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This study was designed to investigate the hypothesis that the toxic effects of di(2-ethylhexyl)phthalate
(DEHP), the most abundantly used plasticizer and ubiquitous environmental contaminant that cause
alterations in endocrine and spermatogenic functions in animals is mediated through the induction of
reactive oxygen species (ROS) and activation of nuclear p53 and p21 proteins in LNCaP human prostate
adenocarcinoma cell line. Protective effects of two selenocompounds, sodium selenite (SS) and selenome-
thionine (SM) were also examined. It was demonstrated that 24 h exposure of the cells to 3 mM DEHP or
its main metabolite, mono(2-ethylhexyl)phthalate (MEHP, 3 1M) caused strongly amplified production of
ROS. Both SS (30 nM) and SM (10 uM) supplementations reduced ROS production, and p53 and p21 acti-
vation that induced significantly only by MEHP-exposure. The overall results of this study indicated that
the induction of oxidative stress is one of the important mechanisms underlying the toxicity of DEHP and
this is mainly through the effects of the metabolite, MEHP. Generated data also emphasized the critical
role of Se in modulation of intracellular redox status, implicating the importance of the appropriate Se

status in cellular response against testicular toxicity of phthalates.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

The tumor suppressor protein p53 is a transcription factor con-
trolling cell cycle progression, cell survival, and DNA repair in cells
exposed to genotoxic as well as non-genotoxic stresses (Hainaut
and Hollstein, 2000; Pluquet and Hainaut, 2001). p53 is constitu-
tively expressed in a latent form in most cells and tissues. Exposure
to DNA-damage induces p53 to accumulate in the nucleus in an ac-
tive form with high affinity for specific DNA sequences, after post-
translational modifications at both N and C terminus of the protein
(Pluquet and Hainaut, 2001). Activated p53 binds to DNA and reg-
ulates the transcription of several sets of target genes, including

Abbreviations: CM-H,DCFA, 5-(and 6-) chloromethyl-2’,7’-dichlorodihydrofluo-
rescein diacetate; DAB, 3,3’'-diaminobenzidine; DCF, 2’,7'-dichlorofluorescein;
DEHP, di(2-ethylhexyl)phthalate; DR5, death receptor 5; FBS, fetal bovine serum;
FCS, fetal calf serum; GPx, glutathione peroxidase; MEHP, mono(2-ethyl-
hexyl)phthalate; NAC, N-acetylcysteine; PBS, phosphate buffered saline; PP,
peroxisome proliferator; PPARa, peroxisome proliferator-activated receptor o;
PPARY, peroxisome proliferator-activated receptor y; ROS, reactive oxygen species;
Se, selenium; SM, selenomethionine; SS, sodium selenite; TrxR, thioredoxine
reductase.
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effectors of the cell cycle (p21/WAF1/Cip1, 14-3-3s, GADD45),
apoptosis (Bax1, CD95/APO-1/FAS, AIP1), and DNA repair (p53R2)
(Hainaut and Hollstein, 2000; Vousden and Lu, 2002; Fei and
El-Deiry, 2003; Hofseth et al., 2004).

p21 was discovered as a “senescent cell-derived inhibitor”,
binds to the G;-S/CDK (G;-S/cyclin-dependent kinase, CDK2) and
S/CDK complexes, the molecules important for the G¢/S transition
in the cell cycle. p21 inhibits the activities of these molecules,
and thus functions as a regulator of cell cycle progression at Gj.
The expression of p21 is tightly controlled by p53, through which
the p53 protein mediates the p53-dependent cell cycle G; phase
arrest in response to a variety of stress stimuli (Harper et al.,
1993; Gartel and Radhakrishnan, 2005).

