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Developing models and algorithms to generate robust project schedules that are less sensitive to
disturbances are essential in today’s highly competitive uncertain project environments. This paper
addresses robust scheduling in project environments; specifically, we address the discrete time/cost
trade-off problem (DTCTP). We formulate the robust DTCTP with three alternative optimization models in
which interval uncertainty is assumed for the unknown cost parameters. We develop exact and heuristic
algorithms to solve these robust optimization models. Furthermore, we compare the schedules that have
been generated with these models on the basis of schedule robustness.
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1. Introduction

In project management it is often possible, with some additional
costs, to reduce the duration of some activities and thereby
expedite the project completion. In this paper, we consider discrete
time/cost relationships and address the discrete time/cost trade-off
problem (DTCTP), which is a well-known multi-mode project
scheduling problem with practical relevance. Two main versions
of the problem have been studied in the literature; namely, the
deadline problem (DTCTP-D), the budget problem (DTCTP-B). In
DTCTP-D, given a set of time/cost pairs (modes) and a project
deadline of ¢, each activity is assigned to one of the possible modes
so that the total cost is minimized. The budget problem minimizes
the project duration while meeting a given budget, B. We address
the deadline version and formally define as

Given a project with a set of n activities along with the
corresponding precedence graph in the AoN (activity-on-node)
representation, G=(N, A), where N is the set of nodes, which
includes n activities and two dummy nodes, 0 and n+1, that are
used to indicate the project start and completion instants. A< N x
N is the set of arcs, which represents the immediate precedence
constraints among activities. Each activity j can be performed at
one of the | M;| modes where each mode m e M;, is characterized by
a processing time pj, and a cost ¢j,. A mixed integer-programming
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model of the DTCTP-D can be stated as follows:

n
Min > > GmXim (1.0

j=1meM;
Subject to
> Xm=1, j=1,..n (1.1
me M;
G—-G— > DimXim=0 V(ij)eA (1.2)
m e M;
Coy1 <9 (1.3)
G>0 VjeN (1.4)
Xim€{0,1} vmeM;, j=1,.,n (1.5)

G is the continuous decision variable that represents the
completion time of activity j. The binary decision variable X,
assigns a mode m € M; to activity j (1.5). Total cost is be minimized
(1.0), while a unique mode should be assigned to each activity (1.1);
precedence constraints should not be violated (1.2); and the
deadline should be met (1.3).

De et al. (1997) have shown that the DTCTP is strongly NP-hard.
In their survey paper (1995), they review the problem character-
istics, as well as exact and approximate solution strategies.
Demeulemeester et al. (1996, 1998) propose branch-and-bound
to solve the problem exactly, Akkan et al. (2005), and Vanhoucke
and Debels (2007) propose approximate algorithms. Additionally,
Erengucetal.(1993) use Benders decomposition to solve the DTCTP
with discounted cash flows and Lova et al. (2009) propose a hybrid
genetic algorithm to solve the resource constrained case.
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All of the studies cited above assume complete information and
adeterministic environment; however, projects are often subject to
various sources of uncertainty that threaten the accomplishment of
project objectives. Therefore it is vital to develop effective robust
scheduling algorithms. To minimize the effect of unexpected
events on project performance, five fundamental scheduling
approaches have been used: stochastic scheduling, fuzzy schedul-
ing, sensitivity analysis, reactive scheduling, and robust (proactive)
scheduling (Herroelen and Leus, 2005). In stochastic project
scheduling, the activity durations are modeled as random variables
and probability distributions are used. Fuzzy project scheduling
uses fuzzy membership functions to model activity durations. The
effects of parameter changes are investigated in sensitivity analy-
sis. In reactive scheduling, the schedule is modified when a
disruption occurs, whereas in robust scheduling anticipation of
variability is incorporated into the schedule and schedules that are
insensitive to disruptions are generated.

Herroelen and Leus (2005) divide schedule robustness into two
groups: solution robustness (stability) and quality robustness. The
solution robustness is defined as the insensitivity of the activity start
times with respect to variations in the input data. On the other
hand, quality robustness is defined as insensitivity of schedule
performance such as project makespan with respect to disruptions.
Quality robust scheduling aims to construct schedules in such a
way that the value of the performance measure is affected as little
as possible by disruptions. In this research, we address on quality
robust project scheduling.

To construct solution robust project schedules, Herroelen and
Leus (2003) propose some mathematical programming models.
They develop an LP model and propose heuristics for the solution of
robust scheduling. Their LP model allows a single activity disrup-
tion which increases the duration of one activity during the
schedule execution. In addition, Van De Vonder et al. (2008)
propose heuristics for solution robust scheduling and compare
the performance of proposed heuristics using simulation. On the
other hand, Lambrechts et al. (2008a) investigate the uncertainty in
resource availabilities that may be caused by reasons such as
machine failures, and they combine a proactive scheduling proce-
dure with a reactive improvement procedure. Recently, Al-Fawzan
and Haouari (2005), Chtourou and Haouari (2008), Kobylanski and
Kuchta (2007), and Lambrechts et al. (2008b) have proposed
predictive robustness measures for resource constrained networks.

