
ARTICLE IN PRESS

Computers & Operations Research 37 (2010) 1002–1013

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Bilkent University Institutional Repository
Contents lists available at ScienceDirect
Computers & Operations Research
0305-05

doi:10.1

� Corr

E-m

(E. Körp
journal homepage: www.elsevier.com/locate/caor
An anticipative scheduling approach with controllable processing times
Sinan Gürel b, Ersin Körpeoğlu a, M. Selim Aktürk a,�

a Department of Industrial Engineering, Bilkent University, 06800 Bilkent, Ankara, Turkey
b University of Warwick, Centre for Discrete Mathematics and its Applications (DIMAP), Coventry CV4 7AL, UK
a r t i c l e i n f o

Available online 16 September 2009

Keywords:

Anticipative scheduling

Controllable processing times

Reactive scheduling

Match-up time
48/$ - see front matter & 2009 Elsevier Ltd. A

016/j.cor.2009.09.001

esponding author. Fax: +90 312 266 4054.

ail addresses: Sinan.Gurel@wbs.ac.uk (S. Güre

eo
˘
glu), akturk@bilkent.edu.tr (M.S. Aktürk).
a b s t r a c t

In practice, machine schedules are usually subject to disruptions which have to be repaired by reactive

scheduling decisions. The most popular predictive approach in project management and machine

scheduling literature is to leave idle times (time buffers) in schedules in coping with disruptions, i.e. the

resources will be under-utilized. Therefore, preparing initial schedules by considering possible

disruption times along with rescheduling objectives is critical for the performance of rescheduling

decisions. In this paper, we show that if the processing times are controllable then an anticipative

approach can be used to form an initial schedule so that the limited capacity of the production resources

are utilized more effectively. To illustrate the anticipative scheduling idea, we consider a non-identical

parallel machining environment, where processing times can be controlled at a certain compression

cost. When there is a disruption during the execution of the initial schedule, a match-up time strategy is

utilized such that a repaired schedule has to catch-up initial schedule at some point in future. This

requires changing machine–job assignments and processing times for the rest of the schedule which

implies increased manufacturing costs. We show that making anticipative job sequencing decisions,

based on failure and repair time distributions and flexibility of jobs, one can repair schedules by

incurring less manufacturing cost. Our computational results show that the match-up time strategy is

very sensitive to initial schedule and the proposed anticipative scheduling algorithm can be very helpful

to reduce rescheduling costs.

& 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Unexpected events such as machine breakdowns or new job
arrivals necessitate rescheduling remaining jobs in a schedule.
Processing time controllability provides us flexibility in resche-
duling against unexpected disruptions by allowing changes on the
processing times of the jobs. However, the performance of
rescheduling decisions, such as replanning the processing times
or reallocating jobs between machines, highly depends on the
state of the schedule at the time of disruption. Thus, it is critical to
prepare initial schedules by considering possible disruption times
and the ability of jobs to absorb disruptions. In this study, we
develop an anticipative scheduling approach to form an initial
schedule that could improve the performance of rescheduling
decisions with controllable processing times.

To illustrate the anticipative scheduling idea, we design a
scheduling algorithm for a set of jobs to be scheduled on parallel
non-identical machines with given machining time capacities on
each machine. Initial objective for this problem is to minimize the
ll rights reserved.

l), ersink@bilkent.edu.tr
total manufacturing cost of the jobs. We first find the optimal
machine–job assignment and the optimal compression levels on
the processing times of the jobs. Having found the machine–job
assignments, the problem is to find a job sequence on each
machine. We consider the situation that if a machine breakdown
occurs on one of the machines, a reactive scheduling problem is
solved and the remaining schedule is repaired. We assume that
failure and repair times are uncertain with given probability
distributions. In the considered reactive scheduling problem, the
objective is to minimize the manufacturing cost increase due to
disruption, denoted as rescheduling cost, subject to the condition
that the repaired schedule has to match up with the initial
schedule at a given time point after disruption. We provide a
scheduling algorithm which determines a job sequence on each
machine by considering possible downtime periods on the
machines along with rescheduling cost minimization objective.
1.1. Literature

In the scheduling literature, reactive and predictive schedul-
ing approaches have been considered extensively. In those
studies usually the aim is to prepare an initial schedule in
such a way that the schedule can be repaired with simple

https://core.ac.uk/display/52922899?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
www.elsevier.de/caor
dx.doi.org/10.1016/j.cor.2009.09.001
mailto:Sinan.Gurel@wbs.ac.uk
mailto:Sinan.Gurel@wbs.ac.uk
mailto:ersink@bilkent.edu.tr
mailto:ersink@bilkent.edu.tr
mailto:ersink@bilkent.edu.tr
mailto:ersink@bilkent.edu.tr
mailto:akturk@bilkent.edu.tr
mailto:akturk@bilkent.edu.tr

ARTICLE IN PRESS

S. Gürel et al. / Computers & Operations Research 37 (2010) 1002–1013 1003
adjustments and within a slight performance degradation.
Aytug et al. [1] gave an extensive literature survey on
scheduling under uncertainty and generating robust schedules.
Jensen [2] defined a robust schedule as the one which performs
good when there was a disruption and the schedule was right
shifted. Leon et al. [3] considered finding robust schedules in a
job shop scheduling environment which is subject to a single
disruption. They proposed a genetic algorithm to minimize
expected makespan and expected delay measures. To the best of
our knowledge, studies in the literature assume fixed proces-
sing times. Here, we consider anticipative scheduling with
controllable processing times.
1.1.1. Idle time insertion

In order to minimize the effects of possible disruptions on a
schedule, a well known predictive approach is inserting idle times
in it, so that disruptions can be absorbed without disturbing the
system. Almost all of the existing reactive scheduling strategies
(including match-up and right-shift scheduling techniques) try to
accommodate disruptions by using the available idle times on
initial schedules. Inserting idle times, as a predictive scheduling
approach, is first proposed by Mehta and Uzsoy [4] for a job-shop
scheduling problem. Recently Leus and Herroelen [5] presented a
new model for single machine scheduling problems with stability
objective and a common deadline, and proposed a branch and
bound algorithm for an approximate formulation of the model to
determine when and where to place an inserted idle time. Their
algorithm gives the optimal job sequence and the optimal length
of idle time following each job in the schedule when exactly one
job deviates from its expected processing time. Yang and Geunes
[6] considered inserting idle times on a single machine scheduling
problem where there exists uncertain future jobs that may arrive.
They proposed a heuristic dynamic programming algorithm to
minimize the expected sum of tardiness cost, the disruption cost
and the wasted idle time cost. A similar idea (e.g. inserting a time
buffer to protect a deterministic baseline schedule in order to
cope with uncertainties) is also proposed for the project manage-
ment problems, called buffer sizing, in the critical chain schedul-
ing and buffer management (CC/BM) software as discussed in
Herroelen and Leus [7]. In rescheduling with fixed processing
times, inserting idle time is an efficient predictive approach.
However, in case of controllable processing times, when the
machining time capacity is limited and fully utilized, inserting
idle times into a schedule require applying extra compression on
the processing times of jobs. This increases compression costs. If
no disruption occurs or if a disruption occurs after the inserted
idle times, then the inserted idle time becomes useless. If the
processing times are controllable, an alternative rescheduling
approach to inserting idle times is reacting to disruptions by
replanning the processing times. Consequently, the limited
capacity of production resources are utilized more effectively.