Oxidative stress and reactive oxygen species (ROS) are known to
play important roles in many physiological processes (Ames, 1999;
Halliwell and Cross, 1994). In contrast, several studies have
provided evidence that free radical-induced oxidative damage of
cell membranes, DNA and intracellular proteins might be the cause
of several degenerative diseases, including cancer (Barnham et al.,
2004). The activation of tumor suppressor gene, p53, by a variety of
cellular responses including DNA damage pathway induced by ROS
has received high importance in the last decade (Ozturk et al.,
2009). Several environmental chemicals, including phthalates,
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have been shown to induce apoptosis and senescence in the repro-
ductive tract of rodents through p53 induction (Parmar et al., 1995;
McKee et al., 2006).

Di(2-ethylhexyl)phthalate (DEHP), a phthalate derivative and a
well-known peroxisome proliferator (PP), is widely used as a plas-
ticizer in the manufacture of PVC plastics. Its widespread use leads
to significant human exposures through contaminated foods, food
packaging, or medical products (Koo and Lee, 2004; McKee et al.,
2004; Silva et al., 2006). DEHP is rapidly metabolized to its major
metabolite mono(2-ethylhexyl)phthalate (MEHP) in liver, and
MEHP is even more toxic than the parent compound. DEHP dis-
turbs the quality and/or quantity of sperms, induces testicular
atrophy in rodents (Parks et al., 2000; Jarfelt et al., 2005; Borch
et al,, 2006; Erkekoglu et al., 2011), and was shown to increase
p21 expression in rat testis (Ryu et al., 2007). MEHP was reported
to selectively induce oxidative stress and release cytochrome c
from mitochondria in germ cells, thereby inducing apoptosis of
spermatocytes and causing testicular atrophy (Kasahara et al.,
2002). MEHP was also shown to cause increased p53 stability
and elevation of death receptor 5 (DR5) mRNA levels coincident
with the increases in the levels of apoptosis in the spermatocytes
of C57BL/6 mice (Ryu et al., 2007).

Numerous enzymatic and nonenzymatic antioxidants contrib-
ute to cellular protection against oxidative stress, and studies have
shown that antioxidants can suppress or delay apoptosis by acting
as scavengers of ROS (Zamzami et al., 1995; Ishige et al., 2001).
Among other antioxidants, selenium (Se), with its several cellular
forms, is involved in the modulation of intracellular redox equilib-
rium (Oberley et al., 2000; Steinbrenner and Sies, 2009). Low die-
tary Se intakes in humans are associated with health disorders
including oxidative stress-related pathologies, reduced fertility
and immune functions (Broadley et al., 2006), and increased risk
of cancers (Clark et al.,, 1991). As a component of the antioxidant
enzyme families of glutathione peroxidase (GPx) and thioredoxine
reductase (TrxR), Se is involved in the protection of cells from
intracellular ROS (Ursini et al, 1995; Mustacich and Powis,
2000). It has been shown that Se could modulate DNA repair in
cells with normal p53, and TrxR is required in the reduction of
p53 cysteine residues (Seo et al., 2002; Jayaraman et al., 1997).

LNCaP cell line is a good in vitro model for assessing the oxida-
tive stress potential of phthalates as they express prostate specific
antigen (PSA), p53 protein, peroxisome proliferator-activated
receptor o (PPARa), and peroxisome proliferator-activated recep-
tor v (PPARY) (Chung et al,, 1992). In addition, LNCaP cells have
been shown to have responsiveness to inorganic and organic Se
compounds [sodium selenite (SS) and selenomethionine (SM)]
treatments (Erkekoglu et al., 2010a).

Based on those information and data, this study was designed to
examine whether exposure to DEHP or MEHP in LNCaP cells in-
crease ROS production and induce p53 and p21 proteins. To inves-
tigate the possibility of protective effects of Se in organic and
inorganic forms was also aimed.