In a different vein from the studies cited above, we assume
interval uncertainty and make use of robust optimization to
generate robust project schedules. Robust optimization is a model-
ing approach to generate a plan that performs well even in the
worst-case scenarios. Robust optimization has been applied to
some combinatorial optimization problems such as the shortest
path problem during the last decade (Bertsimas and Sim, 2003).
However, it has been implemented in only a few project scheduling
problems as discussed below.

Valls et al. (1998) examine a special resource constrained
project scheduling problem (RCPSP) in which the activities might
be interrupted for an uncertain period. Yamashita et al. (2007)
address the resource availability cost problem (RACP). They
propose two alternative models: the first model minimizes the
maximum regret function, whereas the second one is a mean risk
model that minimizes weighted sum of the mean and variance of
the costs. Both Valls et al. (1998) and Yamashita et al. (2007) follow
a scenario-based approach, where a scenario represents a realiza-
tion of the duration of the activities. Alternatively, Cohen et al.
(2007) use interval uncertainty in their recent robust scheduling
study that addresses the effects of uncertainty on the continuous
time-cost trade-off problem. They model the robust problem using
the ARC methodology of Ben-Tal et al. (2004); some of the variables
are determined before the realization of the uncertain parameters

(non-adjustable variables), while the other variables could be
determined after the realization (adjustable variables).

We propose three robust optimization models in which uncer-
tainty is modeled via intervals for the DTCTP-D. Our research differs
from the previous studies in the literature regarding both the
problem addressed and uncertainty modeling approach followed.
Our models address the uncertainty in activity costs. In practice,
fluctuations in the exchange rates, factor prices or resource usages
result in cost variability. These fluctuations threaten the accom-
plishment of project cost objectives and it is essential to develop
systematic methods to generate robust project schedules, which
are less sensitive to uncertainty. We develop exact and heuristic
algorithms to solve these robust models and compare the schedules
that have been generated with these models on the basis of
schedule robustness. The main contribution is the incorporation
of uncertainty into a practically relevant project scheduling
problem and the development of problem specific solution
approaches.

In the next section, we formulate the robust DTCTP-D using
alternative robust optimization models. We propose exact and
heuristic algorithms to solve these robust models in Section 3.
Finally in Section 4, we present some computational results and
compare the robustness of the schedules generated with these
models using some robustness metrics.

2. Robust discrete time/cost trade-off problem with interval
data

In many real-life projects a tardiness penalty or an opportunity
cost is incurred for each additional time unit the project is late. The
cost includes explicit monetary charges, foregone revenue, lost
profits, or goodwill losses. Due to these potential costs and early
completion benefits, organizations seek on-time completion and
aggressively monitor actual progress of these activities. The model
proposed in this section addresses project environments in which
timely completion of project activities is crucial. A frequently
encountered practice that favors early completions is Build-Oper-
ate-Transfer (BOT) projects.

BOT model has been widely accepted in both developed and
developing countries as it functions as an alternative financing
mechanism in undertaking large investment projects.

In BOT projects, a public service or an infrastructure investment
is performed and operated for a specific period by a private
enterprise, and then transfers the right to operate to a public
authority and therefore increase its profit. The operating period is
usually long, often more than 10 years, so that the investment could
be paid off. To give an example, a firm constructs a private toll road,
and operates it for some time and then transfers the right to operate
to public. If the firm could complete construction earlier, it can
extend the operating period and therefore increase the profit.
Whereas, if a delay occurs in the project completion time, the firm
both pays a penalty cost to the regulatory authority and also loses
its potential revenues for the delay period. Therefore the disad-
vantages of being late are usually much more than the advantages
of early completion.

When deviations from the baseline plan are observed and are
judged to threaten the completion of these activities on time,
project managers usually allocate extra resources such as addi-
tional workers or extra machinery to these activities. These
additional allocations create fluctuations in the amount of
resources allocated to each activity and result in cost uncertainty.
In addition, fluctuations in the exchange rates and factor prices may
also cause uncertainty in costs. All these factors seriously affect the
profitability of the projects. From this point of view, protection
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against deviations in total cost becomes the key concern of project
managers.

We focus on cost uncertainty in this research. We assume that
each mode is associated with a fixed duration p;, and an interval of
possible costs [cjm,cj_m], Cim < Cjm < Cjm (in which j indexes the
activities and m indexes the alternative durations, and equality
between the lower and upper bounds on cost indicates certainty at
a fixed value ¢, = Cjm =G )-

The traditional minmax (absolute robustness) criterion focuses
on the worst-case solution, which corresponds to the scenario
where the cost of each activity, ¢;n, is replaced by ¢, the upper
bound of the corresponding interval. Optimization with respect to
absolute robustness criterion is equivalent to the classic DTCTP-D
with ¢, set to its upper bound, Cj,. However, this approach of
robustness is extremely pessimistic and most likely is unrealistic.

