524 1489 2055

150 8 6 13.14 13.14 10.29 10.29 4.12 13.14 310.53 312.13 879.47 195.80 107.40 450.92 9465 3899 14650 903 457 4974

150 10 6 8.34 8.34 5.63 5.63 5.55 8.34 545.08 269.56 348.89 157.98 653.42 208.04 5125 2907 773 438 1353 2306

Average 16.71 16.71 16.19 16.19 1.26 5.06 512.58 528.53 579.71 371.14 190.60 420.15 10497 14525 10823 7669 2571 5806

Avg. opt. gap (%) (0.06) (0.02) (0.03) (0.02) (0.00) (0.05)

# of solved ins. (/24) 22 23 22 23 24 23

# of best solutions (/24) 6 6 6 6 24 9 3 2 2 9 8 3 6 16 4
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Table 9
Results for CoverageVLP and C-type instances.

Parameters LP gap (%) Cpu time (s)/optimality gap (%) Number of nodes

rmin kmax p CM0 CM1 CM2 CM3 CM4 CM5 CM0 CM1 CM2 CM3 CM4 CM5 CM0 CM1 CM2 CM3 CM4 CM5

50 6 4 25.73 25.73 25.71 25.71 1.19 1.19 432.22 900.92 3165.87 1843.91 150.42 158.94 25535 48016 165456 43576 5481 7935

50 8 4 2.12 2.12 2.12 2.12 1.73 1.73 17.82 32.34 34.28 45.52 22.19 43.85 3541 8041 5304 5359 3325 7035

50 10 4 0.00 0.00 0.00 0.00 0.00 0.00 0.45 0.50 0.81 0.94 0.91 0.46 0 0 0 0 0 0
50 6 6 9.33 9.33 9.32 9.32 4.20 4.40 786.90 485.58 725.56 1299.77 533.40 261.94 43195 15868 14914 19261 5390 4445
50 8 6 0.00 0.00 0.00 0.00 0.00 0.00 0.48 0.56 0.93 0.88 0.96 0.46 0 0 0 0 0 0
50 10 6 0.00 0.00 0.00 0.00 0.00 0.00 0.53 0.67 0.90 0.96 0.73 0.67 0 0 0 0 0 0
50 6 8 3.07 3.07 3.01 3.01 1.34 2.54 56.66 62.70 96.86 144.78 82.68 105.36 3140 3299 2386 2468 1164 5045

50 8 8 0.04 0.04 0.02 0.02 0.02 0.04 2.06 1.45 0.64 0.79 0.82 1.38 163 40 0 0 0 20

50 10 8 0.04 0.04 0.02 0.02 0.02 0.04 5.09 4.43 0.78 1.02 1.00 6.75 456 418 0 0 0 486

100 6 4 25.73 25.73 25.71 25.71 1.19 1.19 342.98 379.13 477.49 1277.67 91.70 140.39 20271 19062 17330 30092 2723 7229

100 8 4 2.12 2.12 2.12 2.12 1.73 1.73 85.01 25.16 14.24 29.73 15.64 92.02 11960 3464 1240 4053 1927 27160

100 10 4 0.00 0.00 0.00 0.00 0.00 0.00 1.19 0.92 0.87 0.87 1.22 0.56 0 9 0 0 0 0
100 6 6 9.33 9.33 9.32 9.32 4.20 4.40 284.11 541.96 388.66 1703.63 475.63 237.37 10200 13656 10011 23266 4724 4902

100 8 6 0.00 0.00 0.00 0.00 0.00 0.00 0.42 1.56 1.02 1.02 0.81 0.53 0 57 0 0 0 0
100 10 6 0.00 0.00 0.00 0.00 0.00 0.00 4.08 0.60 1.26 1.08 1.21 2.44 330 0 0 0 0 39

100 6 8 3.56 3.56 3.13 3.13 1.76 3.09 196.36 273.46 191.69 180.66 192.90 170.01 8225 17602 4506 2313 1987 8702

100 8 8 0.88 0.88 0.40 0.40 0.38 0.88 11.23 11.54 10.08 6.99 1.41 12.65 482 581 43 28 0 474

100 10 8 0.88 0.88 0.40 0.40 0.40 0.88 13.58 18.82 25.41 17.09 4.97 14.22 533 709 415 170 12 525

