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Abstract In traditional supply chain models it is generally assumed that full information is
available to all parties involved. Although this seems reasonable, there are cases where chain
members are independent agents and possess different levels of information. In this study,
we analyze a two-echelon, single supplier-multiple retailers supply chain in a single-period
setting where the capacity of the supplier is limited. Embedding the lack of information
about the capacity of the supplier in the model, we aim to analyze the reaction of the retail-
ers, compare it with the full-information case, and assess the value of information and the
effects of information asymmetry using game theoretic analysis. In our numerical studies,
we conclude that the value of information is highly dependent on the capacity conditions
and estimates of the retailers, and having information is not necessarily beneficial to the
retailers.

Keywords Value of information · Limited capacity · Rationing game

1 Introduction

Consider a set of retailers with a common supplier. The retailers are independent agents
serving geographically distant markets. The common supplier (from hereon ‘supplier’) has
a restricted capacity to serve the set of retailers in question. In many industries, it is infea-
sible for the supplier to build capacity that is sufficient to cover all possible demands of the

İ.S. Bakal (�)
Department of Industrial Engineering, Middle East Technical University, 06531, Ankara, Turkey
e-mail: bakal@ie.metu.edu.tr

N. Erkip
Department of Industrial Engineering, Bilkent University, 06800, Ankara, Turkey
e-mail: nesim@bilkent.edu.tr

R. Güllü
Industrial Engineering Department, Bogaziçi University, 34342, Istanbul, Turkey
e-mail: refik.gullu@boun.edu.tr

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Bilkent University Institutional Repository

https://core.ac.uk/display/52923032?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:bakal@ie.metu.edu.tr
mailto:nesim@bilkent.edu.tr
mailto:refik.gullu@boun.edu.tr


116 Ann Oper Res (2011) 191:115–135

downstream members of the supply chain, especially when demand is highly uncertain and
capacity expansion is costly or infeasible in the short or medium term. Hence, there is al-
ways a possibility that orders will exceed capacity. In such cases, the supplier cannot satisfy
the orders in full and should somehow allocate its capacity among them.

In this context, we consider a supply chain where the supplier has a pre-announced al-
location policy to ration the supplied product among the retailers, in case the total quantity
requested by the retailers exceeds the supply. The objective is to find the ordering quantity
for a retailer, and a non-cooperative game can be formed to determine the order quanti-
ties. This setting, where each retailer optimizes its own objective function, is known as ‘the
rationing game’. In the rationing game, it is usually assumed that all retailers know all per-
tinent information, including information about the supplier’s capacity.

Specifically, we analyze a two-echelon supply chain with multiple retailers and a single
supplier in a single-period model where the supplier has limited capacity to serve the re-
tailers. There are independent, random demands observed at the retailers. At the beginning
of the period, all retailers simultaneously place their orders and pay a down payment for
the procurement cost for their entire orders. Following the result of Gurnani and Shi (2006)
and without loss of generality, we say that the retailers pay for the entire procurement cost
of their orders (we further discuss this issue at the end of Sect. 3, after we introduce the
characterization of the expected costs of the retailers in (1) and (2)). The orders are not
satisfied immediately as the manufacturer has a production and transportation lead time. Af-
ter the lead time, the supplier allocates the quantity among the retailers and delivers their
orders. If the orders cannot be delivered in full, the supplier refunds the procurement cost
for the undelivered portion of the orders. It should be noted that the lead time we consider
merely reflects the time between the advance payment and the capacity allocation. That is,
the lead time is not long enough to cover more than one decision epoch or resolution of
capacity uncertainty, but it is long enough so that tying up a large amount of cash may have
financial consequences. In many cases, especially in supplier-driven supply chains, retail-
ers are forced to make advance payments for their orders in order to secure some portion
of the supplier’s capacity. If the time between these advance payments and the receipt of
goods is long, it places serious financial burdens on the retailers. We believe that our model
description involving lead time addresses this issue.

Using down payments is common in practice and well explored in the literature. Kiyotaki
and Moore (1997) describe the economic rationale behind using down payments in credit-
requiring operations (see pages 10 and 11 of the mimeo). The down payment considered is
in terms of a fixed proportion of the total procurement cost. Cvsa and Gilbert (2002) men-
tion the idea of franchise fees, which is a constant (not a percentage of the total procurement
value). In both cases, this prepayment, regardless of the amount paid in relation to the total
transaction, is necessary to reduce the supplier’s financial risks in initiating manufacturing.
The well-known supply chain trading agent competition (Arunachalam and Sadeh 2005)
makes use of a similar cost structure for procurements. Finally, Gurnani and Shi (2006) an-
alyze the issue of supplier reliability under asymmetric beliefs regarding the supplier. One
of the two cases analyzed is a down payment contract with overtrust, where the retailer be-
lieves that the supplier has a better-than-claimed probability of delivering the order quantity.
Under certain regularity conditions, they show that the optimal down-payment is equal to
the entire payment to be made to the supplier. We are inspired from this result in our model
setting, though the model we come up with also represents the situation where the down
payment is not necessarily the entire amount.

A proportional allocation mechanism, among other possibilities, is employed to ration
the limited production among the retailers not only because it is conceptually simple and
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easy to implement but also because it is one of the most commonly used mechanisms in
practice. Furthermore, it is probably the most intuitive and fair policy since it allocates more
to those that order more, that is, those in need. Hence, any retailer may increase its allocation
by simply increasing its order quantity, which is the main motivation for these mechanisms
to be called as ‘manipulable allocation mechanisms’. Linear and proportional allocation are
examples of this kind. (See Cachon and Lariviere (1999a, 1999b) for further information on
allocation mechanisms.)

In this setting, we consider a generalization of the above when full information on sup-
plier’s capacity is not available to some (or all) retailers. If full information is not available to
a retailer, then that retailer uses a probability distribution about the capacity of the supplier.
We assume that all demand and cost information is common knowledge.

We feel that the rationing game described above has not been properly investigated. Par-
ticularly, there are no clear managerial guidelines as to the benefits of a better understanding
of the supplier’s capacity process. Therefore, the main focus of our inquiry is to answer the
following questions:

1. Under what conditions does perfect information provide lower costs, and are there any
circumstances where it has a deteriorating effect on cost performance?

2. Assuming that one of the retailers has perfect capacity information, are there any incen-
tives for this retailer to reveal the available information to others?

Most of the studies in the literature assume that information asymmetry exists between
different levels of the supply chain and that the asymmetry usually stems from cost or de-
mand parameters or from inventory levels. Moreover, most of the problems are handled via
a leader-follower type gaming structure, where one of the echelons is assumed to have the
power of offering contracts. Our work differs from existing studies in important aspects.
We consider information asymmetry among parties that belong to the same echelon of the
supply chain; the information asymmetry regards the capacity of the supplier and retailers
are served from the same capacity pool.

