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Motivated by energy space representation of Dirac operators, in the sense of K. Friedrichs,
we recently introduced the notion of closely embedded Kreı̆n spaces. These spaces are
associated to unbounded selfadjoint operators that play the role of kernel operators,
in the sense of L. Schwartz, and they are special representations of induced Kreı̆n spaces.
In this article we present a canonical representation of closely embedded Kreı̆n spaces
in terms of a generalization of the notion of operator range and obtain a characterization
of uniqueness. When applied to Dirac operators, the results differ according to a mass or
a massless particle in a dramatic way: in the case of a particle with a nontrivial mass
we obtain a dual of a Sobolev type space and we have uniqueness, while in the case of
a massless particle we obtain a dual of a homogenous Sobolev type space and we lose
uniqueness.

© 2010 Elsevier Inc. All rights reserved.

1. Introduction

Among other important ideas and results, the celebrated article of K. Friedrichs [21] indicated that Hilbert spaces associ-
ated to the quadratic form 〈H · ,·〉, where H is the Hamiltonian of a system, can be viewed as energy spaces of the system.
This theory triggered the theory of nonnegative quadratic forms, e.g. see T. Kato [23], M. Reed and B. Simon [27,28] and
the vast bibliography cited there, and has deep connections with the theory of operator ranges, as initiated by the pio-
neering works of G. Mackey [25], J. Dixmier [15,16], and L. Schwartz [29], and surveyed in a more modern presentation by
P.A. Fillmore and J.P. Williams [19]. In [6] we extended some of these ideas to Hilbert spaces induced by unbounded opera-
tors. However, the notion of a Hilbert space induced by a positive selfadjoint operator is rather abstract and its uniqueness
is determined only up to unitary equivalence. For more practical reasons, when the ambient Hilbert space of the Hamil-
tonian is a function space, it is desirable to get an energy space that is also a function space on the same base set and,
in addition, have appropriate uniqueness properties. Put in this way, this question leads to the notion of replacing a contin-
uous embedding of Hilbert spaces by a closed embedding, and we did this in [8] by showing that what we get is a special
type of induced Hilbert space, more or less the equivalent of an operator range, and applied this theory to certain homoge-
nous Sobolev spaces. So, roughly speaking, we cannot always get the energy space as a function space but if we accept
that “a few” elements are allowed to live in distributions spaces on the same base set instead, then the theory provides
sufficiently useful answers.

On the other hand, when the Hamiltonian is no longer a positive operator, but only a selfadjoint one, then the first
modification that one has to perform is to replace the Hilbert space by a Kreı̆n space, paying the price of all the geometric-
topological difficulties that usually show up in the underlying operator theory on Kreı̆n spaces. We made this step in [7]
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when we introduced the notion of a Kreı̆n space induced by a selfadjoint operator and studied mainly the uniqueness
question. The answer to the uniqueness question is that the “lateral spectral gap” condition of T. Hara [22] (see also
[11,17,14] for equivalent results) governs the uniqueness of the induced Kreı̆n space in pretty much the same way as
in the bounded case. Our main application and motivation for pursuing the indefinite generalizations are strongly con-
nected with the Dirac operators (see [20,31] and, for a recent approach of Hilbert–Kreı̆n structures in similar problems
see [10]).

Having in mind these same Dirac operators, the next step in this enterprise was to investigate the possibility of getting
a notion of Kreı̆n spaces closely embedded, and we recently did this in [9] by means of a generalization of the de Branges
spaces of Kreı̆n type and applied this to the free Dirac operator corresponding to a particle with nontrivial mass. In this
article we continue this direction of investigation by providing a more general model in the spirit of operator ranges and by
getting a characterization of uniqueness in terms of the lateral spectral gap. Our main results refer to applications to Dirac
operators and we show that the pictures differ according to a mass or a massless particle in a dramatic way: in the case of
a particle with a nontrivial mass we obtain a dual of a Sobolev type space and we can prove uniqueness, while in the case
of a massless particle we obtain the dual of a homogenous Sobolev type space and we lose uniqueness.

We briefly present now the organization of this article. In order to combine the positive definiteness of closely embedded
Hilbert spaces with indefiniteness of the induced Kreı̆n spaces, after briefly recalling the definition and the basic results on
induced Kreı̆n spaces in Section 2, we provide in Section 3 a canonical representation in the spirit of operator ranges, which
actually is a generalization of de Branges spaces of Kreı̆n type as in [9]. Then, in Section 4 we recall the definition of
closely embedded Kreı̆n spaces and their properties as in [9]. The main result concerns the uniqueness properties obtained
in Theorem 4.7. Finally, in Section 5 we apply our results to general free Dirac operator by calculating energy spaces and
establishing their properties.

In order to keep this article to a reasonable size, we assume that the reader is familiar with the basic notions of indefinite
inner product spaces and their linear operators, e.g. see [3]. In this respect, our notation follows the one we used in [7,8].
Since [9] is not yet published, we made our article independent by briefly recalling, in Subsection 4.1, all the definitions and
the results from that article. Also, we will freely use the main concepts and results in the operator theory of unbounded
selfadjoint operators, especially their spectral theory, borelian functional calculus, and polar decompositions. All these can
be found in the classical textbooks of M.S. Birman and M.Z. Solomyak [2], T. Kato [23], M. Reed and B. Simon [27,28]. In the
application section, we will also use the basic notions on Sobolev spaces, e.g. see R.A. Adams [1], and V.G. Maz’ja [26], as
well the theory of Dirac operators, e.g. see B. Thaller [31] and L.D. Landau [24].