150 6 4 25.73 25.73 25.71 25.71 1.19 1.19 367.43 383.30 1142.58 2294.78 172.68 91.51 17763 18110 61517 64122 5660 4664
150 8 4 2.12 2.12 2.12 2.12 1.73 1.73 73.07 38.82 12.76 61.09 79.50 11.40 7779 4756 1314 6003 9639 1095
150 10 4 0.06 0.06 0.06 0.06 0.06 0.06 1.48 5.31 3.39 4.54 2.66 7.63 528 667 972 558 230 1002

150 6 6 9.33 9.33 8.99 8.99 4.20 4.40 572.66 417.78 585.98 1927.39 473.40 267.09 15987 10033 10880 19465 4232 6283

150 8 6 0.13 0.13 0.06 0.06 0.06 0.13 4.86 2.34 3.61 1.16 1.06 8.42 283 64 20 0 0 474

150 10 6 0.13 0.13 0.06 0.06 0.06 0.13 5.03 6.50 1.32 1.36 1.56 5.78 457 402 0 0 0 332

Average 5.02 5.02 4.93 4.93 1.06 1.24 135.70 149.85 286.96 451.98 96.23 68.41 7118 6869 12346 9197 1937 3660

Avg. opt. gap (%) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)
# of solved ins. (/24) 24 24 24 24 24 24
# of best solutions (/24) 7 7 12 12 24 13 5 1 4 6 8 5 3 9 10 20 8
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Table 10
Results for CoverageVLP and D-type instances.

Parameters LP gap (%) Cpu time (s)/optimality gap (%) Number of nodes

rmin kmax p CM0 CM1 CM2 CM3 CM4 CM5 CM0 CM1 CM2 CM3 CM4 CM5 CM0 CM1 CM2 CM3 CM4 CM5

50 6 4 25.73 25.73 25.71 25.71 1.19 1.19 353.54 609.85 598.64 758.12 259.94 92.84 17552 34889 17870 20915 7610 4460
50 8 4 2.12 2.12 2.12 2.12 1.73 1.73 47.49 19.55 35.59 11.86 15.30 47.08 7082 2734 4079 1497 1449 5086

50 10 4 0.00 0.00 0.00 0.00 0.00 0.00 0.41 0.42 0.97 0.92 0.99 0.52 0 0 0 0 0 0
50 6 6 9.33 9.33 9.32 9.32 4.20 4.40 565.19 349.39 510.66 2235.29 490.20 669.14 15258 10412 18273 36960 5097 8462

50 8 6 0.00 0.00 0.00 0.00 0.00 0.00 1.16 0.51 0.90 1.09 0.91 1.30 70 0 0 0 0 0
50 10 6 0.00 0.00 0.00 0.00 0.00 0.00 2.04 1.88 0.98 1.11 1.20 1.25 69 51 0 0 0 39

50 6 8 3.20 3.20 3.12 3.12 1.46 2.67 48.02 36.32 113.23 113.57 104.06 119.09 3000 1902 3122 1808 1366 6319

50 8 8 0.04 0.04 0.02 0.02 0.02 0.04 2.39 2.92 1.06 0.86 0.70 3.69 156 270 0 0 0 342

50 10 8 0.04 0.04 0.02 0.02 0.02 0.04 4.06 3.19 0.86 0.86 0.80 5.31 363 255 0 0 0 400

100 6 4 25.73 25.73 25.71 25.71 1.19 1.19 334.94 430.85 779.60 2111.85 243.26 110.99 15638 23082 27070 47622 7012 4881
100 8 4 2.12 2.12 2.12 2.12 1.73 1.73 22.64 36.73 17.40 38.84 107.88 45.60 6179 5577 1087 4738 11227 6980

100 10 4 0.00 0.00 0.00 0.00 0.00 0.00 0.56 0.48 0.87 0.86 0.88 0.54 0 0 0 0 0 0
100 6 6 9.33 9.33 9.32 9.32 4.20 4.40 269.34 637.17 633.62 1841.72 468.53 186.58 9873 14758 10579 26504 5138 3494
100 8 6 0.00 0.00 0.00 0.00 0.00 0.00 3.58 1.58 1.17 1.60 1.19 2.98 365 46 0 0 0 474

