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Correspondence

Noise Enhanced -ary Composite Hypothesis-Testing in
the Presence of Partial Prior Information

Suat Bayram and Sinan Gezici

Abstract—In this correspondence, noise enhanced detection is studied for
-ary composite hypothesis-testing problems in the presence of partial

prior information. Optimal additive noise is obtained according to two cri-
teria, which assume a uniform distribution (Criterion 1) or the least-favor-
able distribution (Criterion 2) for the unknown priors. The statistical char-
acterization of the optimal noise is obtained for each criterion. Specifically,
it is shown that the optimal noise can be represented by a constant signal
level or by a randomization of a finite number of signal levels according to
Criterion 1 and Criterion 2, respectively. In addition, the cases of unknown
parameter distributions under some composite hypotheses are considered,
and upper bounds on the risks are obtained. Finally, a detection example is
provided in order to investigate the theoretical results.

Index Terms—Bayes risk, composite hypothesis-testing, detection, noise
enhanced detection.

I. INTRODUCTION

Although noise commonly degrades performance of a system, out-
puts of some nonlinear systems can be enhanced by injecting addi-
tive noise to their inputs, or by increasing the average power of the
noise [1]–[10]. These situations can be considered in the framework
of stochastic resonance (SR), which can be regarded as the observa-
tion of noise benefits related to signal transmission in nonlinear sys-
tems [10]–[13]. Benefits that can be obtained via SR can be in various
forms, such as an increase in output signal-to-noise ratio (SNR) [1],
[3], [4] or mutual information [5]–[8].

In detection problems, performance of some suboptimal detectors
can be enhanced by adding independent noise to their observations [9],
[10], [14]–[20]. Such noise enhanced detection phenomena have been
investigated according to the Bayesian [16]–[18], minimax [19], [20]
and Neyman–Pearson [9], [10], [14] criteria. In [16], it is shown that
the optimal noise that minimizes the probability of decision error has a
constant value, and a Gaussian mixture example is used to illustrate the
improvability of a detector. In [17], noise benefits are investigated for
threshold neural signal detection in terms of reducing the probability
of detection error, and various necessary and sufficient conditions are
presented to determine noise enhanced detection for a wide range of
signals and symmetric scale-family noise when the detection threshold
is suboptimal. In addition, an example is studied in [14] to illustrate
that detection performance of a suboptimal detector can be improved
by adding white Gaussian noise for the problem of detecting a constant
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signal in Gaussian mixture noise. In [9] and [10], the effects of addi-
tive noise on detection performance are studied in the Neyman–Pearson
framework, and it is shown that the optimal additive noise can be rep-
resented by a randomization of at most two different signal values. On
the other hand, the studies in [19] and [20] consider the minimax cri-
terion and investigate the effects of additive noise on suboptimal de-
tectors. Finally, [18] considers a nonlinear signal-noise mixture, where
non-Gaussian noise acts on the phase of a periodic signal, and illus-
trates that the performance of an optimal detector can be improved (lo-
cally) by increasing the noise level for optimal detection strategies ac-
cording to the Bayesian, Neyman–Pearson, and minimax criteria.

The Bayesian and minimax frameworks can be considered as two
extreme cases of prior information. In the former, perfect (exact)
prior information is available whereas no prior information exists
in the latter. In practice, having perfect prior information is a very
exceptional case [21]. In most cases, prior information is incomplete
and only partial prior information is available [21], [22]. Since the
Bayesian approach is ineffective in the absence of exact prior infor-
mation, and since the minimax approach, which ignores the partial
prior information, can result in poor performance due to its conserva-
tive approach, there have been various studies that take partial prior
information into account [21]–[28]. The restricted Bayes, �-minimax,
empirical Bayes, robust Bayes and mean-max criteria are the main
approaches considering partial prior information [21]–[25].