2. Materials and methods
2.1. Chemicals

DEHP was obtained from Sigma-Aldrich (St. Louis, MO, USA) and MEHP was
from Cambridge Isotope Laboratories (Andover, MA, USA). RPMI 1640 medium
and fetal calf serum (FCS) were purchased from GIBCO (Courbevoie, France).
5-(and 6-) chloromethyl-2’,7’-dichlorodihydrofluorescein diacetate (CM-H,DCFA)
was purchased from Molecular Probes Detection Technologies, Invitrogen (Eugene,
OR, USA). The EnVision Plus staining kit was purchased from Dako (Carpinteria, CA,
USA). Primary antibody for p53 (anti-p53) was of mouse origin, monoclonal (sc-
263) and was obtained from Santa Cruz Biotechnology Inc. (Santa Cruz, USA). Pri-
mary antibody for p21 (anti-p21cip1) was of mouse origin, monoclonal (OP64)
and was from Calbiochem-Merck KGaA (Darmstadt, Germany). The goat anti-mouse
horseradish peroxidase (HRP) conjugated secondary antibody was purchased from

Invitrogen Molecular Probes (Oregon, USA). All the other chemicals including DEHP,
SS, SM, fetal bovine serum (FBS), Mayers hematoxylin nuclear stain and saponin
from Quillaja bark were obtained from Sigma-Aldrich (St. Louis, MO, USA).

2.2. Cell culture and treatment

LNCaP human prostate cancer cell line (lymph-node-derived-androgen-
sensitive cell line, normal for cell-cycle related tumor suppressor genes p53 and
retinoblastoma Rb, wild type) was a gift from Prof. Alan Diamond, University of
Mllinois, USA. The cells were maintained in RPMI 1640 medium containing 5% FCS,
at 37 °C in a humidified incubator under 5% CO,. For the experiments, the cells were
cultured in RPMI 1640 medium with 10% FCS and 1% penicillin/streptomycin in
culture flasks in the same conditions and split one-sixth dilution each week.

SS, SM, DEHP and MEHP solutions were prepared as described earlier, and the
doses chosen for DEHP (3 mM) and MEHP (3 uM) were previously shown as their
approximate ICsg values for LNCaP cells (Erkekoglu et al., 2010a).

Experiments were performed with following treatment groups: NT-C: Non-
treated LNCaP cells cultured for 72 h; SS-S: LNCaP cells supplemented and cultured
with 30 nM SS for 72 h; SM-S: LNCaP cells supplemented and cultured with 10 uM
SM for 72 h; DEHP-T: LNCaP cells cultured with 3 mM DEHP for 24 h; SS/DEHP-T:
SS-S cells cultured with 3 mM DEHP for 24 h; SM/DEHP-T: SM-S cells cultured with
3 mM DEHP for 24 h; MEHP-T: LNCaP cells cultured with 3 uM MEHP for 24 h; SS/
MEHP-T: SS-S cells cultured with 3 pM MEHP for 24 h; SM/MEHP-T: SM-S cells cul-
tured with 3 uM MEHP for 24 h.

2.3. Measurement of intracellular ROS production

Total intracellular ROS production was measured using peroxide sensitive fluo-
rescent probe CM-H,DCFA as described earlier (Loikkanen et al., 1998). The study
was conducted in the dark, and 70-80% confluent cells were used. LNCaP cells
seeded in 96-well plates with/without SS (30 nM) and SM (10 uM) were incubated
at 37 °C in a humidified incubator under 5% CO, for 72 h. After removal of the cul-
ture media, cells were loaded with CM-H,DCFA in phosphate buffered saline (PBS)
for 30 min at room temperature. The cellular esterase activity results in the forma-
tion of the non-fluorescent compound, the 2’,7’-dichlorofluorescin (DCFH). DCFH is
rapidly oxidized in the presence of ROS to a highly fluorescent 2’,7’-dichlorofluores-
cein (DCF). The cells were washed, then incubated with with/without DEHP (3 mM)
or MEHP (3 puM) at 37 °C in a humidified incubator under 5% CO, for 0, 30 and
60 min. DCF fluorescence was measured with a Perkin Elmer Victor 3 1420 multi-
well fluorometer (Perkin Elmer, Buckinghamshire, UK) at an excitation wavelength
of 485 nm and an emission wavelength of 535 nm. After data acquisition, Wallac
1420 Manager Software was used to analyze ROS production. Background fluores-
cence was obtained from cell-free wells containing 5 uM DCF in 0.5 mL of PBS and
subtracted from the fluorescence values found. The multiwell plate was kept in a
cell culture incubator between the measurements. The exposures were repeated
3-4 times with three parallel measurements. Fluorescence values were normalized
to the cell numbers. For each condition, 8-wells were used and the mean was given
as a result.