A more realistic approach would be modeling the uncertainty only
over a subset of the scenarios space. One recent application of this
restriction idea is the robust discrete optimization approach proposed
by Bertsimas and Sim (2003). They assume that only a subset of the
uncertain parameters is allowed to deviate from their estimates; in
other words, only ) of activity cost parameters (out of a total of n)
involve random behavior. If y =0, the influence of the cost deviations is
ignored and the problem with nominal cost values is obtained. In
contrast, if y=n, maximal cost deviations are considered and the
problem becomes a minmax optimization problem. Therefore, y can be
regarded as a parameter that reflects the pessimism level of the
decision maker. High values of this parameter indicate a risk-averse
decision making behavior. This restricted uncertainty approach has
recently been applied to define robust optimal policies of an integrated
production planning problem (Wei et al., 2010).

2.1. Model 1

In this section, a MIP model for DTCTP-D using Bertsimas and
Sim’s approach is presented. We assume that at most 0 <y <n
activities have cost values at their upper bounds and the remaining
n—7y coefficients are set to the nominal values, ¢j,. Nominal values
are the most likely cost values assigned to each activity by the
project manager. Nominal value of an activity lies between the
upper and the lower bounds of the activity cost. We also define
the maximum deviation of an activity cost as dj, i.e., dj, = Max
{Cjm —Cjm Cjm~Cjm }. Therefore, d;n, is the maximum (cost) error that
the management could commit (for activity j) during the planning
stage. The restricted uncertainty model, which will be called Model
1, could be expressed by the following nonlinear formulation:

n
Min¢ > 3" Gnxim+ - Max > > dinXjm )
j=1mem SCNISI=<v | jSmem;
Subject to
(1.1), (1,2),...,(1.5)

In this model, Sis a proper subset of N, such that activities in set S
have cost values at their upper bounds. The cardinality of the set is
bounded by the parameter }, i.e. |S| <y and this parameter reflects
the level of pessimism. Before proposing a decomposition based
solution algorithm, we reformulate (2) as

n n
f=Ming > >~ guXim+Maxq > > dimXjmlt; :

j=1meM; j=1meM;

n
Zujsy,ueB” :xeXP 3)
j=1
In this formulation, XP denotes the feasibility set of the DTCTP-
D, which is defined by constraints (1.1), (1,2),...,(1.5). The inner

maximization problem in (3) is used to define the members of set S.
When activity modes are fixed, this problem becomes a linear
problem. This property will be used in the decomposition algo-
rithm. In Eq. (3), the set of coefficients, which are subject to
uncertainty, are determined by the n-dimensional binary vector u;
i.e., B" represents the n-dimensional binary space. The indicator
variable, u; is set equal to one, if and only if the corresponding
activity is assumed to deviate from its nominal value.

Model 1 assumes that all the activities are equally likely to
deviate from their nominal values and we choose y of such
activities and set them at their upper bounds to generate a robust
model. In real life, criticalities of the activities are crucial as well.
Therefore we propose two additional novel models that integrate
the criticality of project networks.

2.2. Criticality-based uncertainty models

In projects cost and time are interdependent as they both
depend on the amount of the resource allocation. Activities having
large slacks (i.e., non-critical activities) provide flexibility in
resource allocation; hence, it is possible to delay their starting
times or to elongate the durations via lowering the amount of
resource allocations. Due to these flexibilities, these activities
involve less risk to achieve the cost targets when compared to
the critical activities. In case of disruptions, managers usually
allocate more resources to critical activities or in managerial terms
“crash these activities” and this incurs extra cost.

The conventional measure of an activity’s criticality is the total
slack, which is the amount of time by which the completion time of
the activity can exceed its earliest completion time without delaying
the project completion time. It is a measure of the insensitivity of
schedule performance with respect to activity delays. The activities
that have no slacks are defined to be critical activities.

In real-life projects, it would make much more sense to evaluate the
activity slacks with respect to activity’s duration, since the higher the
ratio of slack to activity time the higher its capability to compensate for
a delay. The reason is that as the activity durations increase the
probability of a larger number of disruptions to be observed while the
activity is being performed, increases. Thus, we use the slack/duration
ratio to assess criticality of activities and define the activities that have
slack values less than 100&% of the activity duration as potentially
critical activities, i.e. CR={j =1,..,n : TS;/p; < £} where TS; and p; refer
to the total slack and duration of activity j, respectively. & will be called
slack duration threshold (SDT) hereafter. In this study, we set the SDT
to 25%, i.e. £=0.25. This new definition enlarges the criticality set.

2.2.1. Model 2

Model 1 is unrealistically pessimistic as the activity slacks are
disregarded and the worst-case costs are allocated to activities with
ample slacks. To eliminate this over-pessimism, the activities with
cost values at the upper bounds are chosen from the critical ones in
the criticality-based robust model. Given the mode assignments, only
7 controls the pessimism level in model 1; however, in the new model
the critical activity set and y control the pessimism level. The
following model represents the criticality-based approach.

foy= Min{ > CimXim +Max{ S dimXimt :

j=1meM; j=1meM;

> uj<yueB' ) :xeXP 4
jeCR

Note that the only difference between (3) and (4) is the set of
activities which can have cost values at the upper bounds. CR refers
to the set of potentially critical activities in (3). In this new
approach, criticality definition becomes crucial. For our problem,
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slacks are defined with respect to a specific mode assignment. As
the mode assignments change, the slack distribution among the
activities also changes. To illustrate the differences between the
models, we use the simple network in Fig. 1, which is adapted from
the example of De et al. (1995). The project has a deadline of 6=6.
Each activity has two mode alternatives characterized by the
triplet, (Pjm, Cjm» Cjm ) Shown above the nodes.