In this correspondence, noise enhanced detection is studied in the
presence of partial prior information. Optimal additive noise is formu-
lated according to two different criteria. In the first one, a uniform dis-
tribution is assumed for the unknown priors, whereas in the second one
the worst-case distributions are considered for the unknown priors by
taking a conservative approach, which can be regarded as a �-minimax
approach. In both cases, the statistics of the optimal additive noise are
characterized. Specifically, it is shown that the optimal additive noise
can be represented by a constant signal level according to the first crite-
rion, whereas it can be represented by a discrete random variable with
a finite number of mass points according to the second criterion (see
Proposition 2 for the exact number of mass points). Two other contri-
butions of the study are to investigate noise enhanced detection with
partial prior information in the most generic hypotheses formulation;
that is, � -ary composite hypotheses, and to employ a very generic cost
function in the definition of the conditional risks (see (7)). Therefore,
it covers some of the previous studies on noise enhanced detection as
special cases. For example, if simple1 binary hypotheses, uniform cost
assignment (UCA), and perfect prior information are assumed, the re-
sults reduces to those in [16]. As another example, if simple � -ary hy-
potheses and no prior information are assumed, the results reduces to
those in [20]. Furthermore, for composite hypothesis-testing problems,
the cases of unknown parameter distributions under some hypotheses
are also considered, and upper bounds on the risks are obtained. Finally,
a detection example is presented to investigate the theoretical results.

II. PROBLEM FORMULATION

Consider the following � -ary composite hypothesis-testing
problem:

�� � �
�

� ���� � � ��� � � �� �� 	 	 	 �� � � (1)

1A simple hypothesis means that there is only one possible probability dis-
tribution under the hypothesis, whereas a composite hypothesis corresponds to
multiple possible probability distributions.
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Fig. 1. Independent noise � is added to observation � in order to improve the
performance of the detector, represented by ����.

where �� denotes the �th hypothesis and ��� ��� represents the prob-
ability density function (PDF) of observation � for a given value of
� � �. Each observation (measurement) � is a vector with � com-
ponents; i.e., � � � , and ������ � � � ����� form a partition of the
parameter space �. The distribution of the unknown parameter � for
hypothesis � is represented by ����� for � � �� �� � � � �� � �. In
addition, the prior probability of hypothesis �� is denoted by �� for
� � �� �� � � � �� � �. Composite hypothesis-testing problems as in (1)
are encountered in various problems, such as in non-coherent commu-
nications receivers, pattern recognition, and time series analysis [29],
[30]. Note that when ��’s consist of single elements, the problem re-
duces to a simple hypothesis-testing problem.

A generic decision rule (detector) can be defined as

	��� � �� 	
 � � �� (2)

for � � �� �� � � � �� � �, where ������ � � � ����� form a partition of
the observation space �. As shown in Fig. 1, the aim is to add noise to
the original observation � (which commonly consists of a signal com-
ponent and measurement noise) in order to improve the performance
of the detector according to certain criteria [31]. By adding noise �
to the original observation �, the modified observation is formed as
� � �� �, where � has a PDF denoted by �����, and is independent
of �. It should be noted that the additive noise can cause both positive
and negative shifts in the observations [16], [20]. As in [9] and [16], it
is assumed that the detector 	, described by (2), is fixed, and the only
means for improving the performance of the detector is to optimize the
additive noise � (please see [20] for motivations).

When all the prior probabilities ��� ��� � � � � ���� of the hypotheses
in (1) are known, the Bayesian approach can be taken, and the op-
timal additive noise that minimizes the Bayes risk can be sought for.
This problem is studied in [16] for simple hypothesis-testing prob-
lems under UCA. On the other hand, when none of the prior proba-
bilities are known, the minimax approach can be taken to obtain the
optimal additive noise that minimizes the maximum conditional risk,
which is investigated in [20] for simple hypothesis-testing problems.
In this study, we focus on a more generic scenario by considering both
composite hypotheses and partial prior information, meaning that the
prior probabilities of some hypotheses and the probability distribu-
tions of the unknown parameters under some hypotheses may be un-
known. Such a generalization can be important in practice since com-
posite hypothesis-testing problems are encountered in many applica-
tions, and the prior information may not be available for all hypotheses
(see Section VI for an example).