2. Preliminaries on Kreı̆n spaces induced by symmetric operators

If A is a symmetric densely defined linear operator in the Hilbert space H we can define a new inner product [·,·]A on
Dom(A), the domain of A, by

[x, y]A = 〈Ax, y〉H, x, y ∈ Dom(A). (2.1)

In this subsection we recall the existence and the properties of some Kreı̆n spaces associated to this kind of inner product
space, cf. [7].

A pair (K,Π) is called a Kreı̆n space induced by A if:

(iks1) K is a Kreı̆n space;
(iks2) Π is a linear operator from H into K such that Dom(A) ⊆ Dom(Π);
(iks3) Π Dom(A) is dense in K;
(iks4) [Πx,Π y]K = 〈Ax, y〉H for all x ∈ Dom(A) and y ∈ Dom(Π).

The operator Π is called the canonical operator. In case the operator A is bounded, this is a definition first considered in
[12,13].

Remark 2.1.

(1) (K,Π) is a Kreı̆n space induced by A if and only if it satisfies the axioms (iks1)–(iks3) and
(iks4′) Π�Π ⊇ A, in the sense that Dom(A) ⊆ Dom(Π�Π) and Ax = Π�Πx for all x ∈ Dom(A).

(2) If A is selfadjoint, hence maximal symmetric, the axiom (iks4′) is equivalent with
(iks4′′) Π�Π = A, in the sense that Dom(Π�Π) = Dom(A) and Ax = Π�Πx for all x ∈ Dom(A).

(3) Without loss of generality we can assume that Π is closed.
(4) If the symmetric densely defined operator A admits an induced Kreı̆n space (K,Π) such that Π is bounded, then A

is bounded. The converse is not true, in general, that is, if A is bounded and selfadjoint operator then it may happen
that Π is unbounded. However, if A is not only bounded but also everywhere defined (in particular, if A is bounded
selfadjoint), then the operator Π is bounded as well.
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For a densely defined symmetric operator A in a Hilbert space, various necessary and sufficient conditions of existence
of Hilbert spaces induced by A are available (see [7]). In this paper we are interested mainly in the case of selfadjoint
operators, when the existence is guaranteed by the spectral theorem. The first example starts with a selfadjoint operator A
and describes a construction of a Kreı̆n space induced by A, more or less the equivalent of the quotient completion method.

Example 2.2. Let A be a selfadjoint operator in the Hilbert space H. We consider the polar decomposition of A

A = S A |A|, (2.2)

where, by borelian functional calculus, there is defined |A| = (A∗ A)1/2 = (A2)1/2, the modulus (or the absolute value) of
the operator A, and S A = sgn(A) is a selfadjoint partial isometry on H. Recall that Dom(A) = Dom(|A|) and that |A| is
a nonnegative selfadjoint operator. We now consider the quotient completion of Dom(A) with respect to the nonnegative
selfadjoint operator |A| as follows. Since |A| is a nonnegative selfadjoint operator in the Hilbert space H, then |A|1/2 exists
as a nonnegative selfadjoint operator in H, Dom(|A|1/2) ⊇ Dom(|A|) = Dom(A) and Dom(A) is a core of |A|1/2 (e.g. see [2]).
In particular we have〈|A|x, y

〉
H = 〈|A|1/2x, |A|1/2 y

〉
H, x ∈ Dom(A), y ∈ Dom

(|A|1/2),
which shows that we can consider the seminorm ‖|A|1/2 · ‖ on Dom(A) and make the quotient completion with respect to
this seminorm in order to get a Hilbert space K A . We denote by ΠA the corresponding canonical operator. It is seen that
(K A,ΠA) is a Hilbert space induced by |A|, cf. [6].

Further on, Ker(S A) = Ker(A) and S A leaves invariant Dom(A). Since S A is a selfadjoint partial isometry, its spectrum
coincides with its point spectrum and is contained in {−1,0,+1} and Dom(A) = D+ ⊕ Ker(A) ⊕ D− , where

D± = Dom(A) ∩ Ker(S A ∓ I). (2.3)

This implies that we can identify naturally Dom(A)/Ker(A) with D+ ⊕ D− . Now observe that we can complete D± with
respect to the norm ‖|A|1/2 · ‖ and let these completions be denoted by K±

A and that K A can be naturally identified with
K+

A ⊕ K−
A , and considering this as a fundamental decomposition,

K A = K+
A [+] K−

A (2.4)

it yields an indefinite inner product [·,·] with respect to which K A becomes a Kreı̆n space.

Two Kreı̆n spaces (Ki,Πi), i = 1,2, induced by the same symmetric operator A, are called unitary equivalent if there
exists a bounded unitary operator U : K1 → K2 such that

UΠ1x = Π2x, x ∈ Dom(A). (2.5)

In order to exploit the full power of induced Kreı̆n spaces we need to know which linear operators can be lifted to
induced Kreı̆n spaces. We answered affirmatively this question in [7] for the Kreı̆n spaces in the unitary orbit of (K A,ΠA),
that is, for any other Kreı̆n space (K,Π) that is unitary equivalent with (K A,ΠA). Throughout, L(H1, H2) denotes the
collection of all bounded linear operator T : H1 → H2.