In any idle time insertion approach, a critical decision to be
made is when and how much idle time should be placed into an
initial schedule so that the new schedule achieved by reschedul-
ing after a disruption has the best scheduling performance.
Analogously, in rescheduling with controllable processing times, it
is critical to find the positions of the jobs in the initial schedule in
an appropriate order so that a possible disruption is absorbed
immediately and with a reasonable manufacturing cost increase.
Therefore, we propose a new anticipative scheduling algorithm to
form an initial schedule that takes flexibility of jobs along with
probability distributions of failure and repair time of machines
into account. Proposed flexibility measures estimate the ability of
the jobs to absorb disruptions with less compression and
reallocation costs, so that we schedule the most flexible jobs to
the time zones where the downtime probability of a machine is
higher.

1.1.2. Controllable processing times

A well known example to a controllable processing time is the
processing time of CNC machining operations in flexible manu-
facturing systems. We can control the processing time of a job by
setting the cutting speed and/or the feed rate on the machine. In
turning operation as you increase the cutting speed and the feed
rate, the processing time of the operation is compressed, whereas
the compression cost of the operation is increased due to
increased tooling costs [8]. Shabtay and Steiner [9] give an
extensive literature review on the scheduling problems with
controllable processing times. To the best of our knowledge,
generating flexible schedules for the scheduling environments
with controllable processing times has not been considered in the
literature yet. Our work is the first attempt to employ anticipative
scheduling with controllable processing times.

1.1.3. Match-up scheduling

When a disruption occurs, in order to stay consistent with the
initial schedule, a critical rescheduling goal is to catch up with the
initial schedule as soon as possible. The new schedule catches up
with the initial schedule at the time point where the new
schedule is exactly at the same state as the initial schedule. This
time point is called the match-up time. Minimizing the match-up
time helps to reduce the effects of a disruption on the production
plan and on the schedules at the other stages of the production.
For example, an extensive change in the completion times of jobs
in the schedule of a department may cause unavailability of parts
for the scheduled production in another department. In the
literature, there exists few match-up scheduling studies such as
Bean et al. [10] and Aktürk and Görgülü [11], which consider
heuristic approaches to find match-up times under the existence
of inserted idle times and fixed processing times. In rescheduling
with controllable processing times, catching up an initial schedule
earlier is possible by extensively compressing the jobs that are
scheduled just after the disruption. With convex compression
costs, absorbing a downtime by compressing a smaller set of jobs
in the schedule results higher compression costs. Hence, there is a
trade-off between the match-up time and the cost of the new
schedule. Aktürk et al. [12] considered match-up time minimiza-
tion and cost minimization problems for a parallel machine
environment and showed the trade-off between two objectives.

1.2. Contribution

In this study, we introduce an anticipative scheduling
approach with controllable processing times. We show that using
the reactive scheduling objective and constraints, uncertainty
data for downtimes, manufacturing cost and processing time
controllability simultaneously, one can prepare initial schedules
which could result improved rescheduling cost performance in
case of a disruption.

As a specific problem we consider generating flexible initial
schedules for the manufacturing cost objective by using an
anticipative scheduling approach. For the rescheduling problem,
we will consider minimizing rescheduling cost subject to a given
match-up time point. We show that the rescheduling cost
objective is quite sensitive to the set of jobs that are affected by
the machine breakdown. Our scheduling algorithm uses the
failure and repair time distributions and the manufacturing cost
functions of the jobs in order to find the initial schedules which
can be repaired at lower rescheduling cost levels. The proposed
approach in this study incurs no additional cost in terms of

ARTICLE IN PRESS

S. Gürel et al. / Computers & Operations Research 37 (2010) 1002–10131004
match-up time and manufacturing cost, but gives less reschedul-
ing costs in case of a machine breakdown. Our computational
experiments show that our approach can achieve an average
improvement of 31% in rescheduling costs.

1.3. Organization

In Section 2, we define the considered scheduling environment,
formulate the rescheduling cost minimization problem and then
discuss the related scheduling problem. In Section 3, we introduce
our anticipative scheduling algorithm. We first introduce ma-
chine–job allocation problem briefly, then present a probabilistic
analysis and discuss proposed flexibility measures. Finally, we
give a probabilistic sequencing algorithm for the cost minimiza-
tion problem. Section 4 gives the results of the computational
experiments and we conclude with Section 5.
2. Rescheduling cost minimization problem

We consider n jobs to be processed on m non-identical parallel
CNC machines. Processing time of job j on machine i is pu

ij.
Processing time of a job on machine can be compressed. Amount
of compression yij is a decision variable and has an upper bound
uij. Manufacturing cost of job j on machine i is cij. Compression
cost function for job j on machine i is fijðyijÞ. On each machine,
there is a given available machining time capacity Di. For the
considered rescheduling problem, an initial machine–job assign-
ment, denoted by A, is obtained by solving a minimum cost
machine–job assignment problem which will be introduced in
Section 3.1.

Given A, an initial schedule, called S, with the start and end
times of jobs on each machine is to be formed by finding a job
sequence on each machine. Different disruptions may occur to a
schedule S during its execution. In this study, we assume that a
breakdown could occur on one of the machines at an uncertain
time. We also assume that since the failed machine has to be
fixed, it will be down for an uncertain amount of time which will
be known at the time of breakdown. If the breakdown occurs in
the middle of the processing a job, the job has to be reprocessed in
its entirety. This situation is called the preempt-repeat case in the
literature.

Given such a downtime period on one of the machines, S is no
longer executable. A subset of jobs in S has already been finished
before the disruption. We assume that the jobs being processed on
the machines other than the disrupted machine at the time of
breakdown will finish their process as planned in S. The other jobs
which have not started processing yet at the time of breakdown
and the job which is disrupted by the breakdown on the failed
machine have to be rescheduled. These jobs are either to be
reallocated to other machines and/or replanned to calculate their
new processing times.

We consider a rescheduling cost minimization problem which
is to be solved after a breakdown occurs. As one of the machines is
disrupted and the schedule for the remaining jobs has to be
repaired, one can look for alternative machine–job assignments
and processing time decisions. Repaired schedule is required to
satisfy the scheduling and processing time related constraints at a
minimum rescheduling cost. It is also required that the repaired
schedule catches up the initial schedule as soon as possible after a
breakdown. Therefore, this problem could be formulated as to
minimize the rescheduling cost of remaining jobs for a given limit
on the match-up time. In this problem, a match-up time on a
machine implies that the schedule, i.e. the job sequence and start–
end times of the jobs, following the match-up point is exactly the
same as in initial schedule S. As we consider a non-preemptive
rescheduling environment, we select match-up times out of the
start times of the jobs previously determined in S.