In order to introduce a generic problem formulation, define sets
��� � � � ��� that form a partition of set ��� �� � � � �� � ��. Suppose
that the prior probability �� of�� is known if � � �� and it is unknown
otherwise, and assume that the size of set �� is � � 
�. In other
words, �� corresponds to � � 
� hypotheses with known prior
probabilities. In addition, assume that the hypotheses with unknown
prior probabilities are grouped into sets ��� � � � ��� in such a way that
the sum of the prior probabilities of the hypotheses in set �� is known
for � � � � � � � �. If no such information is available, then � �  can
be employed; that is, all the hypotheses with unknown probabilities
can be grouped together into ��.

In order to define the optimal additive noise, we consider the fol-
lowing two criteria:

Criterion 1: For all the hypotheses with unknown prior probabili-
ties, assume uniform distribution of the prior probability in each group
�� for � � � � � � � �, and the define the corresponding Bayes risk as

��	� �
���

�����	� �

�

���

���
��� �

���

���	� (3)

where ���	� is the conditional risk of decision rule 	 when hypothesis
� is true [29], ��� � denotes the number of elements in set �� , and ���

�
�

���
�� defines the sum of the prior probabilities of the hypotheses

in �� for � � � � � � � �. According to Criterion 1, the optimal additive
noise is defined as ���	

�
��� � ��� �	�

� 
��
��	�, where ��	� is given

by (3). It should be noted that assuming uniform distribution for the
unknown priors is a very popular classical approach [32].

Criterion 2: For the hypotheses with unknown prior probabilities,
the least-favorable distribution of the priors is considered in each group,
and the corresponding risk is defined as

��	� �
���

�����	� �

�

���

��� ���
���

���	�� (4)

In other words, a conservative approach is taken in Criterion 2, and the
worst-case Bayes risk is considered as the performance metric. Such
an approach can be considered in the framework of �-minimax deci-
sion rules [21]. According to Criterion 2, the optimal additive noise is
calculated from �

��	
�

��� � ��� �	�
� 
��

��	�.

In Sections III and IV, the optimal additive noise will be investi-
gated when the probability distributions of the unknown parameters
are known under all hypotheses (the prior probabilities can still be un-
known). Then, in Section V, the results will be extended to the cases
in which the probability distributions of the unknown parameters are
unknown under some hypotheses.

III. OPTIMAL ADDITIVE NOISE ACCORDING TO CRITERION 1

According to Criterion 1, the optimal additive noise is calculated
from

�
��	
�

��� � ��� �	�
� 
��

���

�����	� �

�

���

���
��� �

���

���	� � (5)

Since���	� is the conditional risk for hypotheses �, it can be expressed
as

���	� �

�

���	�������� (6)

where ���	� denotes the conditional risk that is defined as the average
cost of decision rule 	 for a given � � � [29]. The conditional risk can
be calculated from

���	� � � �� �	������ �� � �� �



� �	���� �� �	� ����� (7)

where �	� ��� is the PDF of the noise modified observation for a given
value of � � �, and ���� �� 	 � is the cost of deciding �� when
� � �, for � � � [29].

Since the additive noise is independent of the original observation,
�	� ��� � ��� �� � ���������. Then, the expression in (6) for
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the conditional risk of hypotheses � can be manipulated from (7) as
follows:

����� �

� �

� ������ �� ��� ���������������������

� �����

� �

� ������ �� ��� �� � ����������� ��

�
� ������������ � � ������� (8)

where

�����
�
�

� �

� ������ �� ��� �� � �����������	 (9)

Note that ����� � 	 �� since the cost function is non-negative by
definition; that is, ��
� �� � 	.

Based on (8), the optimization problem in (5) can be expressed as

����
�

���� 
�� ��
� ���

�
���

��������

�

�	


���
��� �

���

�����

�
�
�� ��

� ���
� ������ (10)

where ���� is defined as ����
�
�

��� ������� �
�

�	
�������� �� ��� �����. From (10), the optimal noise
PDF can be obtained by assigning all the probability to the minimizer
of ����; i.e.,

����
�

��� � ��� ���� �� � 
����
�

����	 (11)

In other words, the optimal additive noise according to Criterion 1 can
be expressed as a constant corresponding to the minimum value of
����. Of course, when ���� has multiple minima, then the optimal
noise PDF can be represented as ����

�
��� �

��
�	 ���� � ����, for

any �� � 	 such that
��
�	 �� � �, where ��� � � � ����� represent the

values corresponding to the minimum values of ����.
The main implication of the result in (11) is that among all PDFs for

the additive independent noise �, the ones that assign all the proba-
bility to a single noise value can be used as the optimal additive signal
components in Fig. 1. In other words, in this scenario, addition of in-
dependent noise to observations corresponds to shifting the decision
region of the detector.