Theorem 2.3. Let H1 and H2 be Hilbert spaces and let A and B be selfadjoint operators in H1 and respectively H2 . We consider the
induced Kreı̆n spaces (K A,ΠA) and (K B ,ΠB). Then for any operators T ∈ L(H1, H2), and S ∈ L(H2, H1) such that

〈Bx, T y〉H2 = 〈Sx, Ay〉H1 , x ∈ Dom(B), y ∈ Dom(A), (2.6)

there exist uniquely determined operators T̃ ∈ L(K A, K B) and S̃ ∈ L(K B , K A) such that T̃ ΠA x = ΠB T x for all x ∈ Dom(A) and
S̃ΠB y = ΠA S y, for all y ∈ Dom(B) and

〈̃Sh,k〉K = 〈h, T̃ k〉K, h ∈ K B , k ∈ K A .

In the special case of a selfadjoint operator, we recall the characterization of uniqueness induced Kreı̆n spaces in spectral
terms, cf. [6] (a generalization of results in [22,11,17,14]). In the following, ρ(A) denotes the resolvent set of the operator A.

Theorem 2.4. Let A be a selfadjoint operator in the Hilbert space H. The following statements are equivalent:

(i) The Kreı̆n space induced by A is unique, modulo unitary equivalence.
(ii) A has a lateral spectral gap, that is, there exists an ε > 0 such that either (0, ε) ⊂ ρ(A) or (−ε,0) ⊂ ρ(A).
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3. The Kreı̆n space R(T )

In this section we investigate a generalization of the space R(T ), as introduced and studied in [8] for the Hilbert space
case, to Kreı̆n spaces. The Kreı̆n space R(T ) is associated to a closed operator on a Kreı̆n space. This construction will shed
more light on the definition of a closely embedded Kreı̆n space, already introduced in [9]. The generalized de Branges space
B A presented in [9] is actually of type R(T ).

Let T be a linear operator acting between two Kreı̆n spaces G and H. We assume that the domain of T is dense and that
Ker(T ) is a regular subspace of G .

On the linear submanifold Ran(T ) of H we can define an indefinite inner product

[T x, T y]T := [x, y]G , x, y ∈ Dom(T ), x, y [⊥] Ker(T ), (3.1)

as well as a quadratic norm

‖T x‖T := ‖x‖G , x ∈ Dom(T ), x [⊥] Ker(T ), (3.2)

where ‖ · ‖G is a fixed fundamental norm on the Kreı̆n space G , that is, induced by a fixed fundamental symmetry G on G ,
subject to the property that it leaves the regular subspace Ker(T ) invariant. To be more precise, for such a fundamental
symmetry we note that Ker(T )⊥ is also invariant under G , note that x ⊥ Ker(T ) if and only if x [⊥] Ker(T ). Note that
(Ran(T ); [·,·]T ) has a (abstract) completion, with respect to the quadratic norm ‖ · ‖T , to a Kreı̆n space that we denote
by R(T ). Further, consider the embedding operator jT with domain Dom( jT ) = Ran(T ) ⊆ R(T ) and valued in H, defined
by

jT u = u, u ∈ Ran(T ). (3.3)

Lemma 3.1. Let T be a linear operator with domain dense in the Kreı̆n space G and valued in the Kreı̆n space H, such that Ker(T ) is
a regular subspace of G . Consider the Kreı̆n space R(T ) and the embedding jT defined as in (3.1)–(3.3). Then, there exists a unique
(Kreı̆n space) coisometry U T ∈ L(G, R(T )), such that Ker(U T ) = Ker(T ) and T ⊆ jT U T . Since Ker(T ) is closed we get T = jT U T .

Proof. The proof is very similar to the one of Lemma 2.5 in [8], so we skip repetitive arguments. Letting U T : Dom(T )(⊆G)→
Ran(T )(⊆ H) be defined by

U T x := T x, x ∈ Dom(T ), (3.4)

it follows that U T is isometric both with respect to the indefinite inner products [·,·]G and [·,·]T , as well as with respect to
the quadratic norms ‖ ·‖G and ‖ ·‖T . Thus, U T extends uniquely to a (bounded) coisometry of Kreı̆n spaces U T ∈ L(G, R(T ))

such that Ker(U T ) = Ker(T ) and T ⊆ jT U T . �
Remark 3.2. The assumption in Lemma 3.1 that T is densely defined can be replaced by the more general one that Dom(T )

is a regular subspace of G . In this case, in order to define the Kreı̆n space R(T ) we have to use a fundamental symmetry
G subject to the condition that it leaves invariant both Ker(T ) and Dom(T ). Then, the coisometry U T is obtained with the
properties Ker(U T ) = Ker(T ) [+] (G [−] Dom(T )) and T PDom(T ) = jT U T .

Similar statements (some of them identical) with the ones in Propositions 2.7 and 2.8 in [8] can be stated and proved
immediately. Additional information is produced by the following

Proposition 3.3. If T ∈ C(G, H) for some Kreı̆n spaces G and H such that Ker(T ) is a regular subspace in G , then the Kreı̆n space
R(T ) defined at (3.1) and (3.2) has the following properties:

(i) The embedding operator jT defined at (3.3) is densely defined and closed.
(ii) Dom( jT ) = Ran(T ) = D− [+] D+ for some uniformly negative/positive definite linear manifolds D± in the Kreı̆n space R(T ).

(iii) (R(T ), j�T ) is a Kreı̆n space induced by the selfadjoint operator A = jT j�T .

Proof. (i) This follows by Lemma 3.1.
(ii) Let G = G+ [+] G− be the fundamental decomposition associated to the fundamental symmetry G that was used

to define the strong topology, see (3.2). Then D± := U T (K±) ∩ Ran(T ) are uniformly definite linear manifolds in the Kreı̆n
space R(T ) and R(T ) = D+ [+] D− .