Note that we are not concerned with the alignment of individual objectives by a system-
wide objective, in other words, a coordination mechanism. Information imperfection is the
most apparent characteristic dominating the structure in this environment.

Our main contributions may be summarized as follows:

1. The amount of capacity allocated to each retailer depends not only on its order but also
on the sum of the orders of the remaining retailers. We propose the use of a cost structure
under which retailers are required to pay the ordering cost (or parts of it) when they place
their order. If the quantity they receive is less than their initial order, the difference is
refunded at the time of delivery. We show that this cost structure provides an equilibrium
point regardless of the conditions on the capacity as long as the lead time is significant. It
is also shown to decrease the order amplification of the retailers. Furthermore, we show
that the competitive capacity rationing game may lack equilibrium when the lead time is
negligible.

2. With minor modifications, the analysis that we perform for the case where lead time is
significant is applicable to different settings as well. For instance, if the retailers pay a
certain fee for each unit they order regardless of whether they receive it or not, then the
resulting analysis is almost identical, even if lead time is negligible. This is also true for
the case where each retailer pays a portion of the unit cost for each unit ordered before
the allocation and it is not refunded even if its ration is less than its order (see Bakal
(2003) for a detailed discussion). Jemai et al. (2010) consider a similar cost structure in
a single-supplier, single-retailer context.
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3. We analyze the effects of information asymmetry among the retailers on their ordering
decisions and costs, and assess the value of capacity information to the retailers through
numerical computations. In our analytical derivations, we model the asymmetry in a
general form and let the retailers have estimates of the supplier’s probability density
function for the capacity. In our computations, however, we restrict ourselves to normal
distribution.

The rest of the paper is organized as follows: In Sect. 2, we summarize the related litera-
ture and our contribution. Section 3 describes the modeling framework, and Sect. 4 studies
the problem analytically. In Sect. 5, we summarize the computational study in order to as-
sess the value of perfect capacity information. We conclude with discussing the results and
proposing further research directions in Sect. 6.

2 Related literature

The value of information sharing and the effects of information asymmetry among different
parties in a supply chain have received a great amount of interest in recent years. With the
advances in information technology, firms are now able to keep track of every transaction;
this raises the questions of whether to share this information with the other interacting par-
ties or not, and to what extent information sharing should happen. Chen (2003) provides a
thorough review of this subject.

Lee and Whang (2000) describes the types of information shared in supply chains and
give examples of how information sharing is implemented in different industries. Karaes-
men et al. (2004) analyze the value of advance demand information for a single stage, capac-
itated manufacturing system where the capacity is modelled as a single-server queue. Aviv
and Federgruen (1998) study a two-echelon supply chain consisting of a single supplier and
multiple retailers where the retailers employ (m,β) policy, reviewing their inventory level
every m period and raise it to β . It is observed that centralization and sharing demand infor-
mation decrease supply chain costs. Gavirneni et al. (1999) and Gavirneni (2002) consider
a similar system where the retailer uses an (s, S) type inventory-replenishment policy. Lee
et al. (2000) examine a two-echelon supply chain with a single manufacturer and a single
retailer. The demand process at the retailer is a simple AR(1) process. Sharing demand in-
formation reduces the standard deviation of the lead time demand of the manufacturer and
hence lowers the inventory level and expected cost. Cachon and Fisher (2000) investigate
the value of inventory information in a one-warehouse multi-retailer system from a central-
ized perspective where both parties employ (Ri, nQi) policies. They evaluate the value of
information about the retailers’ real-time inventory status and conclude that smaller batch
sizes and shorter lead times are more valuable to the chain than just sharing the available
information.

There are also studies in the literature that address issues such as what mechanisms may
be employed to reveal the correct information and how the performance of the supply chain
is affected by the implementation of these mechanisms. Lau and Lau (2005) argue that the
classical Stackelberg game-type models under deterministic and symmetrical information
systems are flawed since gaming is meaningless and locally circular in such systems. They
claim that introduction of stochasticity and information asymmetry leads to more plausible
models. Corbett and de Groote (2000) consider a two-stage, deterministic lot-sizing prob-
lem and investigate the effects of information asymmetry regarding the retailer’s holding
cost. They primarily show that information asymmetry reduces the efficiency of the system,
but that contracting is more efficient than no form of coordination. Ha (2001) considers a
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price-sensitive newsboy model and proves that the centralized solution is no more available
when the marginal cost of the buyer is private information. Corbett et al. (2004) also assume
a price-sensitive, but linear demand model and conclude that information and flexibility of
contracts are strategic complements. Corbett (2001) studies a stochastic two-echelon inven-
tory system including ordering cost. He investigates information asymmetry regarding the
ordering cost of the supplier and the backorder cost of the buyer and concludes that the re-
sulting solution is always less efficient than the joint optimum. Lau and Lau (2001) consider
information asymmetry regarding demand under a newsboy structure where the manufac-
turer sets the wholesale price and the retailer selects the order quantity. They show that the
effect of information asymmetry depends on whether the manufacturer is aware that the re-
tailer has superior knowledge. Cachon and Lariviere (2001), on the other hand, investigate
information asymmetry regarding the initial demand forecast of the manufacturer. A rela-
tively different study comes from Lim (2001), who introduces a contract design problem of
a producer purchasing parts from a single supplier in the case of information asymmetry re-
garding the quality of the parts. Cachon and Zhang (2006) focus on a retailer-driven channel
where the supplier can regulate his lead time. They derive a complicated mechanism to min-
imize the retailer’s cost with imperfect information about the supplier’s cost and argue that
simpler mechanisms are nearly optimal. Wang et al. (2008) consider the interaction between
a supplier and a retailer where the retailer possesses private information on market size, mar-
ket sensitivity, and its own cost. They conclude that it is often not possible for the supplier to
induce the retailer to share its information. Wang et al. (2009), considering a retailer-driven
channel, complement this study by arguing that a supplier having private information about
its own cost does not usually have an incentive to share its information with the retailer. Liu
and Çetinkaya (2009) also consider a retailer-driven channel where the supplier has private
information about its cost. They study different contract types and conclude that the leader-
ship is not necessarily beneficial under information asymmetry. Li et al. (2009) investigate
advance commitment and option contracts when the retailer has superior information about
market demand and price. Yang et al. (2009) derive the optimal contract menu offered by a
manufacturer to a supplier having private information about supply disruptions.