Based on the expressions in (10), a detector is called improvable ac-
cording to Criterion 1 if there exists noise� that satisfies ������� �
����, where ���� represents the Bayes risk in (3) in the absence of
additive noise. For example, if there exists a noise component �� that
satisfies ����� � ����, the detector can be classified as an improvable
one according to Criterion 1. In the following, sufficient conditions are
provided to determine the improvability of a detector without actually
solving the optimization problem in (11).

Proposition 1: Assume that ���� in (10) is second-order continu-
ously differentiable around � � �. Let � denote the gradient of ����
at � � �. Then, the detector is improvable:

• if � �� �; or
• if ���� is strictly concave at � � �.

Proof: Please see the Appendix.
Although Proposition 1 may not be very crucial for scalar observa-

tions (since it can be easy to find the optimal solution from (11) di-

rectly), it can be useful for vector observations by providing simple
sufficient conditions to check if the detector can be improved via addi-
tive noise.

IV. OPTIMAL ADDITIVE NOISE ACCORDING TO CRITERION 2

According to Criterion 2, the optimal additive noise is calculated
from

����
�

��� � 
�� ��
� ���

���

������� �

�

�	


��� 
�
���

����� (12)

which can also be expressed as

����
�

��� � 
�� ��
� ���

���

������� � 
�
������

�

�	


����� ��� (13)

where ���
�
� ��
 	 	 	 ���, and ��

�
� �

	 	 	
�� is the Cartesian product

of sets �
� � � � ���.
From (8), the optimization problem in (13) can be stated as

����
�

��� � 
�� ��
� ���


�
������

�
���

������� �

�

�	


����� ���

�
� 
�� ��

� ���

�
������

� ��������� (14)

where ���	� and �� �	� are as defined in (9), and �������
�
�

��� ������� � �

�	
 ����� ���.
Although the optimization problem in (14) seems quite difficult to

solve in general, the following proposition states that the optimization
can be performed over a significantly reduced space as the optimal so-
lution can be characterized by a discrete probability distribution under
certain conditions. To that aim, assume that all possible additive noise
values satisfy ��� � � � ��� for any finite ��� and ���; that is, �� � ��� � �� � for

 � �� � � � � � , which is a reasonable assumption since additive noise
cannot have infinitely large amplitudes in practice. Then, the following
proposition states the discrete nature of the optimal additive noise.

Proposition 2: If �����	� in (14) are continuous functions, the PDF of
optimal additive noise can be expressed as

����� �

����

�	

����� ��� (15)

where � ��� denotes the number of elements in set �� (equivalently, � ��� �
��
� 	 	 	 ����), with ����

�	 �� � � and �� � 	 for 
 � �� �� � � � � � ���.
Proof: The proof is omitted since the result can be proven simi-

larly to [9], [20]. The assumption ��� � � � ��� is used to guarantee the
existence of the optimal solution [20].

Proposition 2 implies that optimal additive noise can be represented
by a randomization of no more than � ��� different signal levels. There-
fore, the solution of the optimization problem in (14) can be obtained
from the following:

��
�� 	
 �


�
������

����

�	

����������

������� ��

����

�	

�� � �� �� � 	� 
��� � � � � � ���	 (16)

Although (16) is significantly simpler than (14), it can still be a
nonconvex optimization problem. Therefore, global optimization tech-
niques, such as particle-swarm optimization (PSO) [33], genetic algo-
rithms, and differential evolution [34] can be employed to obtain the op-
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timal additive noise PDF. Alternatively, a convex relaxation approach
can be taken as in [20] in order to obtain an approximate solution.