(iii) R(T ) is a Kreı̆n space, j�T is a linear operator from H in R(T ) and Dom(A) = Dom( jT j�T ) ⊆ Dom( j�T ). Also,

j�T Dom(A) = j�T Dom( jT j�T ). To see this, let u ∈ Ran( j�T ) be such that it is [·,·]T -orthogonal on j�T Dom(A). Then, u = j�T y for

some y ∈ Dom( j� ) and for all x ∈ Dom( jT j� ) we have
T T
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0 = [
j�T x, j�T y

]
T = [

jT j�T x, y
]

H,

hence y is orthogonal to Ran(A), which is dense in H, and hence y = 0 and u = j�T y = 0.

Finally, for all x ∈ Dom(A) = Dom( jT j�T ) and all y ∈ Dom( j�T ) we have[
j�T x, j�T y

]
R(T )

= [
jT j�T x, y

]
H = [Ax, y]H,

and hence (R(T ), j�T ) is a Kreı̆n space induced by A. �
Remark 3.4. The Kreı̆n space structure of H (the codomain space) of the operator T does not play an essential role in the
construction of the Kreı̆n space R(T ); all we need is its Hilbert space strong topology. On the contrary, the Kreı̆n space
structure of G (the domain space) and the additional constraints are essential for the construction of the Kreı̆n space R(T ).
Because of this and in order to keep the notation simpler, we will mainly consider the case when the ambient space H is
a Hilbert space.

Remark 3.5. Let A be a selfadjoint operator in a Hilbert space H. With the notation as in Example 2.2, note that the space
G = H � Ker(A) has a natural structure of Kreı̆n space, letting S A (compressed to H) be its fundamental symmetry. Then,
letting T = |A|1/2, considered as a linear operator from G in H, the Kreı̆n space B A defined in [9] is exactly the Kreı̆n
space R(T ).

4. Closely embedded Kreı̆n spaces

The notion of closely embeded Kreı̆n spaces makes the connection between induced Kreı̆n spaces and L. de Branges
and J. Rovnyak [5,4], and L. Schwartz [29] theory of Hilbert/Kreı̆n spaces continuously contained. Our main concern is a
characterization of uniqueness. To this end we first recall the definition and the basic properties, cf. [9].

4.1. Definition and basic properties of closely embedded Kreı̆n spaces

In view of Proposition 3.3 the natural definition of a closely embedded Kreı̆n space can be given. According to Remark 3.4,
without loss of generality the ambient space H will be considered a Hilbert space. Thus, a Kreı̆n space K is called closely
embedded in H if:

(cek1) There exists a linear manifold D in K ∩ H that is dense in K.
(cek2) The canonical embedding j : D(⊆ K) → H is closed, as an operator from K to H.
(cek3) There exists positive/negative uniformly definite linear manifolds D± in K such that Dom( j) = D+ [+] D− .

This definition is a generalization of the concept of closely embedded Hilbert space that allows us to establish the
connection with induced Kreı̆n spaces. Again, the meaning of the axiom (cek1) is that on D the algebraic structures of K
and H coincide.

Proposition 4.1. If H is a Hilbert space and K is a Kreı̆n space closely embedded in H, with embedding operator j, then A = j j� is a
selfadjoint operator in H and (K; j�) is a Kreı̆n space induced by A.

Proof. By the R. Phillips Extension Theorem, e.g. see [3], there exists K = K+ [+] K− a fundamental decomposition of
the Kreı̆n space K such that D± ⊆ K± , and let J be the associated fundamental decomposition. Then A = j j� = j J j∗ is a
selfadjoint operator in the Hilbert space H, where j∗ is the adjoint of j with respect to the Hilbert space H+ := (K; 〈·,·〉 J ).
Also, |A| = j j∗ and we can apply Proposition 3.1 in [8] in order to conclude that (H+; j∗) is a Hilbert space induced by |A|.
Since j� = J j∗ this implies that (K; j�) is a Kreı̆n space induced by A. �

Given K, a Kreı̆n space closely embedded in the Hilbert space H, with the closed embedding j : Dom( j)(⊆ K) → H, we
call A := j j� the kernel operator of K. The axiom (cek3) in the definition of a closely embedded Kreı̆n space is justified by
the anomaly in the indefinite setting that allows closed densely defined operators T between Kreı̆n spaces such that T T �

may not be densely defined.

Remark 4.2. From Proposition 3.3 it follows that if T is a closed densely defined operator from a Kreı̆n space G to another
Kreı̆n space H such that Ker(T ) is regular, then the Kreı̆n space R(T ) is closely embedded in the ambient Kreı̆n space H.

We also recall a generalization of the variant of the Lifting Theorem in [18], cf. [9]. This theorem is actually another
variant of Theorem 2.3, in view of Proposition 4.1. For the notation of the Kreı̆n space B A see Remark 3.5.
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Theorem 4.3. Let A and B be two selfadjoint operators in the Hilbert spaces H1 and respectively H2 . We consider the Kreı̆n spaces B A

and B B , closely embedded in H1 and respectively H2 , as well as the closed embeddings j A : Dom( j A)(⊆ B A) → H1 and respectively
jB : Dom( jB)(⊆ B B) → H2 . Then, for any operators T ∈ L(H1, H2), and S ∈ L(H2, H1) such that

〈Bx, T y〉H2 = 〈Sx, Ay〉H1 , x ∈ Dom(B), y ∈ Dom(A),

there exist uniquely determined operators T̃ ∈ L(B A, B B) and S̃ ∈ L(B B , B A) such that T̃ j�A x = j�B T x for all x ∈ Dom(A), S̃ j�B y =
j�A S y, for all y ∈ Dom(B), and

〈̃Sh,k〉B A = 〈h, T̃ k〉B B , h ∈ B B , k ∈ B A .