2.1. Manufacturing cost function

The manufacturing cost of a job on a machine is a fixed amount
cij, which is the cost if the job is operated at pu

ij, plus the
compression cost which is incurred if the processing time of the
job is compressed. Compressing the processing time of a job
requires using additional resource. As we increase the cutting
speed and/or feed rate on a CNC machine, the tool life is reduced
and hence the manufacturing cost is increased. The compression
cost of each job can be expressed as a function of yZ0 as

f ðyÞ ¼ kyða=bÞ;

where aZb40 and k40 so that f is increasing and convex. As we
decrease the processing time of a job, it requires more additional
resource to compress it further. As discussed in Kayan and Aktürk
[13], in turning operation, the length and the diameter of the job,
the required surface roughness, machine horsepower, and the
required tool type determine the cost coefficients k, a, and b for
each machine–job pair.

2.2. Rescheduling problem formulation

In the rescheduling cost minimization problem, for each job to
be rescheduled, a machine–job assignment decision has to be
made. xij is the assignment variable which is 1 if job j is assigned
to machine i and 0 otherwise. Also, for each job a new
compression amount ðyijÞ has to be determined. Given an upper
bound W on the match-up times, one can set the match-up time
on machine i to be Wi ¼maxjA Ji

fsj : sjrWg. This is because the
match-up times can be selected out of the start times of the jobs
in the initial schedule. We define the set of jobs to be rescheduled
as JW , i.e. set of jobs that precede selected match-up times on the
machines. Furthermore, we define CSj to be the manufacturing
cost of job j in S. We denote the machining time capacity on
machine i used by S as DSi . Then, we can formulate the problem of
minimizing total manufacturing cost of jobs in JW with given
match-up times as

min
X

i

X
jA JW

ðcijxijþ fijðyijÞÞ �
X
jA JW

CSj

s:t:
X
jA JW

ðpu
ijxij � yijÞrWi � DSi ; i¼ 1; . . . ;m; ð1Þ

ðRCMÞ yijrxijuij; i¼ 1; . . . ;m and jA JW ; ð2Þ

Xm
i ¼ 1

xij ¼ 1; jA JW ; ð3Þ

xijAf0;1g; yijARþ ; i¼ 1; . . . ;m and jA JW : ð4Þ

In this formulation, constraint set (1) guarantees that comple-
tion times of jobs in JW do not exceed the match-up time in the
new schedule. Constraint set (2) is the variable upper bounding
constraints on the amount of compression, guaranteeing that
processing time of a job on a machine can be compressed only if
the job is assigned on that machine and also the compression
cannot be greater than the upper bound uij. Constraint set (3)
assigns each job in set JW to a machine. RCM is a mixed integer
nonlinear programming problem for which Aktürk et al. [14]
provided a strengthened conic quadratic formulation. Therefore, it
can be solved efficiently by a commercial branch-and-bound

ARTICLE IN PRESS

S. Gürel et al. / Computers & Operations Research 37 (2010) 1002–1013 1005
software which employs second-order cone programming algo-
rithms in solving subproblems.

Given the rescheduling problem above we focus on developing
an anticipative scheduling approach to form an initial schedule.
GivenA, under the assumption of a single disruption on one of the
machines and the assumption that RCM problems to be solved to
reschedule the remaining jobs, the problem that we deal with is to
make the job sequencing decisions on each machine to form the
initial schedule S so that the optimal solution of RCM can be
improved. In the next section, we explore the probabilistic nature
of downtime period on a machine and propose flexibility
measures which estimate the ability of the jobs to absorb
downtimes.
3. Anticipative scheduling algorithm

We develop an anticipative scheduling approach to form an
initial schedule. It is uncertain which machine will fail, at what
time and how long it will take to repair a failed machine. We
assume that the probability distributions for failure and repair
times are known. When a disruption occurs it is critical to absorb
the downtime as soon as possible and at minimum rescheduling
cost. Therefore, it is critical which jobs are scheduled at and
immediately after the downtime interval. So, we provide a set of
flexibility measures to be evaluated for each job. We will use the
flexibility measures in deciding which jobs are appropriate to
schedule at risky time zones. An outline of proposed anticipative
scheduling algorithm is given below.
Algorithm 1. Anticipative Scheduling Algorithm.

Step 1. Initial machine–job assignment, A: Find the minimum
cost machine–job assignment for given jobs and machining
time capacity levels (Di);

Step 2. Downtime probability: For each machine find the
downtime probability function which gives the probability
that the machine will be down at a time point t;

Step 3. Flexibility measures: Develop a flexibility measure Fj for

each job with respect to:
� Processing time,
� Compressibility range,
� Second derivative of the compression cost function,
� Average slope of the compression cost function,
� Machine–job reallocation cost estimate;
Step 4. Probabilistic sequencing algorithm: Sequence the jobs on
the machines by placing the most flexible job, i.e. job with
the highest Fj, to the time zone where the machine is most

likely to be down.

3.1. Initial machine–job assignment

As a first step of our anticipative scheduling algorithm, we
solve a machine–job assignment problem to minimize the total
manufacturing cost of given n jobs to be completed on m non-
identical machines. A mathematical formulation of the problem is
as follows:

min
Xm
i ¼ 1

Xn

j ¼ 1

ðcijxijþ fijðyijÞÞ

s:t:
Xn

j ¼ 1

ðpu
ijxij � yijÞrDi; i¼ 1; . . . ;m; ð5Þ
ðMJAÞ yijrxijuij; i¼ 1; . . . ;m; j¼ 1; . . . ;n; ð6Þ

Xm
i ¼ 1

xij ¼ 1; j¼ 1; . . . ;n; ð7Þ

xijAf0;1g; yijARþ ; i¼ 1; . . . ;m; j¼ 1; . . . ;n: ð8Þ

The difference between MJA and RCM is that MJA is solved for
n jobs at the beginning when capacity on each machine is the
initially available machining time Di. MJA is a mixed-integer
nonlinear programming problem which can be solved similar to
the RCM problem by using the conic quadratic reformulation
approach proposed by Aktürk et al. [14]. In this approach the first
step is to move each convex function f ðyÞ in the objective into the
constraint set. This is done by introducing auxiliary variables
ðtZ0Þ to the problem. Then, objective function of the resulting
formulation is

Xm

i ¼ 1

Xn

j ¼ 1

ðcijxijþtijÞ:

For each i; j pair, new formulation includes constraint

yartb:

Having variable upper bounding constraints (6) in the formula-
tion, one can strengthen this inequality as follows:

yartbxða�bÞ;

which can be represented by second-order conic constraints.
Computational study by Aktürk et al. [14] has shown that conic
representation of strengthened formulation can be solved
quite efficiently compared to conic representation of the
original formulation. In this study, we have used this
reformulation approach in solving MJA and RCM problems.
Next, we define a downtime probability function and show
how it is derived.
3.2. Downtime probability

Given the failure time and repair time distributions for a
machine, one can calculate the probability that it will be down
at a certain time t. Let X i be the random variable defining the
failure time of machine i and Yi be the random variable
defining the repair time after a failure occurs, then we can
define the probability that machine i will be down at time t as
below:

Pd
i ðtÞ ¼ PðX irtrX iþYiÞ:

While preparing the initial schedule S, we can use Pd
i ðtÞ as a

benchmark to sequence the jobs on the machine. In the rest of
the paper, when it is not necessary to include index i, we will
drop it from notation X i;Yi and Pd

i ðtÞ. We can calculate PdðtÞ as
shown in Lemma 3.1.
Lemma 3.1. Let fX ; FX ; fY , and FY be probability density functions

and distribution functions of continuous random variables X and Y,
respectively. Then,

PdðtÞ ¼ PðXrtrXþYÞ ¼
Z t

�1

ð1� FY ðt � xÞÞ

� fX ðxÞ dx¼

Z 1
0
ðFX ðtÞ � FX ðt � yÞÞfY ðyÞdy:

ARTICLE IN PRESS

S. Gürel et al. / Computers & Operations Research 37 (2010) 1002–10131006
Proof.

PðXrtrXþYÞ ¼
Z t

�1

PðXrtrXþYjX ¼ xÞ � fX ðxÞdx

¼

Z t

�1

PðYZt � xÞ � fX ðxÞdx

¼

Z t

�1

ð1� FYðt � xÞÞ � fX ðxÞdx:

Similarly conditioning on y immediately brings up the second
equality. &

Lemma 3.1 defines PdðtÞ which gives the probability that a
machine will fail before or at time t and will not be available at
time t. The next property states that PdðtÞ can have a unique local
maximum in the interval ½0;1�.

Lemma 3.2. If fx is unimodal in the interval ½0;1�, i.e. it has a unique

local maximum in the interval ½0;1�, then PdðtÞ is also unimodal in

the interval ½0;1�.

Proof. The first derivative of PdðtÞ is

@PdðtÞ

@t
¼ ð1� FYð0ÞÞfX ðtÞ �

Z t

�1

fY ðt � xÞfX ðxÞdx:

The second term in the derivative expression is an integral of the
multiplication of non-negative functions. Hence, the term is non-
negative and increasing in given interval. Since the first term is
unimodal by definition, the derivative of PdðtÞ can take the value
zero only at a single point in the interval and hence PdðtÞ is
unimodal. &

Lemma 3.2 implies that the downtime probability is first
increasing and then decreasing. So, there is a time point where
the downtime probability is at its maximum. Lemma 3.2 is quite
important in designing the probabilistic sequencing algorithm
which will be discussed in Section 3.4. Lemma 3.2 implies that
PdðtÞ takes its minimum value at one of the boundary points of
operating interval ½0;Di�. If Di is large enough such that the PdðtÞ is
minimized in the interior of ½0;Di�, then the jobs which are not
flexible to reschedule should be scheduled close to the boundary
points.

For the experimental study given in Section 4, we considered
four probability distribution pairs for failure and repair times,
which are Normal–Normal (Norm–Norm), Triangular–Normal
(Tri–Norm), Exponential–Normal (Exp–Norm), and Exponential–
Exponential (Exp–Exp) distributions. The first distribution of each
pair is the failure time distribution and the second distribution is
for the repair time. In each case, density function for the failure
time distribution is unimodal in the considered interval, so they
satisfy the condition of Lemma 3.2 and hence PdðtÞ is a unimodal
function in each case. We present the derivation of PdðtÞ for each
distribution pair in Appendix. Next, we define the flexibility
measures which we use to assess the flexibility of each job with
respect to considered rescheduling problem.

3.3. Flexibility measures

In our anticipative approach, the goal is to prepare an initial
schedule, i.e. find a job sequence on each machine, which is
flexible against machine breakdowns with respect to rescheduling
cost. Thus, as the third step of our approach, we introduce new
flexibility measures. We consider a rescheduling problem in
which the objective is to minimize the rescheduling cost subject
to a given match-up time. We define a ‘‘flexible’’ schedule as the
one which can be repaired at minimum possible manufacturing
cost increase after a machine breakdown. In order to find a job
sequence on a machine, it is crucial to use a measure which ranks
jobs by their ability to absorb a disruption at minimum cost.
Below we list the measures which could affect our anticipative
scheduling decisions and explain why each measure is critical for
the considered rescheduling problem.

Processing time (pj): is the processing time of a job j in the
initial schedule, i.e. pj ¼ pu

ij � ySij where i is the machine that job j is
assigned in A. Processing time is critical for the rescheduling
problem since placing shorter jobs around a downtime period
could allow to distribute the required compression to more jobs
and hence improve cost performance since the cost functions are
convex.

Compressibility (wj): is the available amount of further
compression for job j on its current machine in A. It is assigned
to wj ¼ fuij � ySijg where i is job j’s current machine. Compressi-
bility of a job is the ability to occupy less capacity on a machine
and hence gives us a measure on how much of the downtime it
can absorb after a disruption. The higher the compressibility of
jobs in the downtime zone, it is possible to achieve the smaller
match-up times.

Second derivative of compression cost function (fj
00): Suppose that

job j is assigned to machine i in A and selected optimal
compression level is ySij , then fj

00 ¼ @2f ðySij Þ=@y2
ij. By definition, the

second derivative of a function gives the change rate of the first
derivative at a point where it is evaluated. Lemma 3.3 gives an
optimality property for the problem MJA for the compression
levels on the processing times and first derivatives of cost
functions for the jobs assigned on the same machine.

Lemma 3.3. Let y�ij1
and y�ij2

be the optimal compression levels for

jobs j1 and j2 assigned on machine i in the optimal solution to MJA.
Let the corresponding first derivatives of the compression cost

functions be lj1
¼ ð@fij1

=@yij1
Þðy�ij1
Þ and lj2

¼ ð@fij2
=@yij2

Þðy�ij2
Þ. Then,

one of the following statements holds:
(i)
 lj1
¼ lj2

and 0ry�ij1
ruij1

and 0ry�ij2
ruij2

;

(ii)
 lj1

olj2
and y�ij1

¼ uij1
and 0ry�ij2

ruij2
;

(iii)
 lj2
olj1

and 0ry�ij1
ruij1

and y�ij2
¼ uij2

.