Lee et al. (1997) consider the rationing concept in a single-period problem where a capac-
itated supplier serves N identical retailers, employing a proportional allocation mechanism.
They show that the optimal order quantity for the retailer exceeds the order quantity in the
traditional newsboy problem. Ehrhant (2002) considers the same setting working on two
cases: the buyers know the exact capacity vs. the buyers have a prior distribution function.
He shows that in both cases the retailers have an incentive to amplify their needs when
they expect that capacity will bind. Rong et al. (2008) consider a similar model under per-
fect (deterministic) and imperfect (stochastic) capacity information, and further assume that
the capacity of the supplier is insufficient to cover all retailers’ demands. They show that
the resulting game does not have an equilibrium. Furthermore, they introduce a reservation
payment to alleviate over-ordering in the perfect information case and show that the result-
ing game has an equilibrium. Their primary purpose is to investigate Bullwhip and Reverse
Bullwhip effects under this gaming structure. The work of Rong et al. (2008) is similar to
our study in that both papers consider a reservation payment to prevent excessive orders in a
rationing game. However, it should be noted that Rong et al. (2008) assume that the retailers
are identical and the capacity of the supplier is insufficient to cover all retailers’ demands.
In our study, we do not impose these assumptions. Furthermore, we investigate the imper-
fect information model with the reservation payment and investigate the incentives to share
perfect information. It should also be noted that the idea of reservation payment to alleviate
over-ordering was introduced by Bakal (2003), and forms the basis of our paper as well.
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Cachon and Lariviere (1999a) investigate allocation mechanisms and show that optimal
mechanisms are prone to manipulation, whereas truth-telling mechanisms do not maximize
retailer profits. Cachon and Lariviere (1999b) consider two independent retailers, each of
whom observes its market state privately, and analyze three different allocation mechanisms:
Linear, proportional, and uniform allocation. Dai et al. (2005) consider a distribution sys-
tem with one supplier and two retailers, where customers may go to the other retailer in
case of a stockout. They discuss inventory allocation and derive the necessary and suffi-
cient conditions for the existence of a Nash equilibrium. Cachon and Lariviere (1999c), on
the other hand, examine a two-period problem where the allocation of a retailer in the sec-
ond period depends on its sales in the first one. Deshpande and Schwarz (2002) consider
a similar setting but take the perspective of the retailer who has private information about
its demand. They show that the supplier’s capacity choice under information asymmetry
is lower than the capacity choice that maximizes centralized profits with full information.
The model presented in Mallik and Harker (2004) considers the allocation of the capacity
of manufacturing plants among different products having independent demands. They show
that both the product and manufacturing plant managers misrepresent their forecasts when
the distributions of the demands for the products and capacity for the plants are unknown
to the central planner. Schneeweiss and Zimmer (2004) analyze a two-echelon system con-
sisting of a producer and a supplier, each of whom may hold some private information. In
their numerical analysis, the effects of private information about the supplier’s capacity on
the performance of the supply chain are investigated. Note that the model does not include
any horizontal competition, hence, capacity allocation issues are not addressed.

Similar mechanisms are also employed in the allocation of aggregate demand among
retailers. The studies of Lippman and McCardle (1997), Wang and Gerchak (2001), and Ca-
chon (2003) are examples of such models. Cachon’s (2003) work has interesting analogies
with our work. First of all, he argues that there may not exist a Nash equilibrium, or there
may be multiple Nash equilibria, depending on the wholesale price of the supplier. In our
work, when the lead time is negligible, the resulting game possesses the same property, de-
pending on the supply conditions. In Cachon (2003), it is noted that the retailers order more
because of the demand-stealing effect, which coincides with order amplification in our case,
which retailers do to get a greater share of capacity.

3 Modeling framework

We consider a single-period problem where a supplier serves multiple retailers. The retail-
ers are local monopolies and are not in direct competition. There are independent, random
demands observed at the retailers. Let Xi be the random variable denoting the demand for
retailer i. At the beginning of the period, all retailers simultaneously announce their order
quantities and pay the unit cost for each item they order. Let zi be the order quantity for
retailer i. The orders are not satisfied immediately as the manufacturer has a production
and transportation lead time. The supplier has a restriction on the total amount that can be
supplied. Let S be the capacity of the supplier. Note that S is a deterministic quantity. How-
ever, a retailer which does not have information on the exact value of S uses an assessed
distribution for the supplier’s capacity in order to determine its order quantity. After the lead
time, if the capacity of the supplier is sufficient to satisfy the total order quantity of the re-
tailers, then each receives its order in full. Otherwise, the supplier allocates the capacity to
the retailers proportional to their order quantities. Let Q = ∑

i zi be the total order quantity
of the retailers, and Q−i = ∑

j �=i zj be the total quantity ordered by retailers other than i.
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Fig. 1 Problem environment

Then, the quantity allocated to retailer i is given by g(zi,Q−i , S) = min(zi,
ziS

Q
). Retailers

are refunded the unit cost of the items that they ordered but did not receive. After the receipt
of the orders, demands at the retailers are realized. Upon satisfying its demand, each retailer
incurs relevant costs (see Fig. 1).

There are three factors determining the allocation of a retailer: capacity of the supplier,
its individual order and the sum of the orders placed by other retailers. We assume that the
retailers do not have initial inventories at the beginning of the period and cannot influence
their allocations in any way other than by adjusting order quantities.

Here are the definitions of the variables and parameters used in the model:
Xi Continuous random variable denoting demand for retailer i

φi(x), �i(x) Density and distribution function of Xi

S Capacity of the supplier
S Random variable denoting the capacity of the supplier assessed by

the retailers who do not have perfect information
f (s), F(s) Density and distribution function of S
zi Order quantity for retailer i

Q Sum of orders of all retailers, that is Q = ∑
zi

Q−i Sum of orders of all retailers except retailer i, that is Q−i = ∑
j �=i zj

α Interest rate for the lead time period
c′ Unit procurement cost
h′ Overage cost incurred by the retailer for each unit on hand at the end

of the period
p′ Underage cost incurred by the retailer for each unit of demand unsatisfied
g(zi,Q−i , s) Amount received by retailer i when it orders zi units, other retailers order

a total of Q−i units, and supplier’s capacity is s, g(zi,Q−i , s) =
min(zi,

zi s

Q
).
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Given the sum of the order quantities of all other retailers, if full information is available to
retailer i, it computes its expected discounted cost function as

Ci(zi,Q−i ) = h′E[(g(zi,Q−i , S) − X)+] + p′E[(X − g(zi,Q−i , S))+]
1 + α

+ c′zi − c′(zi − g(zi,Q−i , S))

1 + α
,

where the first term represents the discounted inventory costs, the second term is the initial
procurement cost for the entire order, and the last term is the amount received at the end of
the period for the portion of the order not delivered. Defining c = c′/(1 + α),h = h′/(1 +
α),p = p′/(1 +α), L(z) = hE[(z−X)+]+pE[(X − z)+]+ cz, and rearranging the terms,
we get

Ci(zi,Q−i ) = L(g(zi,Q−i , S)) + cαzi . (1)

On the other hand, if full information is not available, retailer i computes its expected
discounted cost function as

Ci(zi,Q−i ) =
∫ ∞

0
L(g(zi,Q−i , s))dF (s) + cαzi . (2)

In this case, retailer i optimizes its order quantity using (2), which is computed over the
perceived capacity. Actual expected cost, on the other hand, should be computed over the
true capacity, that is, using (1).