Table 1 depicts the objective function values of the optimistic
model (y=0) and two robust models (with y=1, 2). The rows of the
table show the feasible mode combinations for the activities.
Optimal solutions are marked with “%” and given a mode combina-
tion, the critical activities are underlined. Note that activity slacks
depend on mode assignments.

Table 1 illustrates that y and ycg, which control the level of
pessimism, are effective on the choice of activity modes. Comparing
the models, Model 2 is less pessimistic than Model 1 as it considers
less risk premium in costs. Next, we propose an alternative
approach, which lies in between Models 1 and 2 regarding the
level of conservatism.

2.2.2. Model 3

This model also accounts for the cost deviations in the non-
critical activity set, but unlike the criticality model (Model 2), the
set of possible deviations is not limited with the set of critical
activities; the critical activities have priority over non-critical ones
for cost deviations. Given the mode combinations, y activities
which have cost values at their upper bounds are first chosen from
the critical activity set. If the cardinality of the critical activity set is
less than 7, the remaining units are chosen from the non-critical
activity set. As we consider the worst-case scenario, the activities

(4,5,35)
(2,32,48)
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with higher deviation values are always given the priority to
calculate the maximum deviation amount from the given mode
combination.

3. Solution algorithms

3.1. Benders reformulation of Model 1

In this section, we show how to solve Model 1 using a Benders
decomposition algorithm.

Proposition 1. Model 1 could be formulated as follows:

n
Min > > GmXim+2

j=1meM;
Subject to
n
2= > wWdinXim =0, k=1,...K
j=1meM;
n @)
S WpmXm<d,  s=1,..8
j=1meM;

Z ijzl, j=],...,n

Xjm €{0,1}
z>0

vmeM;, j=1,..,n

where uk = (uik,.. ,u;¥) for k=1,.. K are the extreme points of
the polytope U ={ueR": 37 yuj<y,0<u;<1, j=1,..,n}.Srefers
to the total number of paths between node 0 and n+1 in G (N, A)

(3,2.8)
(1,2,22)

» 3

(4,2,10)
(3,8,12)

(3,1,5)
(2,5,7)

Fig. 1. The example network (robust problem).

Table 1
Comparison of robust models.

Activity (j) G Fly=0) i =CGm —Cjm Robust objective: f (y)

1 2 3 4 j=1 Jj=2 j=3 j=4 y=1 Yer=1 y=2 Yer=2
Feasible mode combinations

2 2 2 2 5 68 8 2 10 1 78 68 86 68
2 2 2 1 6 65 8 2 10 2 75 67 83 69
2 2 1 2 6 61 8 2 2 1 69 63 71 65
2 2 1 1 6 58 8 2 2 2 66 60 68* 62
1 2 2 2 5 48 15 2 10 1 63 63 73 63
1 2 2 1 6 45 15 2 10 2 60 60 70 62*
1 1 2 2 6 44* 15 4 10 1 59* 59 * 69 63
2 1 2 2 6 64 8 4 10 1 74 68 82 69
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and wi, j=1,...,nis the elements of the node-path incidence vector,
1 inodej belongs to path s

w® of th hs,s=1,...S;ie, wi=
of the path s, s ,.. 9 e, ¢ {0 otherwise

Proof. See Appendix B.

Enumerating all the extreme points and paths is burdensome, so
we use a relaxation approach and generate the constraints as
needed. We propose the following Benders decomposition algo-
rithm to solve the problem exactly.

Solution Algorithm:

Introduce an additional index t to the notation to denote the
values at iteration t.

1. Start with an initial solution,

Y1 0 .
xleX ={(X]],...,X”Ml‘,...,xnl....X"‘M"‘).ij €B,
vmeM;, j=1,...n > Xm=1, j=1,.n}
me M;

Set 2°=— oo, t=1.
J— n -
2. Solve SPy"G) : 1 = { > zmemfwfpjmx;m} e
s=1,., j=1
Solve SP5(xt):
n

V=3 GnXi,

j=1meM;

n o n
+Max{z D dimXiu: > u<y, 0<u <1, j:l....,n}
j=1

j=1meM;

Let u‘ be the optimal solution.
3. If ' > 6 then o -
Find the longest path and its incidence vector wt and set uf = ut.

n _
Xt=Xx"1n {XGXO YD) WiDimXim 3(5}

j=1meM;

Else
If(yf>o")

n —
X'=X"TnxeX0:z= Y > uldinXim)

j=1meM;
Else -
Stop and report xt as the optimal solution.
End if
End if

4. Solve the relaxed master problem, MP":

n
(pf:Min{Z > cjmxjm+z:xexf}.

j=1meM;

Let x' be the optimal solution.
5. t=t+1,xf =x1,
6. Return to Step 2.