2.4. p53 and p21 Evaluation by immunocytochemistry

The expressions of p53 and p21 in LNCaP cells were examined immunocyto-
chemically using specific primary antibodies and the EnVision Plus System. LNCaP
cells, treated and cultured as described above, were washed with PBS for 3 min
shaking on a shaker gently, and fixed with 4% formaldehyde in PBS at room temper-
ature. Cells were rinsed with ddH,0 once, and washed with PBS for 3 min as were
done between each step, then permeabilized with PBS/0.5% saponin/0.3% Triton X-
100 for 3 x 5 min on the shaker. Cells were blocked with PBS/10% FBS/0.3% Triton
X-100 at 37 °C for 1 h, then PBS washed cells were incubated with diluted primary
antibody [for p53 primary antibody was anti-p53, mouse origin, monoclonal (sc-
263); for p21 primary antibody was anti-p21cipl, mouse origin, monoclonal
(OP64)] overnight at 4 °C. HRP conjugated secondary antibody was used directly
and cells were incubated at 25 °C for 30 min. Cells were again washed with 1x
PBS and later with 1x PBS/2% FBS/0.3% Triton X-100 three times, and stained with
3,3’-diaminobenzidine (DAB) chromogen solution. The staining was stopped by
adding ddH,0, and then hematoxylin was used as a nuclear stain. Images were ac-
quired with a DC490 digital camera (Leica, Wetzlar, Germany). Cells were consid-
ered to be positive when the staining was present in the nucleus. For each
condition three slides were counted and the results were given as percentage of
p53 and p21 nuclear stainings.

2.5. Statistical analysis

The data were expressed as mean * standard error (SEM). Statistical signifi-
cances of differences among treatment groups were determined by use of one-
way analysis of variance and covariance (ANOVA), followed by Student’s t-test
using a Statistical Package for Social Sciences Program (SPSS) version 17.0. A p-value
<0.05 was considered as statistically significant.
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3. Results
3.1. ROS production

The intracellular ROS levels of LNCaP cells measured at different
time points are illustrated in Fig. 1. Compared to the initial
level, NT-C cells produced no excess level of ROS at time point
30 min; but after 60 min of incubation, ROS production increased
~1.5-fold (Fig. 1A). Presence of Se in SS or SM forms did not change
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Fig. 1. ROS production in DEHP or MEHP exposed LNCaP cells and effects of
selenium supplementation. Total intracellular ROS was measured using peroxide
sensitive fluorescent probe CM-H,DCFA at 0 min, 30 min, and 60 min. Values are
given as mean + SEM of n = 3 experiments and triplicate measurements. Bars that
do not share same letters (superscripts) are significantly different from each other
(p <0.05). (A) ROS production in cells without phthalate exposure (NT-C: Non-
treated LNCaP cells cultured for 72 h; SS-S: LNCaP cells supplemented and cultured
with 30 nM SS for 72 h; SM-S: LNCaP cells supplemented and cultured with 10 uM
SM for 72 h). (B) ROS production in DEHP-treated cells (DEHP-T: LNCaP cells
cultured with 3 mM DEHP for 24 h; SS/DEHP-T: SS-S cells cultured with 3 mM DEHP
for 24 h; SM/DEHP-T: SM-S cells cultured with 3 mM DEHP for 24 h). (C) ROS
production in MEHP-treated cells (MEHP-T: LNCaP cells cultured with 3 pM MEHP
for 24 h; SS/MEHP-T: SS-S cells cultured with 3 uM MEHP for 24 h; SM/MEHP-T:
SM-S cells cultured with 3 pM MEHP for 24 h).

the intracellular ROS levels at any time compared to those of NT-C
cells.