V. UNKNOWN PARAMETER DISTRIBUTIONS FOR SOME HYPOTHESES

In the previous formulations, it is assumed that the distribution of
the unknown parameter for hypothesis �, denoted by �����, is known
for � � �� �� � � � �� � � (see (6)).2 If this information is not avail-
able for certain hypotheses, an approach similar to that in [25] can be
taken, and the conditional risks for those hypotheses can be defined as
the worst-case conditional risks; that is, ����� � �	


���
�����, where

����� is as in (7). In other words, for hypotheses with unknown pa-
rameter distributions, the maximum conditional risk is set by taking a
conservative approach. On the other hand, for hypotheses with known
parameter distributions, the average conditional risk in (6) can still be
obtained. Therefore, the definition of ����� can be extended as

����� �
�
������������� if ����� is known

�	

���

������ if ����� is unknown, (17)

for � � �� �� � � � �� � �. Then, Criterion 1 in (3) and Criterion 2 in (4)
can still be used in evaluating the performance of detectors.

Remark: Instead of considering the worst-case conditional risks as
in (17), another approach is to assume a uniform distribution of param-
eter � over �� when ����� is unknown. In that case, all the results in
Sections III and IV are still valid. Hence, we focus on the approach in
(17) in this section.

When the parameter distributions for some hypotheses are unknown
and the extended definition of ����� in (17) is used, the discrete struc-
tures of the probability distributions of optimal additive noise (see (11)
and Proposition 2) may not be guaranteed anymore. In other words,
the optimal additive noise may also have continuous probability dis-
tributions in that scenario. Therefore, in order to obtain the (approxi-
mate) PDF of the optimal additive noise, the approach in [35] can be
taken in order to search over possible PDFs in the form of ����� �

�
	�
�� � ���, where 	� � �,

�
	� � �, and 
���� is a window

function that satisfies 
���� � ���� and 
������ � ����.
Since the computational complexity of searching over possible ad-

ditive noise PDFs in the form of ����� �
�
	�
�� � ��� can be

high in some cases, it becomes important to specify theoretical upper
bounds on ����� in (3) and ����� in (4) (with ����� being given by
(17)), which can be achieved under certain scenarios. The following
lemma presents such upper bounds.

Lemma 1: When the conditional risk ����� is defined as in (17),
����� in (3) and ����� in (4) are upper bounded as follows:

����� ��
���

� ����� �

�

���

�
��� �

���

����� (18)

����� � ���
������

�
���

� ����� �

�

���

� �� ��� (19)

2Note that this assumption is not needed for simple hypotheses since there is
only one possible parameter value.

for any additive noise PDF �����, where

�����
�
�

������ if ����� is known
�	

���

�
� ������ �� ��� �� � ����� if ����� is unknown.

(20)
Proof: The conditional risk in (7) can be expressed as ����� �

�
������� ����� ��������������, which is equal to ����� �

��
�
������� ����� �� �����	. Based on this expression, ����� in

(17) becomes equal to (21), shown at the bottom of the page, where
����� is as in (9). When the expression in (21) is inserted into (3), and
the fact that

�	

���

�

�

� ������ �� ��� �� �����

� � �	

���

�

� ������ �� ��� �� ����� (22)

is employed, it can be shown that ����� is upper bounded as in (18) and
(20). Similarly, the expression in (13) can be manipulated to obtain the
upper bound specified by (19) and (20).

Note that when all the �����’s are known, the terms on the
right-hand-sides of (18) and (19) reduce to the objective functions
in the minimization problems in (10) and (14), respectively. There-
fore, they become equal to ����� and �����, respectively (since
�
�	