4.2. Uniqueness of closely embedded Kreı̆n spaces

We can now approach the question on uniqueness of a closely embedded Kreı̆n space with respect to the kernel operator.
We first write down the interplay between closely embedded Kreı̆n spaces and kernel operators.

Proposition 4.4. Let K be a Kreı̆n space closely embedded in the Hilbert space H, with the corresponding closed embedding j and
kernel operator A = j j� . Then:

(i) 〈 jx, y〉H = [x, Ay]K for all x ∈ Dom( j) and all y ∈ Dom(A).
(ii) Ran(A) ⊆ K is dense in K.

Proof. We first observe that Ran(A) = Ran( j j�) ⊆ Ran( j) = Dom( j) ⊆ K, hence Ran(A) ⊆ K.
Let x ∈ Dom( j) and y ∈ Dom(A). Then, since Dom(A) ⊆ Dom( j�) we have 〈 jx, y〉H = [x, j� y]H . Taking into account that

j� y ∈ Dom( j) and that j is simply the identity operator, it follows that

〈 jx, y〉H = [
x, j� y

]
K = [

x, j j� y
]

H = [x, Ay]K.

To see that Ran(A) is dense in K, it is sufficient to prove that it is dense in Dom( j). To this end, let x ∈ Dom( j) that is
[·,·]K -orthogonal on Ran(A). Then, for all y ∈ Dom(A) we have 0 = [x, Ay]K = 〈 jx, y〉H , hence, since Dom(A) is dense in
H it follows that 0 = jx = x. �

Proposition 4.4 shows that for any selfadjoint operator A in Hilbert space H, the linear manifold Ran(A) lies densely
in all Kreı̆n spaces closely embedded in H and with kernel operator A. We say that A has the uniqueness closely embedded
Kreı̆n space property if, for any two Kreı̆n spaces Ki , closely embedded in H, and with closed embedding ji , i = 1,2, the
identity operator on Ran(A) extends (uniquely) to a unitary operator from K1 to K2.

Another natural question in connection with the uniqueness matter is whether it is always possible to produce closely
embedded Kreı̆n spaces from induced Kreı̆n spaces. In this respect, Proposition 3.3 describes a canonical construction on
how to do this, in case the kernel operator A is selfadjoint.

Lemma 4.5. Let (K;Π) be a Kreı̆n space induced by a selfadjoint operator A in the Hilbert space H. Then R(Π�) is a closely embedded
Kreı̆n space in H.

Proof. Observe that Π� is injective, hence the construction of the Kreı̆n space as in (3.1) and (3.2), as well as of the
embedding operator jT , defined as in (3.3), make sense. Then we can apply Proposition 3.3. �

Our aim is to reduce the uniqueness of closely embedded Kreı̆n spaces to the uniqueness of induced Kreı̆n space, as
stated in Theorem 2.4. In this respect, Lemma 4.5 is the first step. The second step is to perform this reduction and, in the
same time, to clarify the meaning of “uniqueness” for closely embedded Kreı̆n spaces.

Lemma 4.6. Let A be a selfadjoint operator in the Hilbert space H and two Kreı̆n spaces (K1;Π1) and (K2;Π2) induced by the same
operator A. The following assertions are equivalent:

(i) The induced Kreı̆n spaces (K1;Π1) and (K2;Π2) are unitarily equivalent.
(ii) The identity operator on Ran(A) extends (uniquely) to a unitary operator U ∈ L(R(Π

�
1), R(Π

�
2)).

Proof. Let V ∈ L(K2, K1) be a unitary operator (of Kreı̆n spaces) such that V Π2 = Π1. Then Π
�
1 = Π

�
2 V � and hence

Ran(Π
�
1) = Ran(Π

�
2) =: D. Let Gi be a fundamental symmetry in Ki , i = 1,2, be such that V G2 = G1. Then, the norms

‖ · ‖T1 and ‖ · ‖T2 defined by (3.2), and using norms ‖ · ‖G1 and ‖ · ‖G2 , respectively, coincide on D ⊇ Ran(A). Also, the
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inner products [·,·]T1 and [·,·]T2 , as defined by (3.1), coincide. Therefore, the identity operator on D, and hence, the identity

operator on Ran(A), extends (uniquely) to a unitary operator U ∈ L(R(Π
�
1), R(Π

�
2)).

Conversely, let U ∈ L(R(Π
�
1), R(Π

�
2)) be the unitary operator of Kreı̆n spaces that is the identity operator when

restricted to Ran(A). Let U
Π

�
i

∈ L(Ki, R(Π�)) be the Kreı̆n space unitary operator, as in Proposition 3.1, such that

Π
�

i = j
Π

�
i

U
Π

�
i

. Then V := U �

Π
�
2

U U
Π

�
1

is a unitary operator between the Kreı̆n spaces K1 and K2 such that Π1 = Π2 V ,

that is, the Kreı̆n spaces K1 and K2, induced by the same selfadjoint operator A, are unitarily equivalent. �
From Lemmas 4.5, 4.6, and Theorem 2.4, we get the characterization of those selfadjoint operators in a Hilbert space A

that have the unique closely embedded Kreı̆n space property, which is a generalization of results in [22,11,17,14].