100 10 6 0.00 0.00 0.00 0.00 0.00 0.00 5.05 5.59 5.35 1.24 1.32 2.94 486 500 474 0 0 61

100 6 8 3.68 3.68 2.99 2.99 1.82 1.82 420.18 321.45 206.31 415.81 311.55 395.33 35763 16979 8808 4794 3219 18690

100 8 8 1.21 1.21 0.64 0.64 0.64 0.68 (0.23) (0.05) (0.28) 41.16 86.22 (0.31) 104629 69792 94567 515 952 97678

100 10 8 1.21 1.21 0.64 0.64 0.64 1.21 (0.32) (0.31) (0.29) 123.07 85.88 (0.32) 117575 65763 60112 1633 1493 118411

150 6 4 25.73 25.73 25.71 25.71 1.19 1.19 1801.76 345.84 447.40 1900.28 187.28 105.06 94078 17714 18728 54512 4178 5010

150 8 4 2.12 2.12 2.12 2.12 1.73 1.73 14.85 60.46 40.80 13.44 39.14 70.16 1580 5394 6144 1782 4801 8268

150 10 4 0.06 0.06 0.06 0.06 0.06 0.06 4.72 6.56 5.40 2.53 3.87 6.35 827 559 569 161 254 760

150 6 6 9.33 9.33 8.98 8.98 4.20 4.40 431.83 363.12 985.60 1289.40 697.38 187.72 10803 8963 23610 14116 5708 3302
150 8 6 0.13 0.13 0.04 0.04 0.04 0.13 2.34 1.72 2.53 0.92 1.04 7.82 141 50 20 0 0 240

150 10 6 0.13 0.13 0.04 0.04 0.04 0.13 0.72 1.60 1.34 1.46 1.37 0.81 0 23 0 0 0 0

Average 5.03 5.03 4.94 4.94 1.09 1.20 480.71 434.89 482.94 454.49 129.62 385.98 18395 11655 12296 9065 2479 12223

Avg. opt. gap (%) (0.02) (0.01) (0.02) (0.00) (0.00) (0.03)
# of solved ins. (/24) 22 22 22 24 24 22

# of best solutions (/24) 7 7 13 13 24 14 2 4 4 6 3 5 4 3 8 12 15 7
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rmin ¼ 100, kmax
j ¼ 8, and p¼ 6 for A- and D-types. The solutions

are depicted in Figs. 2–5. In all these figures, the locations of
vendors are denoted by rectangles and their service regions are
marked by different colors. Demand points that are not served by
any of the vendors are not colored. The areas that are not
population zones are not numbered.
Table 11
Improvements in linear programming bounds.

Type ProfitVLP Coverage VLP

(16) (18), (19), (25)–(27) (31) (16) (18), (19), (25)–(27) (31)

A 0 30.23 9.77 0 0.33 8.24

B 0 30.65 9.64 0 0.43 8.24

C 0 3.22 3.80 0 0.09 3.09

D 0 3.31 3.75 0 0.10 3.09

Table 12
Best profit and coverage values.

Parameters ProfitVLP

rmin kmax p A-type B-type C-type

50 6 4 832.8 806.1 852.8

50 8 4 1006.8 974.2 1033.8

50 10 4 1053.3 1016.9 1033.8

50 6 6 1094.2 1057.7 1158.7

50 8 6 1152.7 1113.2 1250.7

50 10 6 1160.2 1119.6 1250.7

50 6 8 1070.6 1031.5 1250.7

50 8 8 1071.6 1035.3 1271.1

50 10 8 1071.6 1035.3 1270.6

100 6 4 832.8 806.1 852.8

100 8 4 1006.8 974.2 1033.8

100 10 4 1053.3 1016.9 1033.8

100 6 6 1094.2 1057.7 1158.7

100 8 6 1152.7 1112.8 1250.7

100 10 6 1160.2 1119.2 1250.7

100 6 8 1070.6 1024.8 1231.6

100 8 8 1070.6 1030.2 1271.1

100 10 8 1070.6 1031.6 1270.6

150 6 4 832.8 806.1 852.8

150 8 4 1006.8 974.2 1033.8

150 10 4 1053.3 1016.9 1033.8

150 6 6 1074.7 1042.4 1158.7

150 8 6 1116.7 1079.3 1234.7

150 10 6 1124.2 1085.9 1234.7

600.0

800.0

1000.0

1200.0

1400.0

4, 6

pr
of

it

4, 8 4, 10 6, 6

Fig. 1. Best profit values
An optimal solution for ProfitVLP for an A-type instance is
given in Fig. 2. Here we can see that as the demands and profits of
demand points are independent of the distances to the vendors,
the service regions are quite dispersed. For instance, demand
point 14, which is assigned to the vendor at location 7, is
surrounded by three other demand points that are all served by
the vendor at location 15. Similarly, demand point 57 is served by
the vendor at location 65 even though there is another vendor at a
neighboring location.