�

��� � ��� ���
� ���

����� in (10) and �
�	

�

��� � ��� ���
� ���

����� in

(14) by definition); hence the upper bounds in Lemma 1 are achieved.
Also, in the absence of additive noise (that is, ����� � ���� and
� � �), (3), (4), (20) and (21) can be used to show that the upper
bounds in (18) and (19) are achieved again. Specifically, in the absence
of noise, the expectation operators are removed and ����� terms are
replaced by ����� terms for the upper bounds in (18) and (19). Also,
����� in (21) becomes equal to ����� in the absence of noise (see
(20)). Therefore, the definitions of ����� in (3) and ����� in (4) can
be used to show that the upper bounds are achieved in this scenario.
In addition, it can be shown that any additive noise component that
improves (i.e., reduces) the upper bounds on ����� or ����� with
respect to the case without additive noise also improves the detector
performance over the noiseless case according to Criterion 1 or
Criterion 2, respectively. In order to verify this claim, let ��� ���
and ��� ��� denote, respectively, the performance metrics ����� and
����� when no additive noise is employed. As stated before, the
upper bounds are achieved in the absence of additive noise (that is,
��� ��� and ��� ��� are equal to the corresponding upper bounds in the
absence of additive noise). Next, suppose that noise with PDF �

���
�

���

or ����
�

��� is added to the original observation �, which results in a
reduction of the corresponding upper bound; that is, the upper bounds
become strictly less than ��� ��� and ��� ���, respectively. On the other
hand, since ����� and ����� are always smaller than or equal to the
specified upper bounds due to Lemma 1, they also become strictly less
than ��� ��� and ��� ���, respectively. Hence, the detector performance
is improved via additive noise specified by �

���
�

��� and �
���
�

���
according to Criterion 1 and Criterion 2, respectively, relative to the
case without additive noise. Therefore, if an additive noise component

����� �
�

� �
� ������ �� ��� �� ������������ � � ������	 � if ����� is known

�	
��� �
�
� ������ �� ��� �� ����� � if ����� is unknown

(21)
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reduces the upper bound in (18) (in (19)) compared to the case without
additive noise, it also improves the detection performance according
to Criterion 1 (Criterion 2) over the noiseless case.

The additive noise components that minimize the upper bounds in
(18) and (19) can be represented by discrete probability distributions
as specified by (11) and Proposition 2 since the upper bounds are in
the same form as the objective functions in the minimization problems
in (10) and (14). Specifically, the PDF that minimizes the upper bound
on ����� can be represented by a constant signal value, and the PDF
that minimizes the upper bound on ����� can be represented by a ran-
domization of no more than � ��� different signal values. It should also
be noted that although these additive noise PDFs minimize the upper
bounds in Lemma 1, they may not be the optimal additive noise PDFs
for the original problem in general. The optimal solution needs to be
calculated based on some PDF approximations as discussed before.
However, the approach based on Lemma 1 can still be useful to obtain
certain improvability conditions and to achieve performance improve-
ments with low complexity solutions in some cases.

VI. A DETECTION EXAMPLE AND CONCLUSIONS

In this section, a 4-ary hypothesis-testing problem is studied in order
to provide an example of the results presented in the previous sections.
The hypotheses ��, ��, �� and �� are defined as

�� � � � ��
�
�� �� �� � � � �

�
�� ��

�� � � �
�
� � �� �� � � � �

�
�� � (23)

where � � �, � � � is a known scalar value, and � is symmetric
Gaussian mixture noise with the following PDF:

�� ��� �

�

���

	�
���� ��� (24)

where 	� � � for � � 	� 
 
 
 � , �
��� 	� � 	, and 
���� �

	��
�
����� ������������ �� for � � 	� 
 
 
 � . Due to the symmetry

assumption, �� � �������, 	� � 	����� and �� � ������ for
� � 	� 
 
 
 � ���	. In addition, the detector is described by

���� �

�� � 
 ����
	� ���� � � 
 �

�� � � � 
 �
�
�

�� �
�
� � �

(25)

where � � � � �, with � representing the independent additive noise
term.