Theorem 4.7. Let A be a selfadjoint operator in a Hilbert space H. The following assertions are equivalent:

(i) There exists ε > 0 such that either (−ε,0) or (0, ε) are in the resolvent set ρ(A).
(ii) A has the uniqueness closely embedded Kreı̆n space property.

Proof. (i) ⇒ (ii). Assume that there exists ε > 0 such that either (−ε,0) or (0, ε) are in ρ(A) and let K be a Kreı̆n space
closely embedded in H, with embedding operator j and kernel operator A. By Proposition 4.1 we have A = j j� and (K; j�)
is a Kreı̆n space induced by A. By Theorem 2.4 and Lemma 4.6 we get that the identity operator on Ran(A) extends
uniquely to a unitary operator U : R(Π

�

B A
) → R( j�) = K, and hence A has the uniqueness closely embedded Kreı̆n space

property.
(ii) ⇒ (i). Conversely, assume that A has the uniqueness closely embedded Kreı̆n space property but A does not have

the lateral spectral gap property, that is, 0 is an accumulation point in the spectrum of A from both sides. By Theo-
rem 2.4, there exist two Kreı̆n spaces (K1;Π1) and (K2;Π2) induced by A that are not unitarily equivalent. By Lemma 4.5,
R(Π

�

i ), i = 1,2 are closely embedded in H hence, the identity operator on Ran(A) extends uniquely to a unitary operator

U : R(Π
�
1) → R(Π

�
2) of Kreı̆n spaces, and this contradicts the fact that the two Kreı̆n spaces (K1;Π1) and (K2;Π2) induced

by A are not unitarily equivalent. �
5. Closely embedded Kreı̆n spaces associated to Dirac operators

One of the motivations for introducing the concept of closely embedded Kreı̆n space comes from a convenient energy
space representation, in the sense of K. Friedrichs [21], for Dirac operators. The case of the free Dirac operator corresponding
to a particle with nontrivial mass have been obtained in [9] but here we can add the uniqueness of the energy space and
consider the case of the massless particle as well. For this reason and for a better comparison between the mass and the
massless particle cases we here explicitly consider both cases.

In this section we will use the definitions and basic properties of Sobolev spaces, as in R.A. Adams [1] and
V.G. Maz’ja [26]. In addition, some basic facts on Dirac operators and their spectral theory that will be used can be found
in B. Thaller [31].

Below the following notations are systematically used. We let L2(R
n;C

m) = C
m ⊗ L2(R

n) the space of all square
summable C

m-valued functions on R
n . By û(ξ) we denote the Fourier transform of u ∈ L2(R

n;C
m):

û(ξ) = 1

(2π)n/2

∫
u(x)ei〈x,ξ 〉 dx,

in which 〈x, ξ〉 designates the scalar product of all elements x, ξ ∈ R
n . Here and in what follows

∫ := ∫
Rn . The norm in R

n

(or C
m) will be denoted simply by | · |. The operator norm of m × m matrices corresponding to the norm | · | in C

m will be
denoted by | · |, as well. We will also need two more Hilbert spaces. W −1/2

2 (Rn;C
m) = C

m ⊗ W −1/2
2 (Rn) is defined as the

completion of L2(R
n;C

m) with respect to the norm

‖u‖2
W −1/2

2

:=
∫ (

1 + |ξ |2)−1/2∣∣û(ξ)
∣∣2

dξ. (5.1)

In addition, W 1/2
2 (Rn;C

m) = C
m ⊗ W 1/2

2 (Rn) is defined to be the Sobolev space of all u ∈ L2(R
n;C

m) with norm

‖u‖2
W 1/2

2

:=
∫ (

1 + |ξ |2)1/2∣∣û(ξ)
∣∣2

dξ < ∞. (5.2)

5.1. A general Dirac operator for a free particle with nontrivial mass

Let H denote the free Dirac operator defined in the space L2(R
n;C

m) = C
m ⊗ L2(R

n) by
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H =
n∑

k=1

αk ⊗ Dk + α0 ⊗ I, (5.3)

where Dk = i∂/∂xk for (k = 1, . . . ,n), αk for (k = 0,1, . . . ,n) are m × m Hermitian matrices which satisfy the Clifford’s
anticommutation relations

α jαk + αkα j = 2δ jk Im ( j,k = 0,1, . . . ,n), (5.4)

m = 2n/2 for n even and m = 2(n+1)/2 for n odd, δ jk denotes the Kronecker symbol, Im is the m × m unit matrix, and I is
the identity operator on L2(R

n).
We consider the operator H defined on its maximal domain, the Sobolev space W 1

2 (Rn;C
m), and viewed in this way it

is a selfadjoint operator. Note that

H2 =
n∑

k=1

α2
k ⊗ D2

k +
∑
j �=k

(α jαk + αkα j) ⊗ D j Dk +
n∑

k=1

(α0αk + αkα0) ⊗ Dk + α2
0 ⊗ I

=
n∑

k=1

Im ⊗ D2
k + Im ⊗ I = Im ⊗ (−� + I),

that is,

H2 = Im ⊗ (−� + I), (5.5)

where � denotes the Laplace operator on R
n .