Proof. It can easily be observed that a solution, in which there
exists two jobs which violate the lemma, can be improved by
changing the compression levels of the jobs. &

Lemma 3.3 states that, in A, on each machine the first
derivatives of compression cost functions of jobs at optimal
compression levels are equal. Lemma 3.3 shows that an exception
can be fully compressed jobs (y�ij ¼ uij). This implies that in A
marginal compression cost values are equal for the jobs assigned
to the same machine. Then, it is intuitive to look at the second
derivatives of the cost functions to estimate the cost function
behaviors. If fj1

00 4 fj2

00 , then we can say that the increase rate of the
derivative of job j1 is higher than j2 and hence we can expect the
cost increase rate of job j1 to be higher around the optimal
solution. As a result, in order to minimize the compression cost
required to absorb a downtime, we may place the jobs with
smaller second derivatives to the regions where a possible
downtime is more likely to occur.

DeltaðDiÞ: D is the average slope of the compression cost
function of job j on machine i given in A in the interval ½ySij ;uij�. We
calculate this flexibility measure as

D¼
f ðuijÞ � f ðySij Þ

uij � ySij
:

D is another measure which provides us information on the
behavior of compression cost function. Different than f 00,D not
only considers a local behavior but it looks ahead to see what
happens if the job is fully compressed. When sequencing the jobs

ARTICLE IN PRESS

S. Gürel et al. / Computers & Operations Research 37 (2010) 1002–1013 1007
on a machine, it would be better to place jobs with smaller D
values to the time periods with higher probability of downtime.

When rescheduling jobs, we may need to reallocate some jobs
to other machines in order to minimize the rescheduling cost.
Usually, it is more likely to move jobs from the disrupted machine
to other machines. Then, estimating the cost change that will
occur when we move a job from its original machine to another
machine can also help to rank the flexibility of the job. The cost
change lower bound for moving job j from machine i1 to machine
i2 can be calculated as below:

Lemma 3.4. For a given machine–job assignment A, let li1 and li2

be the derivative values of compression cost functions of jobs on

machines i1 and i2, respectively, and yAi1j be the compression of job j

on machine i1. Then, a lower bound for the cost change that will

result by moving job j from machine i1 to i2 is as stated below:

LBðj : ði1-i2ÞÞ ¼ � li1 ðpi1j � yAi1 jÞ � ci1j

� fi1jðy
A
i1jÞþci2jþ fi2 jðŷi2 jÞþli2 ðpi2j � ŷi2jÞ;

where ŷi2j ¼minðð@fi2j=@yi2jÞ
�1
ðli2 Þ;ui2 jÞ.

For the proof of Lemma 3.4, we refer the reader to Gürel and
Aktürk [8]. Given the cost change lower bounds for moving a job
from its current machine to the other machines, we can define the
following flexibility measure for each job.

Minimum re-allocation cost lower Bound ðLBjÞ: The minimum
cost change lower bound for moving job j from its initially
assigned machine in A to the some other machine can be
calculated as follows:

LBj ¼min
i2
fLBðj : ði1-i2ÞÞ : 8i2; i2a i1g;

where i1 is the initially assigned machine of job j. This measure
can be used such that we can place the jobs with smaller
reallocation cost to the time periods where the downtime
probability is higher.

We have defined a set of measures which may help to make
sequencing decisions. We can also combine these measures to
form a new flexibility measure as defined below:

Definition 1. A flexibility measure F is a multiplication of integer
powers of several flexibility factors. More formally,

Fj ¼ ðpjÞ
a1 � ðwjÞ

a2 � ðfj
00 Þ

a3 � ðDjÞ
a4 � ðLBjÞ

a5 ;

where akAZ:

In order to clarify how these flexibility factors could be used as a
sequencing rule, maxf1=pg corresponds to the shortest processing
time (SPT) rule, whereas maxfw2=p �D � LBg is a composite rule
that combines four of them into a single sequencing rule.

Next, we give an algorithm which schedules the jobs on their
assigned machines by considering the downtime probability PdðtÞ
Table 1
Numerical example data.

Machine Constant Jobs

1 2 3 4 5 6

1 c 3.2 2.2 2.9 3 3.4 3.9

k 1 1.3 2.2 2.2 1.5 2.8

a=b 2.9 1.6 2.4 2.8 3.1 3.1

pu 2.6 1.4 1.1 2 2.7 2.1

u 1.7 0.9 0.9 1.6 2.1 1.5

2 c 3.5 3 5.9 3.4 4.9 5.2

k 1.2 2.2 1.4 2.3 1.4 2.7

a=b 1.2 2 1.5 3.1 1.5 1.6

pu 1.2 2.6 1.6 1.1 2.9 2.9

u 0.9 1.4 1.4 0.6 2.2 1.7
function of each machine and the flexibility measure Fj for each
job.

3.4. Probabilistic sequencing algorithm

Probabilistic sequencing algorithm finds a job sequence on a
given machine by considering the flexibility measures of the jobs
and the downtime probability function for the machine. The goal
is to place the jobs with maximum flexibility to the positions with
the maximum probability of downtime. The interval considered
for machine i in this algorithm is ½0;Di�. Let Fj be the flexibility
measure of job j. Fj can be easily computed for all jobs. In the first
step of the algorithm, we order the jobs in Ji in ascending order of
Fj. Then, starting with the first job in the list, the algorithm places
each job into the schedule one by one. For the first job, say job j,
the available interval is ½0;Di�. Proposed algorithm evaluates two
alternatives. The first one is placing the job at the beginning of the
available interval. The second alternative is placing it at the end.
The algorithm checks the downtime probability at the mid-point
of the job in both cases, i.e. checks Pdðpj=2Þ and PdðDi � pj=2Þ. If the
first probability is less, then the algorithm places the job at ½0;pj�.
Else, the job is placed at ½Di � pj;Di�. Then, the algorithm updates
the available interval and takes the next job from the list.

We check only the boundaries of the available interval, since
we know from Lemma 3.2 that if fX is a unimodal function then
the probability function PdðtÞ is also unimodal in the interval ½0;Di�

for machine i. PdðtÞ being unimodal implies that the minimum
downtime probability in the interval is found at one of the
boundary points of the interval. Therefore, the algorithm tries to
place the least flexible jobs first to the start or end points of the
interval, i.e. to the position with minimum downtime probability.
We give the step by step definition in Algorithm 2.

Algorithm 2. Probabilistic Sequencing Algorithm.
Require: Machine i with PdðtÞ and available interval ½ts; te�.

Require: Set of jobs Ji with Fj and pj for each jA Ji.