The hypothesis-testing problem in (23) is the form of pulse ampli-
tude modulation (PAM); that is, the information is carried in the signal
amplitude. The Gaussian mixture noise specified above can be encoun-
tered in PAM communications systems in the presence of interference
or jamming [36]. In the following example, four different amplitudes
corresponding to four different underlying hypotheses are transmitted
using the PAM technique above over such a communication environ-
ment. It is assumed that only the prior probability of��, ��, is known.
Such a scenario can be encountered in practice when previous mea-
surements can successfully discriminate between the underlying hy-
potheses for �� and the other hypotheses (��, ��, and ��), whereas
it is difficult to specify reliably which of the underlying hypotheses for
��, ��, and �� is actually true. For instance, if we assume four fish
species with three of them (corresponding to ��, ��, and ��) having
similar characteristics, we cannot assume a known prior for each of
those species (as we do not have reliable information from measure-
ments); however, we can regard �� � �� � �� (equivalently, ��) as a

Fig. 2. Bayes risks of the original and noise modified detectors versus � for
� � � according to both criteria.

known value, since these three fish species can be distinguished easily
from the other one.3

Since only the prior probability of�� is known, there are two groups
�� � ��,�� � �	� and �� � ��� �� �� (see (3) and (4)). Also, UCA is
assumed in the following calculations. Based on the expressions in (9),
(10) and (14), ���� and ������� can be obtained, and the optimization
problems in (11) and (16) can be solved. Specifically, ���� in (10) can
be calculated as

���� � 	� 	

�

�

���

	� �	� ����
��� � �� ���

��

��� � ����
���� �� ��

��
� �	������

�
�� �� ��

��

for � � � � , and similarly ������� in (14) becomes
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�
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��

for ��� � �� � ��, where ���� � ��
��

�
�

��� ���� denotes the
�-function, �� � �� � 	, �� � �	, �� � �� � �, and �� � 	. For
the simulation results, symmetric Gaussian mixture noise with  � �
is considered, where the mean values of the Gaussian components in
the mixture noise in (24) are specified as [0.01 0.7 1.1] with corre-
sponding weights of [0.35 0.1 0.05]. In addition, the variances of the
Gaussian components in the mixture noise are assumed to be the same;
i.e., �� � � for � � 	� 
 
 
 � .

Fig. 2 illustrates the Bayes risks for the noise modified and original
detectors for various values of � when� � 	 and �� � ����. From the
figure, it is observed that the use of additive noise can significantly im-
prove the performance according to both criteria. Also, as � increases

3Consider a scenario in which a device measures some parameters of the fish
(such as their length or color), and this information is transmitted to a data pro-
cessing center using PAM.
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TABLE I
OPTIMAL ADDITIVE NOISE PDF, � ��� � � ���� � � � � ���� � � �

� ��� � � �, ACCORDING TO CRITERION 2

the improvement ratio decreases, and after some value of � there is
no improvement. In addition, as expected, Criterion 1, which considers
uniform distribution for the unknown priors, has smaller risks than Cri-
terion 2, which considers the worst case scenario. However, it should
be noted that when the priors are actually different from uniform, the
additive noise obtained according to Criterion 1 can be quite subop-
timal in terms of minimizing the true Bayes risk, �

���
�������. On

the other hand, Criterion 2 considers the worst-case scenario and ob-
tains the additive noise that minimizes the Bayes risk for the least-fa-
vorable distribution of the priors.

In order to investigate the result in Proposition 2, Table I shows the
optimal noise PDFs for various values of � according to Criterion 2. In
accordance with the proposition, the optimal noise PDFs are expressed
as randomization of three or fewer mass points.

APPENDIX

PROOF OF PROPOSITION 1

A sufficient condition for improvability is the existence of �� such
that ����� � ����. Consider an infinitesimally small noise compo-
nent, �� � ����. Then, ������� can be approximated by using the Taylor
series expansion as ���� � ����

�
� � �������

�
�����, where � and � are the

Hessian and the gradient of ���� at � � �. Therefore, ����� � ����
requires

���
�

�
����� � �����

�
� � �� (26)

Let ���� � ���, where �� is an infinitesimally small real number, and
� is a 	-dimensional real vector. Then, (26) can be simplified, after
some manipulation, as

�
�
���

�

��
�
�
� � �� (27)

For the first part of the proposition, if � �� �, then �� and � satisfying
(27) can always be found. For the second part of the proposition, if ����
is strictly concave at � � �, which means that � is negative definite,
then �� and � satisfying (27) always exist.
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