As shown in Fig. 1B, ROS production in DEHP-exposed LNCaP
cells increased ~1.5-fold after 30 min of incubation, and ~2-fold
after 60 min compared to the level of time zero (p<0.05).
Whereas in MEHP-treated LNCAP cells, very sharp elevation of
ROS production was observed reaching ~2.6-fold and ~9.2-fold
of the initial level, at time points 30 min and 60 min, respectively
(Fig. 1C).

Se supplementation was highly effective against the phthalate-
induced ROS generation in LNCaP cells. The protective effects of SS
and SM against DEHP-induced intracellular ROS production started
right at the beginning; ~20% decrease with SS and ~65% decrease
with SM pretreatment were noted at 30 min. Whereas at 60 min,
the decrease was ~45% with both SS and SM and, thus, Se was able
to maintain almost the initial level of DEHP-T (Fig. 1B). In MEHP-T
cells, SS supplementation caused ~75% and ~50% decrease in ROS
levels at 30 min and 60 min, respectively. Se in SM form was more
effective providing ~60% and ~85% fold decreases at 30 min and
60 min, respectively (Fig. 1C).

3.2. p53 Immunocytochemistry

As shown in Table 1, expression of p53 protein did not
change in DEHP-treated LNCaP cells, and Se supplementation
did not cause any significant changes either. However, MEHP
treatment caused significant increase in p53 expression com-
pared to that of NT-C, and both SS and SM supplementations
reduced p53 expression in MEHP-treated cells. The images of
nuclear p53 expression in experimental groups are illustrated
in Fig. 2.

3.3. p21 Immunocytochemistry

The percentage of nuclear p21 stained cells are shown in Table
1. p21 expression did not change by DEHP exposure and seleno-
compounds did not cause any difference. Whereas, in correlation
with the results of p53, MEHP caused a significant increase in
p21 expression, and SS and SM supplementations reduced the
expression of p21 in MEHP-treated cells but not significantly. The
images of nuclear p21 expression are given in Fig. 3.

Table 1
p53 and p21 Immunocytochemistry scorings for the study groups.

Study groups % of nuclear p53 stained cells % of nuclear p21 stained cells
NT-C 6.08 + 0.42* 7.26 £0.72%¢

SS-S 5.81+0.93% 6.43 £0.73°

SM-S 5.52+0.17¢ 7.23+1.68%*

DEHP-T 8.55 + 0.40%° 8.63 £0.39%

SS/DEHP-T 7.39%1.18® 7.89 £0.77%¢

SM/DEHP-T 6.36+0.81° 8.35+0.50%

MEHP-T 10.54 + 1.00° 13.68 +0.86°

SS/MEHP-T 6.63 £2.03° 9.92 +0.39°¢

SM/MEHP-T 6.71 £ 0.40° 9.71 £ 0.40°

p53 and p21 Expressions were determined using EnVision Plus staining kit and
special primary antibodies as described in Section 2. Results are given as the per-
centage of p53 or p21 nuclear stainings (mean + SEM). Means within each row that
do not share same letters (superscripts) are significantly different from each other
(p<0.05).