Initialize: Order the jobs in Ji in ascending order of Fj’ s;

Initialize: ts ¼ 0 and te ¼Di;

for each job jA Ji do

if Pdðtsþpj=2ÞrPdðte � pj=2Þ then

Schedule job j at ½ts; tsþpj�.

ts ¼ tsþpj.

else
Schedule job j at ½te � pj; te�.

te ¼ te � pj.
In the following, we provide a numerical example which
illustrates Algorithm 1.
7 8 9 10 11 12 13 14 15

3.1 5.1 2.5 3.2 3.8 2.5 2 2.8 3.6

1.1 1.4 2.4 1.3 2.6 2.3 2.6 1.5 2.6

1.6 1.6 2.9 2.2 2 3.1 2.3 1.9 2.3

2.7 2.7 1.3 1.2 2.3 1.1 1.6 2.7 1.3

1.9 2 0.8 0.8 1.5 0.9 1.2 1.5 0.7

5.9 2.3 5.8 3.5 2.3 4.4 3.7 3.6 4.5

1.4 2.1 2.6 1.7 2 1.1 2.6 2.8 1.4

1.7 2 2.7 1.7 2.5 2.7 1.7 2.1 1.9

3 2.8 2.6 1.1 1.9 2.1 2.2 2 2.4

1.7 2 1.6 0.6 1.4 1.4 2 1.3 1.4

ARTICLE IN PRESS

Table 2
Machine–job assignment and flexibility measures.

Machine Job Flexibility measures

p w f 00 D LB w2

pDLB
ð10�3

Þ

1 2 0.50 0.0 1.30 1.95 4.19 0.0

7 0.80 0.0 0.82 2.59 5.56 0.0

15 0.72 0.12 6.59 3.34 4.98 1.24

9 0.67 0.17 8.78 3.71 7.52 1.48

6 1.50 0.90 10.32 10.27 8.64 6.12

3 0.44 0.24 6.25 3.73 5.32 6.74

12 0.45 0.25 9.40 4.24 4.70 6.77

5 1.90 1.30 7.67 10.95 9.72 8.34

13 1.02 0.62 6.59 5.17 6.58 11.14

2 4 0.67 0.17 5.96 1.80 4.86 4.81

11 1.51 1.01 4.70 4.41 9.07 16.84

14 1.76 1.06 5.61 4.45 7.70 18.61

8 2.51 1.71 4.20 4.81 11.89 20.32

10 0.81 0.31 2.92 1.64 2.44 29.0

11 0.75 0.45 0.55 1.33 5.85 34.91

Table 3
Implementation of Algorithm 2.

Machine Job ts Pdðtsþpj=2Þ te Pdðte � pj=2Þ Start time End time

1 2 0.00 0.10 8.00 0.02 7.50 8.00

7 0.00 0.15 7.50 0.03 6.70 7.50

15 0.00 0.14 6.70 0.04 5.98 6.70

9 0.00 0.13 5.98 0.06 5.31 5.98

6 0.00 0.22 5.31 0.09 3.81 5.31

3 0.00 0.09 3.81 0.14 0.00 0.44

12 0.44 0.20 3.81 0.14 3.36 3.81

5 0.44 0.25 3.36 0.21 1.47 3.36

13 0.44 0.24 1.47 0.24 0.44 1.47

2 4 0.00 0.13 8.00 0.02 7.33 8.00

11 0.00 0.22 7.33 0.04 5.82 7.33

14 0.00 0.23 5.82 0.08 4.07 5.82

8 0.00 0.25 4.07 0.19 1.56 4.07

10 0.00 0.15 1.56 0.25 0.00 0.81

1 0.81 0.25 1.56 0.25 0.81 1.56

Fig. 1. Different schedules generated by Algorithm 2.

S. Gürel et al. / Computers & Operations Research 37 (2010) 1002–10131008
3.5. Numerical example

We consider a numerical example with n¼ 15 and m¼ 2. Table 1
gives cost function coefficients, processing time upper bound and
compression upper bound for each machine–job pair. As data shows,
machines are non-identical and each job has different cost function,
different processing time upper bound and compression upper
bound.

In the first step of Algorithm 1, machine–job assignment (MJA)
problem is solved to find minimum cost machine–job assignment
for D½i� ¼ 8:0, i¼ 1;2. An optimal machine–job assignment is given
in Table 2. In the second step, the downtime probability function
is calculated for each machine. In this example, we assume an
exponential failure time and an exponential repair time and take
lX ¼ 0:5 and lY ¼ 1:0 for both machines. Consequently,
PdðtÞ ¼ e�0:5t � e�t as discussed in the Appendix. In the third
step, flexibility measures are calculated for each machine–job
pair. At this step, a combined flexibility measure Fj ¼w2=pDLB is
used as an example, and the corresponding values for each job on
each machine are given in Table 2. Fj values will be used in
sequencing decisions in Step 4.

In Step 4 of Algorithm 1, Probabilistic Sequencing Algorithm
(Algorithm 2) is implemented. Algorithm 2 is executed once for
each machine. Given machine–job assignments in Table 2, in the
first step all jobs are sorted in ascending order of w2=pDLB for
each machine. Then, in the next step of the algorithm, each job in
the list is scheduled at the beginning or at the end of available
scheduling interval by considering PdðtÞ levels at both ends of the
interval. Calculations of Pdðtsþpj=2Þ, Pdðte � pj=2Þ and scheduled
start and end times of all jobs are given in Table 3.

In the given solution of MJA, processing times of jobs 2 and 7
on machine 1 are no longer compressible as they are already
compressed at full. Thus, flexibility of these two jobs are
measured to be zero. As downtime probability function is at its
minimum at the end of scheduling interval, Algorithm 2 schedules
jobs 2 and 7 to the end of the interval on machine 1. On the other
hand, since jobs 5 and 13 have the highest two flexibility measure
values, Algorithm 2 schedules them at the time period with the
highest down time probability for machine 1.

Algorithm 1, using Fj ¼w2=pDLB as the flexibility measure,
achieves the schedule given in Gantt Chart 1 in Fig. 1. If the SPT
rule is used to sequence jobs, then the schedule represented by
Gantt Chart 2 in Fig. 1 is obtained. If a breakdown occurs on one of
the machines, schedules by Algorithm 2 and by the SPT rule would
absorb caused disruption at different rescheduling costs. In the
next section, we compare rescheduling costs of schedules
achieved by Algorithm 2 by using different flexibility measures
against the schedules obtained by the SPT rule.
4. Computational study

In the computational study, we tested the performance of
Algorithm 2 using alternative flexibility measures Fj described in
Section 3.3. We compared rescheduling performance on the initial
schedules achieved by Algorithm 2 against the performance of
initial schedules achieved by using the SPT rule. Adiri et al. [15]
consider, for the first time, the flow-time scheduling problem
when the machine faces breakdowns at stochastic time epochs,
the repair time is stochastic, but the processing times are
constant. They prove that the problem is NP-hard and show that
the SPT rule minimizes the expected total flow time if the time to
breakdown is exponentially distributed. Lee and Liman [16] study
the deterministic equivalent of this problem in the context of a
single scheduled maintenance and find a tight performance bound
of 9/7 for the SPT rule.