Note that the above characterizations of the cost functions under full information (1) and
partial information (2) are valid in a setting where the lead time is negligible and the retailers
pay two-part linear costs, first part based on the quantity ordered (cα per unit) and second
part based on the quantity received (c per unit). Defining c = c′, h = h′,p = p′, we get the
same cost functions as in (1) and (2). Hence, our analysis in Sect. 4, and our findings through
computational analysis in Sect. 5, are valid for such a setting as well.

Given the above framework, we next characterize the rationing game. As we will show in
Sect. 4, the game has an equilibrium when the lead time is significant, that is α > 0, whereas
it may lack equilibrium when the lead time is negligible, that is α = 0.

4 Analysis of the rationing game

We first consider the setting where lead time is significant. The retailers pay the unit cost
for each unit they order at the time they place their orders. Once the orders are delivered,
retailers are refunded the unit cost for the difference between their order and the quantity
delivered. However, since lead time is positive, the retailers will have an additional cost
(time value), which increases in the order quantity. Hence, the order amplification of the
retailers will be less severe when compared to the model with no lead time. It should also
be noted that the resulting model also represents the case where the lead time is negligible
and the retailers pay a certain fee for each unit they order.

In the following subsections, we analyze the equilibrium under three main cases: (i) All
Informed Retailers (all retailers have full information) (ii) All Uninformed Retailers (none
of the retailers has full information), and (iii) K Informed Retailer (Only K of the retailers
have full information).
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Fig. 2 Response curve for (α = 0.7,p = 75, c = 30, h = 0, S = 200,μ1 = μ2 = 100, σ1 = σ2 = 20)

4.1 All informed retailers

With full information, the expected cost function of retailer i is as follows:

Ci(zi,Q−i ) =
{

L(zi) + cziα zi ≤ S − Q−i

L(Szi/Q) + cziα zi > S − Q−i
.

Although Ci(zi,Q−i ) is pseudo-convex in zi , the first order condition on Ci(ziQ−i ) is not
sufficient to generate the response curve of retailer i. However, we can still characterize the
response curve utilizing the first order condition:

Proposition 1 The response curve of retailer i is given by

RCi(Q−i ) =

⎧
⎪⎪⎨

⎪⎪⎩

yi Q−i ≤ S − yi

S − Q−i S − yi < Q−i ≤ Q0
−i

∂C(zi ,Q−i )

∂zi
= 0 Q0

−i < Q−i ≤ (p−c)S

cα

0 Q−i >
(p−c)S

cα

, (3)

where Q0
−i is the solution to (−p + c + (p + h)�i(S − Q−i ))

Q−i

S
+ cα=0, and yi is the

minimizer of L(y) + cαy.

Proof All proofs are provided in the Appendix. �

Figure 2 illustrates Proposition 1 for an example setting with two retailers where the
demands at the retailers are normally distributed. We observe that retailer i orders and re-
ceives its optimal uncapacitated order quantity when the total order quantity of all other
retailers is low enough (z2 < 109.35 for the example setting). When S − yi < Q−i ≤ Q0

−i

(109.35 < z2 < 121.64), it cannot get yi units by ordering yi . However, rather than increas-
ing its order quantity to get yi units, it decreases its order quantity such that the total or-
ders equal the capacity in order to avoid rationing. Note that there exists a threshold value,
Q−i = (p−c)S

cα
(z2 = 428.57), such that when Q−i exceeds this threshold, retailer i is better

off not ordering at all.



124 Ann Oper Res (2011) 191:115–135

Proposition 2 When there is a positive lead time between orders and deliveries, the ra-
tioning game with full information has a Nash equilibrium.

Proof All proofs are provided in the Appendix. �

Proposition 2 indicates that when the time value of money is not negligible, the resulting
rationing game has an equilibrium point. Furthermore, even if the lead time is negligible,
the game still has an equilibrium when the retailers make an initial, nonrefundable payment
for each unit they order.

4.2 All uninformed retailers

We next consider the case where retailers do not know the capacity of the supplier and
use a probability distribution function for it. We assume that the distribution function that
each retailer uses is the same, which is a reasonable assumption since the retailers do not
have full information; it is reasonable to assume that the information available to generate
the estimation of capacity is public. In this setting, the expected cost function perceived by
retailer i becomes

Ci(zi,Q−i ) = E[L(g(zi,Q−i , s))] + zicα. (4)

Retailer i will determine its order quantity using (4). However, it should be noted that the
true expected cost is given by (1) once the order quantities are determined.

Unfortunately, we cannot analytically prove that Ci(zi,Q−i ) is pseudo-convex. How-
ever, through extensive computations using a wide range of parameters and distributions,
we conjecture that Ci(zi,Q−i ) is pseudo-convex in zi .

Proposition 3 If Ci(zi,Q−i ) is pseudo-convex in zi , then the rationing game where re-
tailers do not have full information on capacity has a Nash equilibrium when lead time is
positive.

Proof All proofs are provided in the Appendix. �

We may gain further insights into the game by characterizing the response curve of retailer i:

Proposition 4 Let G(Q−i ) = (1 − F(Q−i )) + 1
Q−i

∫ Q−i

0 sdF (s). Then, for Q−i > 0, the
response curve of retailer i, RCi(Q−i ), is given by

RCi(Q−i ) =
{

{zi : ∂Ci (zi ,Q−i )

∂zi
= 0} Q−i ≤ G−1( −cα

−p+c
)

0 Q−i > G−1( −cα
−p+c

)
. (5)

Proof All proofs are provided in the Appendix. �

Hence, we may conclude that the retailers do not increase their order quantities indefinitely
when the lead time is not negligible. On the contrary, they refuse to order when the total
amount ordered by other retailers exceeds a threshold value, Q0

−i = G−1( −cα
−p+c

).
The exact behaviour of a retailer’s reaction would very much depend on cost, demand

and capacity parameters (see the Appendix for the analysis of the response curve). This is
mainly because of the tradeoff between underage/overage costs and the time value of money
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Fig. 3 Response curve for (α = 0.45,p = 75, c = 30, h = 0,μS = 200, σS = 200/3,μ1 = μ2 = 100,

σ1 = σ2 = 20)

due to the lead time. Assume that z∗
i is the optimal response of retailer i to a given Q−i .