Measurements were performed in the following treatment groups of cells: NT-C:
Non-treated LNCaP cells cultured for 72 h; SS-S: LNCaP cells supplemented and
cultured with 30 nM SS for 72 h; SM-S: LNCaP cells supplemented and cultured
with 10 uM SM for 72 h; DEHP-T: LNCaP cells cultured with 3 mM DEHP for 24 h;
SS/DEHP-T: SS-S cells cultured with 3 mM DEHP for 24 h; SM/DEHP-T: SM-S cells
cultured with 3 mM DEHP for 24 h; MEHP-T: LNCaP cells cultured with 3 uM MEHP
for 24 h; SS/MEHP-T: SS-S cells cultured with 3 uM MEHP for 24 h; SM/MEHP-T:
SM-S cells cultured with 3 uM MEHP for 24 h.
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Fig. 2. Immunocytochemistry of p53 expression, using EnVision Plus staining kit, in LNCaP cells in the presence and absence of selenium. p53 was visualized as brown
precipitate in the nucleus of the cells. For each condition three slides were counted and the results were given as the percentage of p53 nuclear staining. The images represent
the p53 protein of the following treatment groups of cells: (A) NT-C: Non-treated LNCaP cells cultured for 72 h; (B) SS-S: LNCaP cells supplemented and cultured with 30 nM
SS for 72 h; (C) SM-S: LNCaP cells supplemented and cultured with 10 uM SM for 72 h; (D) DEHP-T: LNCaP cells cultured with 3 mM DEHP for 24 h; (E) SS/DEHP-T: SS-S cells
cultured with 3 mM DEHP for 24 h; (F) SM/DEHP-T: SM-S cells cultured with 3 mM DEHP for 24 h; (G) MEHP-T: LNCaP cells cultured with 3 uM MEHP for 24 h; (H) SS/MEHP-
T: SS-S cells cultured with 3 pM MEHP for 24 h; (I) SM/MEHP-T: SM-S cells cultured with 3 M MEHP for 24 h. Black arrows indicate the presence of nuclear p53 expression
whereas red arrows indicate the absence. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

4. Discussion

Various modes of action were suggested for the effects of phtha-
lates on the reproductive system. These include dysregulation of
gene expression patterns (Borch et al., 2006; Fan et al., 2010), ef-
fects on PP-activated receptors and estrogen receptors (Gazouli
et al.,, 2002), and modifications of enzymes that are required in
the maturation of sperms (Barlow et al., 2003). Fan et al. (2010)
have suggested a new mechanism of MEHP action on Leydig cells
streidogenesis via CYP1A1-mediated ROS stress. Being in the same
line, the results of a recent study we conducted on MA-10 Leydig
cells implicated that at least one of the mechanisms underlying
the reproductive toxicity of DEHP and MEHP might be the induc-
tion of intracellular ROS and alterations caused in intracellular
enzymatic and non-enzymatic antioxidants, thus the production
of oxidative stress (Erkekoglu et al., 2010b). We obtained similar
results in DEHP- and MEHP-exposed LNCaP cells, and our both
studies produced data showing that the two phthalate esters cause
significant decreases in cell viability; alter antioxidant status, par-
ticularly decrease the GPx1 and TrxR activities; and induce DNA
damage as measured by the alkaline Comet assay (Erkekoglu
et al., 2010a,b).

ROS operate as intracellular signaling molecules, a function that
has been widely documented, but is still controversial. On the one
hand, ROS are important intracellular second messengers and in-
volve in the modulation of cell redox state (D’Autréaux and

Toledano, 2007; Veal et al., 2007; Nose, 2000). On the other hand,
excessive production of ROS leads to oxidative stress which could
subsequently cause loss of cell function and cell death by apoptosis
or necrosis, and/or mutagenic and carcinogenic effects (Nose,
2000). In fact, a shift in the prooxidant-antioxidant balance within
the prostate has been proposed as a factor that contributes to pros-
tate carcinogenesis (Oberley et al., 2000). The increased intracellu-
lar ROS production with phthalate exposure in the current study is
the evidence of a shift in the redox equilibrium towards oxidation,
thus the occurrence of oxidative stress in LNCaP cells, particularly
with MEHP, the hydrolysis product and the main metabolite of
DEHP.