In the following we want to construct the space R(T ) as in Section 3. One of the difficulties encountered in pursuing
this way is related to making explicit and computable the operator |H|1/2. Thus, we consider the polar decomposition
of the Dirac operator H writing H = S|H| with the selfadjoint and positive operator |H| (the modulus of H) defined on
Dom(|H|) = Dom(H) and S = sgn(H). By (5.5) we have

|H| = Im ⊗ (−� + I)1/2 and S = H
(

Im ⊗ (−� + I)−1/2).
Further on, we let

T = |H|1/2 = Im ⊗ (−� + I)1/4 (5.6)

by considering T defined in L2(R
n;C

m) with domain Dom(T ) := W 1/2
2 (Rn;C

m). The operator T represents on this domain
a positive definite selfadjoint operator. In particular, T is a boundedly invertible operator, and its inverse T −1 is the (vector-
valued) Bessel potential Im ⊗ (I − �)−1/4 of order l = 1/2 (cf. E.M. Stein [30]).

We consider on Ran(T ) = L2(R
n;C

m) an inner product by setting

〈T f , T g〉 := 〈 f , g〉L2 , f , g ∈ W 1/2
2

(
R

n;C
m)

.

We can choose for the completion of L2(R
n;C

m) with respect to the corresponding norm ‖ · ‖T the space W −1/2
2 (Rn;C

m)

that is not entirely made up of functions, but at least of distributions C
m-valued distributions. Keeping the notations made in

Section 3 we have R(T ) = W −1/2
2 (Rn;C

m), for T defined as in (5.6). Since S commutes with H , it follows from Theorem 4.3

that the operator S extends uniquely to a symmetry J T in the space R(T ), and hence W −1/2
2 (Rn;C

m) can be regarded as
a Kreı̆n space with respect to the fundamental symmetry J T . The corresponding indefinite inner product is defined by

[u, v]T = 〈 J T u, v〉
W −1/2

2
, u, v ∈ W −1/2

2

(
R

n;C
m)

. (5.7)

According to the results discussed in Section 4, W −1/2
2 (Rn;C

m)(= R(T )) is closely (but not continuously) embedded

in the space L2(R
n;C

m). The canonical embedding operator jT of W −1/2
2 (Rn;C

m) in L2(R
n;C

m) is defined on the do-
main Dom( jT ) = L2(R

n;C
m), and since the kernel operator of this closed embedding is H (cf. Proposition 4.1), we get the

following factorization

H = jT j�T = jT J T j∗T . (5.8)

Concerning the symmetry S , the space H := L2(R
n;C

m) can be decomposed into an orthogonal direct sum

H = H+ ⊕ H−,

where H± = S±H and S± = 1
2 (I ± S), that is, S = S+ − S− is the Jordan decomposition of S . This provides the Jordan

decomposition of H = H+ − H− , where
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H+ := S+H S+ = S+S|H|S+ = S+|H|S+ � 0,

and

H− := S−H S− = S−S|H|S− = −S−|H|S− � 0

on Dom(H). In this respect, we note that both operators H+ and H− are positive definite selfadjoint in H, and that σ(H−) =
(−∞,−1] and σ(H+) = [1,+∞) (cf. 5.5) and, of course, σ(H) = σ(H−) ∪ σ(H+) = (−∞,−1] ∪ [1,+∞). Since H has a
spectral gap about 0, we can apply the uniqueness Theorem 4.7.

Summing up we can formulate the following.

Theorem 5.1.

(i) The space W −1/2
2 (Rn;C

m) defined by (5.1) can be organized as a Kreı̆n space by extending uniquely the symmetry S = sgn(H)

to a fundamental symmetry J T on the space W −1/2
2 (Rn;C

m).

(ii) The space W −1/2
2 (Rn;C

m) endowed with the indefinite inner product (5.7) is a Kreı̆n space closely, but not continuously, em-
bedded in L2(R

n;C
m), with canonical embedding operator jT having the domain L2(R

n;C
m), and the kernel operator of this

canonical embedding jT is the Dirac operator H.
(iii) The closely embedded Kreı̆n space W −1/2

2 (Rn;C
m), organized as before, is uniquely determined by its kernel operator H.

(iv) The Dirac operator H admits the factorization (5.8).

According to the K. Friedrichs interpretation of the energy space associated to a Hamiltonian, the Kreı̆n space K =
W −1/2

2 (Rn;C
m) can be regarded as the energy space associated to the Dirac operator H . This space consists of distributions

in which the function space L2(R
n;C

m) is dense. The Kreı̆n space structure of K shows that there exist some vectors u of
positive energy [u, u]K > 0, some vectors v of negative energy [v, v]K < 0, as well as nontrivial vectors w of null energy
[w, w]K = 0. The fundamental symmetry J T defined as the lifting of the symmetry S from H = L2(R

n;C
m) to K through

the lifting Theorem 4.3, has a special role, because the associated fundamental symmetry K = K− [+] K+ has the remarkable
property that H± are, respectively, dense in K± . Thus, even though some of the elements in K± are distributions, they can
be approximated by functions in H = L2(R

n;C
m) with respect to the norm (5.1), of the same type (that is, positive or,

respectively, negative).

5.2. The massless free particle Dirac operator

The particle with negligible mass is described by the Dirac operator obtained from the operator (5.3) without the last
term α0 ⊗ I . We denote this operator by H0. More precisely, we consider the Dirac operator H0 defined in L2(R

n;C
m), with

domain W 1
2 (Rn;C

m), by

H0 =
n∑

k=1

αk ⊗ Dk. (5.9)

The operator H0 is selfadjoint in the space L2(R
n;C

m) and its spectrum covers the whole real line, σ(H0) = R. Similarly
as for (5.5), it can be checked that

H2
0 = Im ⊗ (−�). (5.10)

Analogously, as in the previous subsection, we proceed from the polar decomposition of the operator H0 = S0|H0|, where
|H0| = (H2

0)1/2 and S0 = sgn(H0). It is easily seen from (5.10) that

|H0| = Im ⊗ (−�)1/2.