When Q−i increases, z∗
i is no longer optimal for retailer i since capacity allocated to this

retailer decreases if its order quantity remains z∗
i . Hence, an increase in Q−i affects the costs

of retailer i in two ways: expected underage cost incurred increases, while overage cost
decreases. By increasing its order quantity, the retailer may reduce the effects of increasing
underage costs. However, because of the lead time, increasing the order quantity increases
the cost due to the time value of money as well. Figure 3 illustrates the optimal response
of a retailer to the order quantity of the other retailer when the retailer’s assessment for the
distribution of capacity is normal with mean μS = 200 and standard deviation σS = 200/3.
In this example setting, Retailer 1 increases its order quantity until z2 = 318.14. However,
after this threshold value, the increases in the costs of time value and overage outweigh
the decrease in underage cost, as a result of an increase in z1. Hence, Retailer 1 starts to
decrease its order quantity when z2 increases beyond the threshold value. When z2 hits
666.69, Retailer 1 is better off not ordering at all.

4.3 K informed retailers

We start considering a special case where only one of the retailers, Retailer 1, has full in-
formation on the capacity of the supplier (K = 1). Other retailers do not know that Retailer
1 has full information and they share the same prediction of supply, in other words, use
the same probability distribution of supply. In such a case, all retailers but Retailer 1 will
determine their order quantities as characterized in the case where none of the retailers has
full information, given in Sect. 4.2. That is, the retailers other than Retailer 1 will determine
their order quantities using (4) and assuming that all other retailers use the same capacity
distribution. On the other hand, Retailer 1 will be able to determine the order quantities of
the other retailers beforehand by characterizing their equilibrium behavior, and arrange its
own order quantity accordingly, utilizing the full information and using (3).

We illustrate the above discussion for an example data set in Fig. 4. In this example,
Retailer 2 does not have perfect information and estimates that the capacity is normally
distributed with mean 200 and standard deviation 200/3. It also assumes that Retailer 1
operates using the same distribution. However, Retailer 1 has perfect capacity information
that S = 200. Retailer 2 determines the equilibrium point using (5), which is (z1, z2) =
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Fig. 4 Only retailer 1 has perfect information: (α = 0.1,p = 75, c = 20, h = 0,μS = 200, σS = 200/3,

S = 200,μ1 = μ2 = 100, σ1 = σ2 = 20)

(250.82,250.82). Hence, the optimal order quantity of Retailer 2 is 250.82. Retailer 1 also
characterizes this equilibrium and hence determines the order quantity of Retailer 2. Its
response curve is characterized by (3) (the grey curve in the figure). Given the order of
Retailer 2, the optimal order quantity for Retailer 1 is 273.88.

The arguments above can be extended to the case where a group of retailers has perfect
information. Let A and B denote the set of retailers with and without perfect information,
respectively. Then, retailer j ∈ B will determine its order quantity assuming that all retail-
ers lack perfect information, that is, by solving for the equilibrium of the game where all
retailers lack perfect information. If each retailer i ∈ A believes that all other retailers (even
those in A) lack perfect information, then it determines the equilibrium of the aforemen-
tioned game, and assuming that all other retailers will operate at that point, it characterizes
its optimal order quantity as in Proposition 1. If every retailer i ∈ A is aware that all retailers
in A have perfect information, its optimal order quantity is determined as follows: Retailer
i knows that any retailer j ∈ B operates at the aforementioned equilibrium. Given their or-
der quantities and being aware that any retailer in A has the same information, it solves for
the equilibrium among the retailers in A characterized by the response curves provided in
Proposition 1.

We illustrate the above discussion for a three-retailer system where Retailer 1 and Re-
tailer 2 have perfect information, whereas Retailer 3 does not. The parameters used in the ex-
ample are (α = 0.1,p = 75, c = 20, h = 0,μS = 350, σS = 70, S = 300,μ1 = μ2 = μ2 =
100, σ1 = σ2 = σ2 = 20). We focus on the optimal order quantity of Retailer 1. Retailer 3,
being unaware that the other retailers have perfect information, obtains the equilibrium point
assuming that the other retailers use the same capacity distribution. Its optimal order quan-
tity is 117.1 and it expects the other retailers to place the same order (since all retailers are
identical in the example). Retailer 1 and Retailer 2 are aware that Retailer 3 will place an
order of 117.1. If Retailer 1 is not aware that Retailer 2 has perfect information and vice
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versa, then it believes that Retailer 2 will place an order of size 117.1 and optimizes its own
order accordingly. The optimal order size is 134.5. On the other hand, if it is aware that
Retailer 2 also has perfect information, its order quantity is 155.6.

4.4 Negligible lead time

In this section, we briefly comment on the setting where lead time is negligible (α = 0). The
reader may refer to Bakal (2003) for a thorough analysis of this setting.

When all retailers have full information about the capacity of the supplier, the resulting
rationing game does not have an equilibrium point if the capacity of the supplier, S, is
smaller than

∑
yi . When S >

∑
yi , the game has a unique equilibrium. When S = ∑

yi ,
the game has an infinite number of equilibria.

When none of the retailers has full information about the capacity of the supplier, since
limzi→∞ g(zi,Q−i , S) = S, the expected cost function reduces to limzi→∞ Ci(zi,Q−i ) =
E[L(S)], which is finite for most of the distributions. Noting that the strategy space for
the rationing game is unbounded, we may conclude that sufficient conditions for a Nash
equilibrium to exist are not satisfied and the model may lack a Nash equilibrium. When
the upper bound on the support of the distribution function, S, is lower than the sum of the
newsboy order quantities of the retailers, that is,

∑
yi , the resulting game does not have a

Nash equilibrium point. When the lower bound, S, is greater than
∑

yi , the resulting game
has a unique Nash equilibrium point. For the case where S ≤ ∑

yi ≤ S, we cannot directly
comment on the existence and uniqueness of the Nash equilibrium. However, extensive cal-
culations and analysis performed using different parameters and capacity distributions show
that, given all parameters and density functions, there exist m1 and m2 such that

– when E[S] < m1, the rationing game does not have a Nash equilibrium.
– when m1 < E[S] < m2, there are two Nash equilibria.
– when E[S] > m2, there is a unique Nash equilibrium.

The case where K of the retailers have perfect information can be analyzed as in Sect. 4.3.