In the test problems, number of jobs is n¼ 100, and number of
machines is m¼ 3 initially. We generated manufacturing cost (cij)
for each machine–job pair randomly from Uniform[2.0,6.0]. We
generated kij coefficient of the compression cost function
ðfijðyijÞ ¼ kijy

aij=bij

ij Þ from Uniform[1.0,3.0] and aij=bij from Uniform
[1.1,3.1]. We generated processing time upper bound pu

ij from
Uniform [1.0,5.0]. In practice, one can expect a correlation
between processing time upper bound and the maximum

ARTICLE IN PRESS

S. Gürel et al. / Computers & Operations Research 37 (2010) 1002–1013 1009
compressibility at least due to the fact that processing time upper
bound is an upper bound for the maximum compressibility. Thus,
we generated the compression bound uij from pu

ij� Uniform [0.5,
0.9]. We set the machining capacity of each machine as below:

Di ¼ 0:2�

Pm
i ¼ 1

Pn
j ¼ 1 pu

ij

m
�

In order to construct initial schedules, we first solved the
machine–job assignment problem given in Section 3.1.
We sequenced the jobs assigned on each machine by using
Algorithm 2 which employed each of the following proposed
flexibility measures: 1=pD, 1=f 00LB, 1=pf 00LB, 1=pDLB, w=p, w=pf 00LB,
w=pDLB and w2=pDLB. We also formed an initial schedule by using
the SPT rule on each machine, which gives the minimum total
completion time.

For X i and Yi, we used four different distribution pairs
consisting of Norm–Norm, Exp–Exp, Exp–Norm, and Tri–Norm.
Having formed initial schedules, we randomly selected a machine
to fail. We generated a failure time, X i, and a repair time Yi for
each machine i.

In failure time distribution, mean time to fail is
MTTF¼ 0:3 � D½i�. For exponential distribution, l¼ 1=MTTF. For
normal distribution, standard deviation is generated by s¼ 0:5 �
MTTF � Z where Z �Uniform ½0;1�. We used 0;D½i� and MTTF as the
parameters of a triangular distribution. In repair time distribution,
we used two different levels of mean time to repair, denoted as
MTTR. For all distributions except exponential distribution, we
used MTTR¼ 0:1 � D½i� and MTTR¼ 0:15 � D½i�. For exponential
distribution, we adjusted MTTR and MTTF parameters in order
to avoid high variability, since high variability leads to long failure
Table 5
Confidence intervals for the mean R and number of times best for the Norm–Norm cas

Flexibility measures 95% CI on mean R

Lower bound Upper bound

w2

pDLB

24.5 37.5

1

f 00LB

23.0 35.4

w

pf 00LB
17.8 31.7

1

pf 00LB

16.0 28.8

w

pDLB
15.3 26.8

1

pD
12.3 23.2

Table 4
Mean rescheduling cost performance R (%) for the Norm–Norm case.

MTTR b Flexibility measures

w2

pDLB

1

f 00LB

w

pf 00LB
1

pf 00LB

w

pDLB
1

pD

Low 0.1 40.5 41.8 38.8 22.6 27.5 19.6

0.15 33.4 33.5 23.8 28.1 18.5 20.2

0.20 31.3 29.7 20.8 25.0 16.5 20.3

0.25 28.7 26.2 16.5 24.0 14.4 19.7

Total 33.5 32.8 25.0 24.9 19.2 20.4

High 0.1 38.8 31.9 34.4 24.5 28.7 15.2

0.15 29.2 27.7 26.3 23.6 24.4 15.8

0.20 26.7 23.7 22.7 18.3 23.5 18.3

0.25 19.3 19.0 14.7 13.2 15.0 11.3

Total 28.5 25.6 24.5 19.9 22.9 15.1

Total 31.0 29.2 24.8 22.4 21.1 17.8
or repair times which would result infeasible rescheduling
problems.

For each S, we first solved the minimum match-up time
problem to find (W min). Then, for W ¼W minþb� ðD½i� �W minÞ we
solved the RCM problem for four different levels of
b¼ 0:1;0:15;0:2;0:25, so that we could generate alternative
time/cost trade-offs. We took 10 replications for each setting. All
experiments were performed using ILOG Cplex Version 11.2 on a
2� 2:83 GHz Intel Xeon CPU and 8 GB memory workstation HP
with the operating system Ubuntu 8.04.

For each instance, we calculated a relative difference between
rescheduling costs of schedules achieved by Algorithm 2 and SPT
rule. We define the relative difference R as follows:

R¼ 100�
CostSPT � CostF

CostF

in which CostSPT is the rescheduling cost of an SPT schedule for the
considered failure–repair times and match-up time. CostF is the
rescheduling cost of a schedule achieved by Algorithm 2 using
flexibility measure F.

Table 4 shows average R results for Norm–Norm case.
Flexibility measure w2=pDLB achieves the best cost performance
against the SPT rule with an average relative difference of 31%.
Results in Table 4 show that including cost function related
flexibility measures such as f 00, D and LB in a sequencing rule
significantly improves rescheduling performance. The second best
flexibility measure is 1=f 00LB. Comparing its performance with
performance of 1=pf 00LB, we can say that for Norm–Norm case
including p in a flexibility measure did not improve rescheduling
performance. On the other hand, including w seems to enhance
e.

of times best

MTTR low MTTR high Total

35 33 68

35 32 67

31 35 66

28 25 53

31 36 67

31 29 60

Table 6
Mean rescheduling cost performance R ð%Þ for the Exp–Exp case.

MTTR b Flexibility measures

1

pf 00LB

w

pf 00LB
1

pDLB

w

pDLB
1

pD

Low 0.1 14.4 4.6 3.1 3.0 17.6

0.15 14.1 5.9 10.8 2.5 21.5

0.2 11.3 5.8 6.6 4.1 19.3

0.25 9.4 5.6 7.8 3.2 20.1

Total 12.3 5.5 7.1 3.2 19.6

High 0.1 18.1 24.2 19.9 22.7 2.1

0.15 17.9 19.0 17.2 19.1 2.6

0.20 17.9 17.6 16.2 19.1 0.7

0.25 12.9 15.6 12.2 13.2 -3.6

Total 16.7 19.1 16.4 18.5 0.4

Total 14.6 12.6 12.0 11.2 9.6

ARTICLE IN PRESS

S. Gürel et al. / Computers & Operations Research 37 (2010) 1002–10131010
rescheduling performance as we compare w2=pDLB and w=pDLB.
As discussed in Section 3.3, w measures the available amount of
compression on a job and hence it is important in solving
rescheduling problems.

From Table 4, it can be observed that as match-up time level
increases, average value of R is more likely to decrease. This means
as we allow distributing the effect of a disruption to a larger
portion of initial schedule, we can expect that the gain to be
achieved by considering flexibility of jobs declines. In other words,
as the match-up time level is decreased, it becomes critical to
place more flexible jobs around downtime period. Similarly,
proposed sequencing rules are more likely to perform better
Table 7
Confidence intervals for the mean R and number of times best for the Exp–Exp case.