Note that S0 can be regarded as a pseudodifferential operator in L2 having the symbol S(ξ) = |ξ |−1h0(ξ), ξ ∈ R
n , where

h0(ξ) :=
n∑

k=1

ξkαk,

that is

(S0u)(x) = 1

(2π)n/2

∫
|ξ |−1h0(ξ)û(ξ)e−i〈x,ξ 〉 dξ, x ∈ R

n,

for each u ∈ L2(R
n;C

m).
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Further on, let T0 = |H0|1/2, that is

T0 = Im ⊗ (−�)1/4 (5.11)

defined on its maximal domain Dom(T0) := W 1/2
2 (Rn;C

m). Clearly, under the Fourier transform (in the momentum space),
T0 turns into the multiplication operator by |ξ |1/2. It follows that T0 is a selfadjoint and injective operator. The inverse
operator T −1

0 is the (vector-valued) M. Riesz potential Im ⊗ (−�)−1/4 of order l = 1/2 (cf. E.M. Stein [30]), and it is well
known that it represents a unbounded operator in the space L2(R

n;C
m).

By definition, the space R(T0) is obtained as the completion of Ran(T0) with respect to the norm

‖u‖T0 = ∥∥(−�)−1/4u
∥∥

L2
, u ∈ Ran(T0), (5.12)

hence, R(T0) is naturally identified with the dual space H−1/2
2 (Rn;C

m) = C
m ⊗ H−1/2

2 (Rn) of the homogeneous Sobolev

space H1/2
2 (Rn;C

m) = C
m ⊗ H1/2

2 (Rn) consisting of all functions u ∈ W 1/2
2,loc(R

n;C
m) for which

‖u‖2
H1/2

2

:=
∫ (∣∣(∇lu)(x)

∣∣2 + |x|−1
∣∣u(x)

∣∣2)
dx < ∞, l = 1

2
,

where, by defintion,∫ ∣∣∇lu(x)
∣∣2

dx =
∫

|ξ |2l
∣∣û(ξ)

∣∣2
dξ

(û the Fourier transformation of u). Again, H−1/2
2 (Rn;C

m) is not entirely made up of functions but, it is easily seen that

it is made up of C
m-valued distributions on R

n . The operator S0 determines uniquely a symmetry J T0 on H−1/2
2 (Rn;C

m).
The Kreı̆n space so obtained is closely (but not continuously) embedded in the space L2(R

n;C
m). The canonical embedding

operator jT0 of H−1/2
2 (Rn;C

m) in L2(R
n;C

m) has domain the set Ran(T0) consisting of all vector-valued functions u ∈
L2(R

n;C
m) which admit representations u = Im ⊗ (−�)1/2 f for some f ∈ L2(R

n;C
m), and its kernel operator is the Dirac

operator H0. Therefore, on the domain Dom(H0)(= W 1
2 (Rn;C

m)) there holds the factorization

H0 = jT0 j�T0
= jT0 J T0 j∗T0

. (5.13)

Note that the space H := L2(R
n;C

m) can be also decomposed with respect to S0 into an orthogonal sum H = H0+ ⊕ H0− ,
where H0± = P 0±H and P 0± := 1

2 (I ± S0), that is, S0 = P 0+ − P− is the Jordan decomposition of S0. In turns out that the
Dirac operator H0 has the Jordan decomposition H0 = H0+ ⊕ H0− , where H0+(H0−) is a nonnegative (nonpositive) selfadjoint
operator in H. Moreover, σ(H0−) = (−∞,0], σ(H0+) = [0,∞) and σ(H0) = σ(H0−) ∪ σ(H0+) = R. This shows that we can
apply Theorem 4.7 in order to see that there is no uniqueness of the closely embedded Kreı̆n space associated to H0, in
this case.

Summing up we have the following

Theorem 5.2.

(i) The space H−1/2
2 (Rn;C

m) can be organized as a Kreı̆n space by considering the operator S0 = sgn(H0) on the space consisting
of all vector-valued functions u ∈ L2(R

n;C
m) which admit representations u = Im ⊗ (−�)1/2 f for some f ∈ L2(R

n;C
m), and

extending S0 to the fundamental symmetry J T0 on H−1/2
2 (Rn;C

m).

(ii) The Kreı̆n space H−1/2
2 (Rn;C

m) is closely, but not continuously, embedded in L2(R
n;C

m), with canonical embedding operator
jT0 having domain the space of all vector-valued functions u ∈ L2(R

n;C
m) which admit representations u = Im ⊗ (−�)1/2 f for

some f ∈ L2(R
n;C

m).
(iii) The kernel operator of the closed embedding of H−1/2

2 (Rn;C
m) in L2(R

n;C
m) is the Dirac operator H0 , in particular, the factor-

ization (5.13) holds.
(iv) The closely embedded Kreı̆n space H−1/2

2 (Rn;C
m) is not uniquely determined by its kernel operator H0 .

The analog of the energy space interpretation, in the sense of K. Friedrichs, that was obtained for the Dirac operator H
in the previous subsection, holds for the Dirac operator H0 as well. More precisely, the Kreı̆n space K0 = H−1/2

2 (Rn;C
m)

can be regarded as the energy space associated to the Dirac operator H0. However, there are two major differences: first is
that in the massless particle case there is no uniqueness, and second is that the function space L2(R

n;C
m) is not entirely

included in K0, it only has a linear submanifold that is dense in both L2(R
n;C

m) and K0.
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