5 Computational analysis

In this section our aim is to analyze how order quantities and expected costs of the retail-
ers react to changes in problem parameters, and to provide managerial insights regarding
the questions posed in Sect. 1 by computationally analyzing (i) benefits of capacity infor-
mation, and (ii) incentives to share information. For these purposes, we restrict the number
of retailers to two for computational tractability (denoted by R1 and R2), and we consider
three different settings: (i) Both retailers are informed (Both Informed), (ii) Both retail-
ers are uninformed (Both Uninformed), and (iii) Only one retailer is informed (Only Ri

is Informed). Note that the first two cases represent supply information symmetry among
retailers, whereas the third one represents information asymmetry.

The expected costs of the retailers will be calculated using the true capacity of the sup-
plier once their order quantities are determined. It should also be noted that the costs are
calculated at the time orders are delivered. The demand observed by Ri is a normal random
variable with mean μi and coefficient of variation cvi .
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Table 1 Data set for the computational study

α p h c μ1 μ2 cv1 cv2 r b cvs

0.1 60 0 20 80 100 0.1 0.2 1 1 0.1

75 100 0.2 1.2 1.2 0.2

90 120 0.3 0.3

Table 2 Value of information: demonstrative examples, both uninformed vs both informed

r b Perfect information No information % Gain

z1 z2 g(z1, z2) g(z2, z1) z1 z2 g(z1, z2) g(z2, z1)

1.2 1 113.8 113.8 113.8 113.8 498.1 498.1 120 120 22.0

1 1 625 625 100 100 498.1 498.1 100 100 −6.8

1 1.2 625 625 100 100 118.7 118.7 100 100 −34.3

1.2 1.2 113.8 113.8 113.8 113.8 118.7 118.7 118.7 118.7 0.56

5.1 Value of perfect information

In this section, we aim to quantify the value of perfect capacity information from the per-
spective of the first retailer. For this matter, we perform the following comparisons: (i) Both
Uninformed versus Both Informed, which quantifies the value of perfect information to R1

when information is available to both retailers, (ii) Both Uninformed versus Only R1 is
Informed, which considers the value of information when only R1 gets to know the exact
capacity, and (iii) Only R2 is Informed versus Both Informed, which measures the value of
information to R1 when R2 already has the information. In case (i), we assume that infor-
mation is made public, that is, each retailer gets perfect information, and is aware that the
other retailer has perfect information as well. On the other hand, in cases (ii) and (iii), the
retailer that has perfect information receives it privately. Hence, it assumes that the other
retailer does not have perfect information. Table 1 gives the parameter values used for com-
putational analysis. Note that the capacity of the supplier is given by (S = r × (μ1 + μ2)).
Hence, r = 1 corresponds to the case where the actual capacity is insufficient to cover the
needs of the retailers, whereas r = 1.2 indicates that it is sufficient.

We also provide summaries of the results for a number of examples to illustrate the
change in order quantities and expected costs due to perfect information. Common param-
eters used in all such examples are α = 0.1,p = 90, h = 0, c = 20,μ1 = μ2 = 100, cv1 =
cv2 = 0.2, and cvs = 0.2. Recall that zi and g(zi, zj ) denote the order quantity and final
allocation of retailer i, respectively. ‘%Gain’ columns in the corresponding tables depict the
improvements in expected cost due to perfect information, that is,

%Gain = C1(z1, z2) without perfect information − C1(z1, z2) with perfect information

C1(z1, z2) without perfect information
.

5.1.1 Both uninformed versus both informed

We start with the analysis of the value of information to R1 when it is available to both
parties. Table 2 provides demonstrative examples for this setting under different r and b

values. Note that r = S/(μ1 + μ2), and b = E[S]/(μ1 + μ2).



Ann Oper Res (2011) 191:115–135 129

We first consider the case where the retailers estimate the capacity to be insufficient
(b = 1). In this case, order quantities are much higher than what they will actually get, es-
pecially when p is high. If actual capacity is ample (r = 1.2), and capacity information is
revealed to both retailers, the expected costs of the retailers always decrease, since perfect
information results in reduced order quantities (see Table 2, Row 1 for an example). Re-
duced orders benefit the retailers in two aspects: (i) the loss due to the time value of money
decreases since less is paid in advance, and (ii) expected excess inventory decreases. The
average decrease in the expected cost of R1 is 14.6%. Note that the decrease will be higher
if actual capacity is larger as this will cause excess inventory to be higher when the retail-
ers do not have perfect capacity information. If the coefficient of variation of capacity is
higher, that is, if the retailers perceive capacity as more variable, the benefits of informa-
tion is lower since higher uncertainty decreases the order quantities. Similarly, when p gets
higher, the benefits get more significant. If actual capacity is insufficient (r = 1) and retail-
ers estimate the capacity to be insufficient as well (b = 1), then perfect information always
results in a loss for the retailers. This is because uncertainty has a decreasing effect on the
order quantities of the retailers. The allocations are almost the same regardless of the level of
information (see Table 2, Row 2 for an example). Hence, perfect information increases the
degree of competition between the retailers for the capacity and increases order quantities,
which results in higher costs. In this case, as the retailers’ perception of capacity becomes
more uncertain, the percentage loss from perfect information increases as well.

We now consider the case where the retailers estimate that mean capacity is sufficient to
cover their needs. In this case, the order quantities of the retailers are close to their actual
needs since they do not engage in a fierce competition for capacity. Hence, if actual capacity
is insufficient, the capacity will be rationed between the retailers according to their needs
when they do not have perfect information. On the other hand, when capacity information
is revealed, the retailers will compete for the insufficient capacity and increase their order
quantities. Their allocations will remain almost the same as in the no-information case,
resulting in increased costs. Hence, we may deduce that perfect information will increase
the costs of the retailers (see Table 2, Row 3). The increase is 22% on the average for the data
set we consider. On the other hand, if actual capacity is sufficient as the retailers estimate it
is, perfect information always benefits the retailers (an example: Table 2, Row 4). However,
the gain is insignificant, 0.27% on the average.

To sum up, when information is available to both parties, its value depends on the level
of actual capacity. If actual capacity is sufficient to cover the retailers’ needs, it is always
beneficial. If the retailers believe that capacity was insufficient, the gain with information
can be as high as 30%. Otherwise, perfect information increases the degree of competition
for capacity, which hurts the retailers, especially if the retailers estimate the capacity to be
sufficient. In that case, the loss can be as high as 36.7%.