Note that solving the first subproblem, namely SP;(X) is
equivalent to determining the length of the critical path (Cy+1)
with respect to the given mode assignment. If ;.1 < 0, the problem
is feasible, otherwise it is infeasible. In addition to the feasibility
cuts, optimality cuts are inserted (step 3) after solving an additional
LP, SP,(x) (step 2). A greedy algorithm provides a solution that is

close to optimum, easily. This algorithm orders >, Midjmme

values and this order identifies y of the activities that affect the
objective function the most.

To solve Model 1, we use Benders decomposition, which is
known to exhibit slow convergence. Therefore, we include several
features to accelerate its convergence and solve large scale problem
instances optimally. For a detailed description of the algorithmic
enhancements, we refer the readers to Hazir et al. (2010a). Given
the complex structure of Models 2 and 3 due to criticality
requirement, we use Tabu Search (TS) to solve the models and
obtain good quality approximate solutions.

3.2. Tabu search and parameter settings

TS is a local-search improvement heuristic proven to be
effective to solve many difficult combinatorial optimization pro-
blems (Hazir et al., 2008). It has a penalty mechanism to avoid
getting trapped at local optima by forbidding or penalizing moves
that cause cycling among solution points previously visited. These
forbidden moves are called “tabu”. The short term memory keeps
track of move attributes that have changed during the recent past
and these attributes become tabu for a specific number of itera-
tions. Under some conditions called aspiration criterion, tabu status
of a move can be overridden. Two strategies are commonly used to
obtain good solutions: diversification to direct the search into less
visited regions of the search space, and intensification to fully
explore a region.

Local search-based algorithms may not result in high quality
solutions for the DTCTP-D, since it is not simple to identify a feasible
solution in the neighborhood of the current solution; classical
move operators do not guarantee feasibility. To overcome this
shortcoming, we apply the features proposed by Kulturel-Konak
et al. (2004), which are specially designed to solve constrained
optimization problems. Their algorithm uses an adaptive penalty
function which encourages the search to proceed through a portion
of the infeasible region, namely the “near feasibility threshold
(NFT)”. The generated solutions are penalized according to their
distances to the feasibility region. The details of penalty structure
and our implementation are given in Appendix C.

We represent each solution by a mode assignment vector.
Infeasible mode assignments are allowed with some penalties.
The algorithm starts the exploration in the infeasible region with
the least cost solution. By using a cost-based fitness function that is
composed of total project cost and an adaptive penalty cost, it keeps
searching for feasible and efficient directions until the stopping
criterion is satisfied. To calculate the total project cost, given the
mode combination, we first calculate the slack values and define
the set of critical activities by using classical Critical Path Method
iterations. Given the slack values, we select 7y activities by giving
priority to the activities with higher deviation values.

We examine the entire neighborhood with single mode decreas-
ing and increasing moves. To find the best parameters, some test
problems of varying problem sizes are solved for a wide range of
system parameters. In the test runs, we test a tabu list of size 5, 7,
and 10. The best solutions are achieved with a tabu list of size 7. We
define the aspiration criterion so that tabu status of a move can be
overridden if it leads to a solution better than the incumbent
solution. The stopping criterion is set to 10,000 iterations after
observing that it is sufficient to obtain convergence for the test
instances. In order to direct the search into less-visited regions of
the search space and escape from local optima, we use a simple
diversification strategy. If the incumbent solution is not updated
for 1000 iterations, the algorithm restarts with a randomly
generated neighbor of the initial solution; the tabu list is initialized
and the move values are recalculated according to the new solution.
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4. Computational experiments and results
4.1. Experimentation

We use a subset of the random instances generated by Akkan
et al. (2005) to test the proposed measures and algorithms. Their
test bed is generated for the deterministic problem and mainly the
network structure parameters, the number of modes per activity
and the tightness of the deadline characterize a problem instance. It
includes large sized projects having 85 to 136 activities.

We have employed the instances generated by Akkan et al.
(2005), as it includes large instances that are far beyond the
problem sizes reported in the literature. Among their instances,
we have chosen the test-bed 1; it includes the largest projects. In
addition, in order to define the robust problem, two additional
parameters, namely robustness level (y) and uncertainty factor (1),
are required. The uncertainty factor represents the rate by which
the variables d;, are allowed to change around Cjp, i.e. djm=Y/Cjm.