As the alterations in the redox status of the cells induced by ROS
can cause changes in thiol groups and alter the activation of cell
signaling proteins (Finkel, 1998), and p53 tumor suppressor
protein is one of those various cell signaling proteins of the cells
and known to be redox sensitive (Hainaut and Milner, 1993), the
increase we observed in p53 protein expression in MEHP exposed
cells was the further evidence for the disturbance of the intracellu-
lar redox status. When cells are exposed to oxidative stress, p53 is
expressed at high levels by post-translational modifications (Burns
and El-Deiry, 1999). These modifications occur rapidly and lead to
the activation of p53, resulting in cell cycle arrest or apoptosis.
Participation of the p53 protein in the modulation of senescence
and apoptosis have been widely described (Munsch et al., 2000;
Villunger et al., 2003; Polyak et al., 1997). Even relatively small
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Fig. 3. Immunocytochemistry of p21 expression, using EnVision Plus staining kit, in LNCaP cells in the presence and absence of selenium. p21 was visualized as brown
precipitate in the nucleus of the cells. For each condition three slides were counted and the results were given as the percentage of p21 nuclear staining. The images represent
the p21 protein of the following treatment groups of cells: (A) NT-C: Non-treated LNCaP cells cultured for 72 h; (B) SS-S: LNCaP cells supplemented and cultured with 30 nM
SS for 72 h; (C) SM-S: LNCaP cells supplemented and cultured with 10 pM SM for 72 h; (D) DEHP-T: LNCaP cells cultured with 3 mM DEHP for 24 h; (E) SS/DEHP-T: SS-S cells
cultured with 3 mM DEHP for 24 h; (F) SM/DEHP-T: SM-S cells cultured with 3 mM DEHP for 24 h; (G) MEHP-T: LNCaP cells cultured with 3 uM MEHP for 24 h; (H) SS/MEHP-
T: SS-S cells cultured with 3 uM MEHP for 24 h; (I) SM/MEHP-T: SM-S cells cultured with 3 M MEHP for 24 h. Black arrows indicate the presence of nuclear p53 expression
where red arrows indicate that nuclear p53 expression is not present. (For interpretation of the references to color in this figure legend, the reader is referred to the web

version of this article.)

redox changes may act as modulators of p53 activities and may
contribute to shift the balance between various pathways activated
in response to p53 (Pluquet and Hainaut, 2001). However, p53 is
not only responsive to DNA-damaging agents, but it can be acti-
vated by the types of stress which are not primarily genotoxic (Plu-
quet and Hainaut, 2001).

p53 acts as a checkpoint control protein that determines cellu-
lar fate upon DNA damages (Kuerbitz et al., 1992). It can delay the
progression of the cell cycle from G, to S phase, thus allowing for
repair of DNA damage (Kastan et al., 1991). Alternatively, p53
can trigger apoptosis in response to DNA damage; most probably
when the lesions are too extensive and DNA repair fails (Lane
et al,, 1993). Regarding the induction of apoptosis, we have no data
neither in this study nor in our previous studies, but we showed
cytotoxic and DNA damaging effects of DEHP and MEHP in LNCaP
cells (Erkekoglu et al., 2010a). We also observed similar trends in
MA-10 Leydig cells, and we demonstrated the activation of p53
to occur in parallel to DNA damage with MEHP exposure (Erkeko-
glu et al., 2010b). These data, thus, indicated that the genotoxic

potential of the two phthalate derivatives was so high that did
not allow the DNA damage to be repaired.

The results of the present study also showed a significant induc-
tion of p21 in MEHP-exposed LNCaP cells, in parallel to the induc-
tion of p53, suggesting that this might be mediated through the
pathway of p53 induction. These data, thus, underscores the
importance of p53 and p21 interplay and the link with ROS as
the important mediators in cellular response. p21 is the major
transcriptional target of the tumor suppressor gene, p53, for the
induction of cell cycle arrest following DNA damage (el-Deiry
et al., 1993). However, p21 can also be activated by p53-indepen-
dent pathways to induce senescence or terminal differentiation
(Fang et al., 1999; Caffo et al., 1996). A significant increase in p21
expression was reported earlier in the testis of DEHP-receiving rats
(750 mg/kg/day for 28 days) which was correlated with DNA frag-
mentation and along with significantly increased expression of
apoptosis-related proteins, like caspase-3, and correlation with
DNA fragmentation (Ryu et al., 2007). An increase in p21 expres-
sion was shown in livers of DEHP and phenobarbital treated rats
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(Richmond et al., 1996). The difference we observed between DEHP
and MEHP with regard to ROS producing potentials, and p53 and
p21 activation capacity seemed to be related directly to the indi-
vidual doses used. It seems that at proper doses the parent com-
pound DEHP itself will produce nuclear p53 activation and p21
induction by producing ROS. In fact, intrinsic toxicity of MEHP is
much higher than that of the parent compound (Erkekoglu et al.,
2010b; Rhodes et al., 1986).