5.1.2 Both uninformed versus only R1 is informed

We now consider the case where perfect information is only available to R1 (see Table 3 for
demonstrative examples). In this case, perfect information always benefits R1. The value of
information is most significant when actual capacity is sufficient, but the retailers estimate
that it is scarce; the maximum and average gains are 11.25% and 5.07%, respectively. In such
a case, perfect information prevents R1 from placing an unnecessarily large order, which
would result in higher costs due to advance payment and excess inventory (for instance,
Table 3, Row 1). Percentage gain decreases as the uncertainty in the retailers’ estimates
increase. The gain is still significant when actual capacity is insufficient, but retailers expect
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Table 3 Value of information: demonstrative examples, both uninformed vs only R1 is informed

r b Perfect information No information % Gain

z1 z2 g(z1, z2) g(z2, z1) z1 z2 g(z1, z2) g(z2, z1)

1.2 1 397.7 498.1 106.6 133.4 498.1 498.1 120 120 4.5

1 1 521.54 498.1 102.3 97.7 498.1 498.1 100 100 0.16

1 1.2 148.4 118.7 111.1 88.9 118.7 118.7 100 100 3.7

1.2 1.2 113.8 118.7 113.8 118.7 118.7 118.7 118.7 118.7 0.56

Table 4 Value of information: demonstrative examples, only R2 is informed vs both informed retailers

r b Perfect information No information % Gain

z1 z2 g(z1, z2) g(z2, z1) z1 z2 g(z1, z2) g(z2, z1)

1.2 1 397.7 397.7 120 120 498.1 397.7 133.4 106.6 9.6

1 1 521.5 521.5 100 100 498.1 521.5 97.7 102.3 0.41

1 1.2 148.4 148.4 100 100 118.7 148.4 88.9 111.1 9.8

1.2 1.2 113.8 113.8 113.8 113.8 118.7 113.8 118.7 113.8 0.56

Table 5 % decrease in costs due to perfect information over all combinations of parameters

Actual capacity–Average capacity Estimate

Scarce–Scarce Ample–Ample Ample–Scarce Scarce–Ample

Both versus Neither −6.7 0.3 14.6 −22.0

Only R1 versus Neither 0.2 0.3 5.1 2.2

Both versus Only R2 0.6 0.3 8.9 5.7

it to be sufficient (maximum and average, 5.57% and 2.23%, respectively). In this case, R2,
thinking that there is not a competition for capacity, places an order close to its actual need.
On the other hand, R1, having the information that capacity is scarce, will order more to
get a greater share of the limited capacity (see Table 3, Row 3). When actual capacity and
estimates are both ample/scarce, the gain due to perfect information is almost negligible.

5.1.3 Only R2 is informed versus both informed

We now quantify the value of perfect information to R1 when R2 has perfect information (see
Table 4 for examples). Note that R1 is not aware that R2 has perfect information. Similarly,
when R1 acquires capacity information, R2 is not aware either.

We observe that perfect information always benefits R1. The benefits are substantial when
the mean estimate is scarce, but actual capacity is sufficient. In this case, the average and
maximum decreases in the expected costs of R1 are 8.93% and 16.09%, respectively. Sav-
ings with perfect information decreases in the coefficient of variation of capacity. The bene-
fits are still significant when the actual capacity is scarce and the mean estimate is sufficient.
However, when both actual capacity and retailers’ estimates are scarce/ample, perfect infor-
mation does not lead to a significant decrease in R1’s expected costs.

Table 5 summarizes our findings on the value of perfect information over all combina-
tions of parameters presented in Table 1. Note that if limited information leads retailers to
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estimate an ample capacity, there is not much incentive for R1 to seek perfect information
as the gain would be insignificant in most cases. Furthermore, if actual capacity turns out to
be scarce and this information is revealed to both retailers, the expected cost of R1 increases
considerably. On the other hand, if R1 believes that capacity is scarce, then it is better to
seek perfect information. If actual capacity turns out to be ample, the gain will be substan-
tial. However, R1 should also be aware that if actual capacity is scarce as expected and R2

also knows it, its resulting expected cost will be much higher when compared to the case
without perfect information.

5.2 Incentives on information sharing

In this section, we identify the cases where R1 has an incentive to share the perfect informa-
tion with R2 and where it is not beneficial for R1 to reveal it. Note that we do not investigate
the mechanisms to induce truthful information sharing; the design of such mechanisms that
would achieve this is beyond the scope of this study. Instead, we compare the following cir-
cumstances and identify when it is beneficial for R1 to reveal the information: (Only R1 has
perfect information) vs. (Both have perfect information). Note that when only R1 has per-
fect information, R2 does not know that R1 has it. However, when R1 shares the information
with R2, both parties know that the other party has perfect information.

If capacity is insufficient to cover the demand, R1 is better off not sharing the capacity
information. Even if R2 correctly estimates it to be scarce, without perfect information, R2

operates under uncertainty, which prevents it from increasing its order quantity as much as
in the deterministic case. Since perfect information will cause R2 to increase its order, R1

will have to increase its order as well to maintain its allocation, which results in an increase
in expected costs. Maximum and average increases in the expected cost of R1 are 15.54%
and 6.92%, respectively. The loss due to information sharing increases if the coefficient of
variation increases. The increase in the cost of R1 due to information sharing is even higher
if R2’s estimate indicates a sufficient capacity, but actual capacity is scarce. In this case,
without perfect information, the order quantity of R2 is close to its need. Being aware of
actual capacity, R1 need not increase its order quantity too much to get the allocation it
wants. However, information sharing will cause R2 to increase its order, which prevents R1

from securing its desired level of allocation with a relatively small order. In this case, the
increase in the expected cost of R1 can be as high as 41.4%, the average being 24.91%.

If actual capacity is sufficient, R1 has an incentive to share perfect information. Although
the benefit is negligible when the estimate of R2 is also sufficient, it can be as high as 21.82%
when the estimate is scarce. The average gain due to sharing is 10.09% in this case. The
benefits increase in cvs and p.

6 Conclusion

In the literature, there are few studies that analyze a capacitated model where multiple re-
tailers compete for limited capacity. Lee et al. (1997) consider a single-period problem with
capacitated supply and show that order quantities of the retailers are amplified when the sup-
plier has a capacity constraint and proportional allocation mechanism is employed. However,
the existence and uniqueness of a Nash equilibrium are not addressed. Also, the magnitude
of the amplification under different settings is not considered. Interestingly, there is no study
in the literature that investigates the value of perfect capacity information to the retailers.