Two parameters define the network structure: complexity
index (CI) and the coefficient of network complexity (CNC). CI is
a measure developed by Bein et al. (1992) to assess how far the
given network is from being series—parallel. It is defined to be the
minimum number of node reductions required to reduce a given
two terminal directed acyclic graph into a single-arc graph, when
used together with series and parallel reductions. Assessing the
distance of a given network from being series-parallel is important
for this study, because DTCTP with series—parallel graphs could be
solved quickly (Demeulemeester et al., 1996). The second complex-
ity measure, CNC was suggested by Pascoe (1966) and defined to be
the ratio of the number of arcs to the number of nodes. The number
of modes per activity is randomly generated with discrete uniform
distribution using interval U[2, 10]. To compute the deadline, first
the minimum possible project duration, Tmin (length of the critical
path with shortest modes), and the maximum possible project
duration, Tmax (length of the critical path with longest modes), are
calculated. Then, the deadline is set as follows:

0 = Tmin+ 0(Tmax-Tmin) with 0<0<1 (5)

Concave (ccv), convex (cvx), and neither concave nor convex
functions (hyb) are used to generate the costs. We have generated
the uncertainty factor, i, using uniform distribution in interval
[0.1, 1]. When CNC=5, the networks have 85, when CNC=8 they
have 136 activities. In the computational study, as we have not
observed a significant effect of CI on computational effort in our

Table 2
Summary of computational results of Model 1.

pretests, we have set CI=13. This is a result in line with Akkan et al.
(2005)'s finding for approximate solutions.

All the algorithms are implemented in C programming language
on a Sun UltraSPARC 12 x 400 MHz workstation with 3 GB RAM.
Optimization software CPLEX 9.1 is used to solve the linear and
integer programs.

4.2. Computational results

We have investigated the effects of various complexity para-
meters on the solution efficiency of Model 1 and summarize the
results in Table 2. For each I' setting, 36 different project instances
are solved. The results of the exact procedure are presented under
the column labeled “Optimum”. In order to accelerate the solution,
we solve the LP relaxations first and generate cuts from the
fractional solutions. Then, integrality constraints are added and
the algorithm is resolved. The average number of linear and integer
master problems solved and the average CPU time in seconds to
solve the instances are reported under the columns “LP Iter.”, “IP
Iter.”, “CPU(s)”, respectively.

Moreover, we solve the MP iterations heuristically at a relative
optimality tolerance level of 2% until feasibility is satisfied. This means
that at each iteration branch-and-bound algorithm is truncated and
the best feasible solution found is used. The final integer solution of
each MP is guaranteed to be within 2% of the optimal value. This
solution could be used as a reliable approximate solution and the
results are presented under the column called “Truncated Solution”,
within which, the percentage of problem instances that the optimal
solution has been found, the average percentage deviation from the
optimal solution, the maximum percentage deviation from the
optimal solution and the average CPU time reduction with truncation
are reported under the columns “Ins Opt (%)”, “Avg Dev (%)”, “Max Dev
(%)", “Dec CPU (%)", respectively.

Table 2 reveals that CNC measure of the network and the
pessimism level are effective on the computational effort given in
CPU seconds. However, as CNC increases the number of nodes also
increase in our experimental set, it is hard to conclude that higher
CNC may lead to higher computational effort, but higher pessimism
level does. When the CPU time for solving the deterministic
problem and the robust problem are compared, we conclude that
considerably higher computational effort is required when the
notions of uncertainty and robustness are incorporated into the
model. Finally, the truncation-based heuristic may be used as a
solution alternative for large scale instances, as it is shown to be

Optimum Truncated solution
LP Iter. IP Iter. CPU (s) Ins Opt (%) Avg Dev (%) Max Dev (%) Dec CPU (%)
Robust
CNC
5 16.32 19.23 1400.96 81.82 0.03 0.42 25.03
6 22.42 27.33 10,427.91 100 0.00 0.00 15.04
7 23.00 31.14 18,044.09 90.91 0.01 0.22 16.38
8 20.28 31.88 19,139.61 84.00 0.03 0.37 16.20
Y
10.25n] 19.42 26.84 8772.72 87.10 0.02 0.31 21.64
10.5n] 20.40 27.73 10,789.31 87.10 0.02 037 18.07
10.75n] 21.77 27.58 11,690.94 93.55 0.01 0.42 14.81
Deterministic
CNC
5 15.00 12.00 410.87 44.44 0.21 0.82 27.77
6 22.50 15.25 1935.93 100.00 0.00 0.00 21.42
7 22.00 17.17 7277.80 71.00 0.02 0.12 28.81
8 21.14 31.29 10,974.72 75.00 0.01 0.04 30.44
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generating solutions that are very close to the optimal solution. In
the following section, we compare the proposed robust project
scheduling models.

4.3. Comparison of the proposed models

In this section, we give a brief review of the metrics to evaluate
schedule robustness and perform computational experiments and
evaluate the generated schedules.

4.3.1. Robustness measures

Existing robust scheduling studies generally address machine
environments and often follow scenario-based approaches, where
scenarios for job attributes are required to be defined. They
basically employ two types of robustness measures: direct mea-
sures, which are derived from realized performances, and approx-
imate measures, which utilize simple surrogate measures.
Computational burden of optimizing direct measures is generally
higher when compared to surrogate measures. We refer the readers
to Sabuncuoglu and Goéren (2005), for a detailed examination of
these measures.