Our results with Se pre-treated LNCaP cells showed that Se was
highly protective against ROS generation induced by DEHP or
MEHP exposures. In case of MEHP, both organic and inorganic
forms were highly effective but, almost a full protection was pro-
vided by the organic Se (SM). We tested the possible protective ef-
fect of Se because it is primarily involved in the modulation of
intracellular redox equilibrium with its several forms of cellular
selenoproteins, and has a critical role in the cellular antioxidant de-
fense (Steinbrenner and Sies, 2009). There are various examples
that antioxidants can be beneficial to minimize the detrimental ef-
fects of oxidative stress producing toxicants. Fan et al. (2010) dem-
onstrated the inhibition of ROS generation by N-acetylcysteine
(NAC) in MEHP-exposed MA-10 cells. In the above-mentioned
in vitro studies (Erkekoglu et al., 2010a,b), we demonstrated almost
the same level of protection with SS and SM against the antioxi-
dant status modifying effects, DNA damaging effects and cytotox-
icity of DEHP and MEHP on MA-10 Leydig cells, as well as LNCaP
cells. The results of a recent in vivo study we conducted in DEHP-
exposed Se-deficient or Se-supplemented rats also demonstrated
that the testicular toxicity of DEHP is modified by the Se status,
similarly suggesting that the DEHP exposure may cause alterations
in the cellular redox state and Se provides protection by the same
mechanisms as in the case of testicular cell cultures (Erkekoglu
et al., 2011).

In the present study, Se was found to be significantly protective
against p53 and p21 activating effect of MEHP. Thus, in the exper-
imental conditions we used, Se supplementation appeared to be an
effective redox regulator. However, Se has a narrow therapeutic
range and known as bimodal in nature. At low concentrations, sele-
nocompounds are antigenotoxic and anticarcinogenic, whereas at
high concentrations, act as pro-oxidants and can be mutagenic
and even carcinogenic (Letavayova et al., 2006). In vitro studies
have shown that high doses of Se are able to induce apoptosis
and inhibit cell growth in transformed cells (Sinha et al., 1996);
Se could modulate DNA repair in cells with normal p53 (Seo
et al., 2002); and SM was shown to elevate DNA repair and protects
cells from DNA damage in the absence of cell cycle arrest or apop-
tosis (Fischer et al., 2006). The chemical nature of selenium is also
critical as it has been demonstrated that inorganic Se is generally
more toxic than organic forms, acting mostly on DNA. Whereas, or-
ganic Se acts more subtly on various intracellular targets and its ef-
fects are more complex (Ip, 1998; Stewart et al., 1999). It appears
that the doses and chemical forms of Se we used in this study were
appropriate and did not exert any toxicity but provided protection
against the oxidant stress inducing effects of DEHP and its metab-
olite in relation to its intracellular redox modulation.

In conclusion, the overall results of this study demonstrated
that DEHP increased intracellular ROS production and activated
p53 and p21 in LNCaP cells indicating that the induction of oxida-
tive stress is one of the important mechanisms underlying the tox-
icity of the compound. These results further suggested that DEHP
may affect cell cycle progression through the induction of p53
and subsequently of p21 by mainly the effects of its main metabo-
lite, MEHP. Generated data also emphasized the critical role of Se in
the modulation of intracellular redox status. The main implication
of these findings is the importance of the appropriate Se status in
cellular response against the testicular toxicity of these phthalate
derivatives.
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