We see an optimal solution for ProfitVLP for a D-type instance
in Fig. 3. Here we observe that the service regions of vendors are
rather compact and the vendors are located more centrally in
their regions.

Optimal solutions for CoverageVLP for A- and D-type instances
are given in Figs. 4 and 5, respectively. We see a similar pattern
here, i.e., the service regions are more compact in the solution for
the D-type instance.
Coverage VLP

D-type A-type B-type C-type D-type

828.8 1413 1413 1423 1423

1005.0 1790 1790 1761 1761

1005.0 2095 2095 1799 1799

1128.0 2042 2042 2069 2069

1214.3 2450 2450 2263 2263

1214.3 2677 2677 2263 2263

1197.9 2508 2508 2435 2432

1236.4 2739 2739 2509 2509

1236.2 2739 2739 2509 2509

828.8 1413 1413 1423 1423

1005.0 1790 1790 1761 1761

1005.0 2095 2095 1799 1799

1128.0 2042 2042 2069 2069

1214.3 2446 2446 2263 2263

1214.3 2677 2677 2263 2263

1197.9 2495 2495 2422 2420

1236.4 2739 2739 2488 2480

1236.4 2739 2739 2488 2480

828.8 1413 1413 1423 1423

1005.0 1790 1790 1761 1761

1005.0 2095 2095 1798 1798

1122.0 2032 2032 2069 2069

1198.3 2382 2366 2260 2260

1198.3 2502 2471 2260 2260

p, kmax

50
100
150

6, 8 6, 10 8, 6 8, 8 8, 10

for A-type instances.



Fig. 2. Optimal solution of ProfitVLP for an A-type instance.

Fig. 3. Optimal solution of ProfitVLP for a D-type instance.
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In summary, comparing these solutions, we see that demand
points assigned to the same vendor lie around the vendor node for
both ProfitVLP and CoverageVLP type D problems, whereas some
demand points serviced from the same vendor are separated from
the group in ProfitVLP and CoverageVLP for type A problems. This
is expected since in A-type problems, profits and demands do not



Fig. 4. Optimal solution of CoverageVLP for an A-type instance.

Fig. 5. Optimal solution of CoverageVLP for a D-type instance.
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depend on the distances between demand points and their
vendors.

Moreover, the number of demand points served is larger in
type D problems compared to type A problems. This is again
expected as the profits and demands decrease as distances
increase in D-type instances.

The total profits are 1152.70, 1214.32, 1032.20, and 992.36
and the amounts of demand covered are 2180, 2229, 2446, and
2263 for ProfitVLP for type A, ProfitVLP for type D, CoverageVLP for
type A, and CoverageVLP for type D instances, respectively.
6. Conclusion

In this study, motivated by a real life application, we intro-
duced the vendor location problem. We considered two versions
of the problem with different objective functions. We proved that
both versions of the problem are strongly NP-hard and suggested
valid inequalities to strengthen the integer programming formu-
lations and to reduce the solution times.

Our computational experiments showed that the bounds of
the linear programming relaxations of the problem with profit
maximization objective are quite poor in quality and it is very
difficult to solve these problems to optimality with integer
programming solvers. Our valid inequalities strengthened our
formulations significantly and reduced the computation times,
however their effect was highly dependent on the instance. We
also observed that the problem with the coverage objective was
relatively easier to solve and valid inequalities were also useful in
reducing the solution times for the instances of this problem.

We solved instances with different demand and profit func-
tions and observed that the problems with profit maximization
objective, where the demands change as a function of the
distances between the demand points and their vendors are more
difficult to solve compared to others. For some of these instances,
we could not reach an optimal solution with any of our models.
Even though the final gaps are not very large, still, we believe that
alternative methods can be developed for these kinds of
problems.
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