In a recent study, Hazir et al. (2010b) introduced nine slack-
based measures that could be used to evaluate schedule robust-
ness. They compared these measures through simulation. Given a
baseline schedule for a benchmark project and realizations of
uncertain variables, the effect of disruptions on project perfor-
mance is evaluated by the use of some performance measures. These
measures reflect the performance of the solutions in a stochastic
environment. One example is the average delay in the project
completion time as percentage of the project deadline. Having
simulated the projects, the robustness measure that has the highest
correlation with the performance measures is selected as the best
metric to represent robustness.

The following cost based measures are used to evaluate the
robustness of the project schedule in this paper:

(a) Expected realized cost
The cost of performing each activity is represented with two
parameters: the nominal cost and the worst-case cost. We
assume that the nominal cost of a mode is equal to the
expectation of the project manager over all the scenarios
corresponding to possible alternatives in practice. Therefore,
for a given schedule the summation of the nominal costs over
all activities defines the expected realized cost of the project
schedule. The schedule which has the minimal expected
realized cost is chosen as the most robust schedule (y=0).

(b) Worst-case cost
The upper bounds of the cost intervals define the worst-case
costs, the maximal cost among all possible scenarios. Hence the
summation of the upper bounds of the cost intervals over all

Table 3
Model comparison with robustness measures.

activities characterizes the worst-case realized cost of a
schedule. The schedule that has the smallest worst-case cost
(among all schedules) is chosen. This is a risk-averse approach
and corresponds to the minimax objective in decision analysis
(y=n).
(c) Cost of the reference scenario

This measure concentrates on a specific scenario in which
critical activities are realized at the worst-case costs with the
remaining activities being realized at the nominal costs. The
schedule that has the smallest cost with respect to this scenario
is selected.

4.3.2. Computational analysis

Computational experiments are carried out to evaluate the
performance of the models under different problem settings and
the models are compared using the above-mentioned robustness
measures. For comparison purposes we set pessimism level to
y = 10.25n]. In the computational study, for each setting 3 different
instances are solved, hence each model is tested with 36 problems.
Table 3 compares the introduced models with 3 robustness
measures. For each problem set and robustness measure, all three
models are applied to find the best schedule that minimizes the
corresponding worst-case cost. While comparing, Model 1 is taken
as the reference model and percent differences between robustness
measure of the reference model and the criticality-based models
are reported. For each robustness measure, the average percentage
deviation from the reference model and the percentage of problem
instances that the model dominates the reference model are
reported in the rows “% Dev ", “% Dom”, respectively. We also
report the paired t-test confidence intervals (Conf. Int.) for percent
differences between robustness measures of Model 1 and criti-
cality-based models. 95% confidence level is used in these intervals.
Due to large number of activities at each problem set, we assume
that the anticipated cost of the project is approximately normal,
and use t-test to identify the statistical significance of the differ-
ences. The last row expresses whether minimization or maximiza-
tion of the measure is preferred in terms of robustness.

When worst-case robustness measure is considered, Model 1
dominates the criticality-based models. This finding is consistent
with the argument that Model 1 is over-pessimistic. Model 1 is
better in most of the problem instances when the expected realized
cost of the models is compared. However, in this case differences
among model performances are small. Examining Table 3 and
comparing the optimal solutions of Models 1 and 2, Model 2
generates schedules that have expected costs 3.6% higher on the
average. On the other hand, among the problem instances, in only
13.89% of the instances Model 2 generates schedules with less
expected costs.

The parameter y reflects the risk attitude of the decision makers.
As the decision makers become more risk-averse, larger y values

Expected cost

Worst-case cost Reference scenario

Model 2
% Dev 3.60*
Conf. int. (2.51, 4.69)
% Dom 13.89
Model 3
% Dev 0.67
Conf. int. (-0.27,1.61)
% Dom 38.89
Optimization criterion Min

14.56* —17.33*
(13.29, 15.84) (—18.86, —15.81)
0 100
9.21* —9.24*
(7.96, 10.43) (—-11.41, -7.07)
2.78 94.44
Min Min

* Indicates that % dev is significant at 5% level.
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should be used so that schedules with lower worst-case costs could
be generated. Note that Model 2 is not so sensitive to the changes in
parameter y when compared to other models. This is basically due
to the criticality requirement. The second parameter that affects
model characteristics is the slack/duration threshold (SDT). Lower
SDT results in different reactions in criticality-based models. Since
the risk premiums are incurred for only critical activities in Model
2, as the threshold decreases, the number of critical activities is
reduced so that total risk premium decreases and majority of the
activities take their nominal costs. However, in Model 3, a reduc-
tion in the threshold might increase the total risk premiums, as
risks of non-critical activities are also incorporated.

5. Conclusions

In this paper, we have proposed three models to formulate the
robust DTCTP. These models assume interval uncertainty for
activity costs. It is assumed that the activity times are known with
certainty when the mode of the activity is fixed and all the
uncertainty is captured by the cost of the activity. In order to solve
these models, we have developed both exact and approximate
algorithms.

The first model is solved exactly by using Benders decomposi-
tion; the other two criticality-based models are rather complex and
solved approximately by a tabu search algorithm. The main
advantage of Model 1 is that it could be solved exactly. However,
the limitation is that the activities with the same cost intervals are
assumed to be equally uncertain and all activities are likely to have
cost values at the upper bounds.