In this study, we modify the “rationing game” described in Lee et al. (1997) such that the
retailers pay the procurement cost when they place their orders, and they are refunded for
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the amount that they do not receive due to capacity restriction. In this setting, we show that
given cost and demand parameters, if the lead time between order placement and delivery is
negligible, the resulting game may lack equilibrium, may have multiple equilibria, or may
have a unique equilibrium, depending on the capacity parameters. The non-equilibrium case
occurs when the capacity of the supplier is too limited to satisfy the orders. In this case, the
amplification of retailer orders is so severe that an equilibrium point does not exist. On the
other hand, if the lead time is greater than zero such that time value of money during the lead
time matters, we prove the existence of an equilibrium. These discussions are also valid in
a setting where there is no lead time but the retailers pay a two-part linear cost, the first part
based on the quantity ordered and the second part based on the quantity received. In such a
setting, a positive payment on quantity ordered corresponds to a positive lead time, and no
payment on quantity ordered coincides with a negligible lead time. We then try to observe
the effects of information asymmetry about the capacity conditions under different settings
and assess the value of information. Particularly, we conclude that perfect information is
beneficial to retailers when it enables them to decrease their order quantities under tight
capacity cases. We also observed that perfect capacity information may have a detrimental
effect on retailers’ costs when actual capacity is scarce and information is made available to
all parties. Upon analyzing incentives to share information, we observe that the retailer with
perfect information is reluctant to reveal the information when capacity is scarce, whereas
information sharing provides considerable benefits when the capacity is ample.

One of the possible extensions to this study is to include the supplier as a player in the
analysis. Recall that the unit cost of the item and the capacity are determined exogenously
in our model. When the supplier is included in the analysis as trying to maximize his profit,
these parameters may be used as decision variables and a contracting scheme may be gen-
erated upon them. However, this approach may complicate the analysis significantly and
hence some simplifying assumptions may be needed. There may also be extensions where
the problem is addressed in a multi-period setting. The retailers may update their initial es-
timates of capacity according to the realizations of it. However, the analysis of that problem
may be too difficult to handle in such a setting.

Appendix

Proof of Proposition 1

The derivative of C(zi,Q−i ) with respect to zi is given by

∂C(zi,Q−i )

∂zi

=
{−p + c + (p + h)�i(zi) + cα zi < S − Q−i

(−p + c + (p + h)�i(
Szi

Q
))S

Q−zi

Q2 + cα zi > S − Q−i
. (6)

When Q−i = 0, equating the derivative of the cost function to zero yields the response of
Retailer 1, which is zi = yi . This is the case until Q−i = S − yi , where the sum of the
orders equals the capacity. When Q−i = S − yi , the cost-minimizing zi will be yi and the
minimum of the cost function will occur when Q = S, the breakpoint, and the derivative of
the first part is equal to zero. At this point, the derivative of the second part is greater than
zero. When we increase Q−i , the derivative of the first part will be negative when Q = S

since zi < yi . The derivative of the second part will continue to be positive until Q−i = Q0
−i ,

implying that the minimum occurs at zi = S − Q−i , where neither of the derivatives is zero.
Therefore for Q−i values between S − yi and Q0

−i , neither of the derivatives is zero and the



Ann Oper Res (2011) 191:115–135 133

minimum of the cost function occurs at zi = S − Q−i . After this point, the minimum of the
cost function occurs when Q > S and thus the derivative of the cost function characterizes
the response curve until Q−i = (p−c)S

cα
. From this point on, the derivative is always positive,

indicating that it is optimal for retailer i not to order at all.

Proof of Proposition 2

The proposition directly follows from Theorem 4.3 and Corollary 4.2 of Basar and Oldser
(1995).

Proof of Proposition 3

The proposition directly follows from Theorem 4.3 and Corollary 4.2 of Basar and Oldser
(1995).

Proof of Proposition 4

dG(Q−i )

dQ−i
= − 1

Q2−i

∫ Q−i

0 sdF (s) < 0. Hence, G(Q−i ) is strictly decreasing and invertible.

Response curve of retailer i is defined as the set of cost-minimizing order levels of re-
tailer i, given Q−i . For Q−i ≤ G−1( −cα

−p+c
), that is, G(Q−i ) ≥ −cα

−p+c
, dCi (zi )

dzi
has a unique

solution. Since Ci(zi) is pseudo-convex, the unique solution is the cost-minimizing point.
For Q−i > G−1( −cα

−p+c
), that is, G(Q−i ) < −cα

−p+c
, Ci(zi) is strictly increasing. Because of

pseudo-convexity, it is minimized at the lower bound of zi , which is 0.

Behaviour of the response curve

dRCi(Q−i )

dQ−i

= d(dCi(zi)/dzi = 0)

dzi

= −∂2Ci(zi,Q−i )/∂zi∂Q−i

∂2Ci(zi,Q−i )/∂z2
i

= P1(zi,Q−i )

P2(zi,Q−i )
,

where

P1(zi,Q−i ) = zif (Q)

Q
[−p + c + (p + h)�i(zi)] +

∫ Q

0

sziQ−i

Q4
(p + h)φi

(
szi

Q

)

sdF (s)

+
∫ Q

0

2Q−i − Q

Q3

(

−p + c + (p + h)�i

(
szi

Q

))

sdF (s),

P2(zi,Q−i ) = −zif (Q)

Q
[−p + c + (p + h)�i(zi)] + (p + h)φi(zi)(1 − F(Q))

+
∫ Q

0

sQ2
−i

Q4
(p + h)φi

(
szi

Q

)

sdF (s)

−
∫ Q

0

2Q−i

Q3

(

−p + c + (p + h)�i(
szi

Q
)

)

sdF (s).

P2(zi,Q−i ) is positive at the points on the response curve since the cost function is pseudo-
convex. Hence, in order to comment on the behavior of RCi(Q−i ) with respect to a change
in Q−i , it is sufficient to analyze P1(zi,Q−i ).
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Recall that retailer i has a positive response when Q−i = 0 and there exists a Q0
−i value

beyond which it does not order at all. Let us first analyze the behavior of RCi(Q−i ) at
(zi,Q−i ) = (0,Q0

−i ). At this point,

P1(0,Q0
−i ) =

∫ Q0−i

0
− p − c

(Q0
−i )

2
sdF (s) < 0.

Therefore, we may conclude that RCi(Q−i ) is decreasing when Q−i = Q0
−i . Now consider

the case where Q−i = 0. At this point,

P1(zi,0) = f (zi)[−p + c + (p + h)�i(zi)] −
∫ zi

0

1

z2
i

[−p + c + (p + h)�i(s)]sdF (s).

Note that the first order condition for the point (zi,Q−i ) = (zi,0) is

[1 − F(zi)][−p + c + (p + h)�i(zi)] + cα = 0. (7)

[−p + c + (p + h)�i(zi)] should be negative in order for (7) to hold. Hence we cannot
determine whether P1(zi,0) is positive or negative when Q−i = 0, that is, RCi(Q−i ) may be
increasing or decreasing, which is dependent on the parameters related to demand, capacity,
and cost.
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