To evaluate the performance of the algorithms under various
problem settings, we have conducted computational experiments.
We have assessed the robustness of the schedules generated by the
algorithms by using several cost based robustness measures. The
models developed in this manuscript address the requirement to
generate robust project schedules that are less sensitive to
uncertainty. To the best of our knowledge, the models are the first
implementation of robust optimization to the DTCTP. In that sense,
results presented serve as a useful base to fill the research gap in
developing robust project schedules for multi-mode project net-
works. In addition, they provide decision support to managers in
project planning under uncertainty.

As a future extension of this research, robust optimization
models could be formulated for Multi-Mode Resource Constrained
Project Scheduling Problem (MRCPSP), which allows the use of both
renewable and nonrenewable resources. For this new generalized
problem setting, in addition to the uncertainty costs, the uncer-
tainty in activity durations or in resource requirements or in
resource availabilities should also be addressed.

Appendix A. List of abbreviations and notation

A set of arcs

BOT Build-Operate-Transfer

Cl complexity index

Conf. Int. confidence interval

Cim activity cost of activity j when processed at mode m

G completion time of activity j

CR set of potentially critical activities

0 project due date

d; the difference between the upper bound and nominal

costs, dj; = Cjm —Cjm
DTCTP the discrete time/cost trade-off problem
DTCTP-D the deadline version of DTCTP

y the parameter that reflects the risk attitude of the
decision makers, i.e. only ) of activity cost parameters
are expected to incur at their upper bounds

M; set of executable modes for activity j

n number of non-dummy activities

N set of nodes

Dim activity processing time of activity j when processed at
mode m

v uncertainty factor, i.e. djm=.¢jm

S set of activities that have cost values at their
upper bounds

SDR slack duration ratio

0 the parameter to reflect tightness of deadline or restric-
tiveness of the budget

TS total slack

u binary variable to identify the activities with deviations
that influence the objective most

£ slack/duration threshold

Xjm binary variable showing whether mode m is assigned to

activity j or not

Appendix B. Proof of Proposition 1.

We could reformulate (1) as

f(y)=Min {i Z CimXjm +&(X):X € XD} ,where (6)

j=1meM;

n n
g =Max$ > > dipXjmlyj: Y u; <7y, ueB" Q)
j=1meM; j=1
Given a solution vector, x € XP, g(x) is a knapsack problem of
which LP relaxation has binary optimal solutions (see Theorem 1 of
Bertsimas and Sim, 2003), hence g(x) could be rewritten as

n n
g(x):Max{Z > dipXjmttj = Y_uj<y, 0<uy<1, j:l,...,n}
=1

j=1meM;
®

This knapsack problem has a non-empty feasible set, for any given 7.
Let U be the polytope that defines the feasible set, then U can be defined
as a convex combination of K vertex, uf = (u%,.. ,u,¥) fork=1,.. K
and one of them is the optimum solution of g(x). Thus we have

&) :1¥5§K{Z > dfmxfm“fk} )

j=1meM;

Note that the polytope does not depend on the solution vector, x.
Therefore the same set of extreme points could be used in solution
of g(x). If we set z=g(x) and define a constraint for each extreme
point of U, (6) could be reformulated as

n n
XI\E/I)EPZ{Z > GmXim+z:z2 > > ufdinXim, k:l....,K}

j=1meM; j=1meM;
(10)

Similarly, the deadline constraint could be defined as the
longest path in graph G should not be more than the time limit,
d. Combining the path constraints to satisfy deadline feasibility and
(10), Model 1 given in Eq. (2) is reformulated as equation set (4).
Note that we add the non-negativity constraint on z for the sake of
algorithmic convenience; otherwise z could be unrestricted in sign.
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Appendix C. Penalty function of the tabu search

In order to deal with the deadline constraint (1.3) and to
facilitate generation of feasible solutions throughout the search
process, we use the following adaptive penalty function proposed
by Kulturel-Konak et al. (2004).

500 =09+ Gros—fin) () an

The penalized and unpenalized objective function of a solution
vector x are denoted by f,(x) and f(x), respectively. Throughout the
search, the objective functions of the best solution is recorded and
the unpenalized objective function of the best solution found and
best feasible solution found are denoted by frs and fqn, respec-
tively. The distance of any solution vector x to the feasibility region
is measured with the difference between the makespan of the
solution and the deadline, which is denoted by d(x). The distance is
normalized and it scales itself by using an adaptive memory based
parameter NFT. By using the short term memory of the tabu search
algorithm and the value of the current move, NFT changes as
follows during the search process

NFT;+ (1 + %) if the current move is to a feasible solution

NFTj 1 = NFT; + (1+2R,)

otherwise

(12)

In(12),jis used as anindex to denote the iteration number and a
feasibility ratio of R; = Fj/T; is defined, where T; and F; denote the
size and the number of feasible solutions of the tabu list, respec-
tively. As an initial value, we have used a percent of the deadline
constraint, i.e. NFTy = 6x0.1.
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