Flexibility measures 95% CI on mean R

Lower bound Upper bound

1

pf 00LB

8.6 20.7

w

pf 00LB
7.7 17.5

1

pDLB

6.2 17.8

w

pDLB
5.6 16.8

1

pD
1.8 17.3

Table 8
Mean rescheduling cost performance R (%) for the Exp–Norm case.

MTTR b Flexibility measures

1

f 00LB

w

pf 00LB

Low 0.1 20.7 5.2

0.15 16.1 2.6

0.20 15.3 1.3

0.25 8.3 �0.5

Total 15.1 2.2

High 0.1 17.9 16.4

0.15 15.2 16.3

0.20 11.4 12.0

0.25 12.5 14.0

Total 14.2 14.7

Total 14.7 8.4

Table 9
Confidence intervals for the mean R and number of times best for the Exp–Norm case.

Flexibility measures 95% CI on mean R

Lower bound Upper bound

1

f 00LB

9.7 19.6

w

pf 00LB
3.1 13.7

1

pf 00LB

3.6 11.4

w

pDLB
3.5 10.9

w2

pDLB

0.6 12.9
when MTTR is low. Low MTTR is the case in which we can expect
to have less number of jobs in a rescheduling problem. Hence,
rescheduling performance is more sensitive to the set of jobs to be
rescheduled. We observe that proposed flexibility measures
achieve better results in this case.

For the same flexibility measures, first two columns of Table 5
gives 95% confidence interval bounds for the average value of R.
Given bounds clearly indicate that they are significantly better
than the SPT rule in achieving lower rescheduling costs. The
highest lower bound for a confidence interval is achieved by the
measure w2=pDLB which is 24.5%. In the same table, we also
report number of times Algorithm 2 achieve better rescheduling
of times best

MTTR low MTTR high Total

29 34 63

30 35 65

24 30 54

24 36 60

26 21 47

1

pf 00LB

w

pDLB
w2

pDLB

4.0 7.9 �0.4

0.9 4.6 �1.1

3.3 7.0 1.2

�1.3 2.2 �3.1

1.7 5.4 �0.8

17.2 10.8 20.1

15.7 8.8 14.5

11.6 9.3 11.0

8.9 7.2 11.7

13.3 9.0 14.3

7.5 7.2 6.4

of times best

MTTR low MTTR high Total

25 30 55

13 34 47

17 30 47

22 29 51

18 30 48

ARTICLE IN PRESS

Table 11
Confidence intervals for mean R and number of times best for Tri–Norm case.

Flexibility measures 95% CI on mean R # of times best

Lower bound Upper bound MTTR low MTTR high Total

w2

pDLB

3.6 17.6 28 27 55

w

pf 00LB
4.1 15.3 22 34 56

w

pDLB
3.4 12.6 30 18 48

w

p
1.5 10.9 19 23 42

1

pDLB

0.8 10.7 26 22 48

Table 10
Mean rescheduling cost performance R ð%Þ for the Tri–Norm case.

MTTR b Flexibility measures

w2

pDLB

w

pf 00LB

w

pDLB

w

p
1

pDLB

Low 0.1 14.7 0.2 13.8 5.2 6.0

0.15 15.3 3.7 15.3 5.5 4.8

0.2 11.8 8.0 13.7 2.9 5.8

0.25 11.7 6.4 13.4 1.7 3.7

Total 13.4 4.6 10.4 3.8 5.1

High 0.1 9.3 18.2 1.1 14.6 5.5

0.15 8.4 15.4 3.2 9.1 6.7

0.20 8.1 14.1 4.0 6.3 7.1

0.25 6.5 9.6 1.9 3.3 6.0

Total 8.1 14.3 2.5 8.3 6.3

Total 10.6 9.7 8.0 6.2 5.7

S. Gürel et al. / Computers & Operations Research 37 (2010) 1002–1013 1011
cost performance than the SPT rule. The best performance is by
w2=pDLB with 68 problems out of 80. The next best performance
is by 1=f 00LB and w=pDLB with 67 out of 80. We see that all
measures perform better than the SPT sequence with the worst
one performing better in 53 problems out of 80.

Table 6 provides R values for the best five flexibility measures
for Exp–Exp case. Results show that 1=pf 00LB has achieved best
average R performance of 14.6%. Table 6 shows that first four
measures perform better when MTTR is high. On the other hand,
we observe that the last measure’s (1=pD) performance declines
as MTTR is increased. Also, 1=pD is the best performing measure
when MTTR is low. This shows that it is essential to include the
flexibility factor LB (which gives the reallocation cost lower
bound) in a flexibility measure if we have high repair times and
hence job reallocations are more likely in rescheduling.
Comparing rescheduling performance of the first measure with
the second one, and similarly the third measure with the fourth
one in Table 6, we can conclude that including w in a flexibility
measure enhances rescheduling performance when MTTR is high.

We observe that performance of our algorithm against the SPT
rule degrades slightly when exponential failure is considered.
Exponential failure implies a decreasing failure rate which
requires placing flexible jobs first in the sequence. When
exponential failure is considered, we can expect SPT rule to form
a job sequence which is quite similar to a sequence that Algorithm
2 would generate by using flexibility measure 1=p. Hence, we can
expect SPT to perform better in exponential failure case compared
to other failure distributions.

Table 7 shows that flexibility measure 1=pf 00LB achieves the
highest lower and upper bounds for the 95% confidence interval.
Table 7 also gives the number of times that the sequence formed
by Algorithm 2 achieves a lower rescheduling cost than the SPT
sequence in the number of times best section. The results show
that out of 80 problems solved, the algorithm using flexibility
measure w=pf 00LB achieved a lower rescheduling cost in 65
instances. In general, we observe that all flexibility measures
perform better both in terms of average cost difference and in
terms of number of times achieving lower rescheduling cost
compared to the schedules formed by the SPT rule.

Table 8 shows average R values for different flexibility
measures tested in Exp–Norm case. Flexibility measure 1=f 00LB

achieves the best rescheduling cost performance on the average,
and it performs well for both low and high MTTR levels. We
observe that performance of other measures are sensitive to the
MTTR level.

In Table 9, we give the confidence intervals for the mean R for
Exp–Norm case. The results show that proposed sequencing
algorithm significantly outperforms the SPT sequenced schedules
in terms of rescheduling cost. Table 9 also includes how many
times each flexibility measure achieves lower rescheduling cost
compared to the SPT rule. The best measure is 1=f 00LB which finds
a smaller cost in 55 problems out of 80.

Table 10 shows average values of R for selected flexibility
measures for the Tri–Norm case. The best performing flexibility
measure is w2=pDLB with 10.6%. The next best performance on the
average is by w=pf 00LB.

Despite lower average R values, on the average our algorithm’s
performance is still significantly better than the SPT rule. Table 11
gives the 95% confidence intervals for average R. Proposed
sequencing algorithm using the selected flexible measures

ARTICLE IN PRESS

Table 13
Confidence intervals for the mean R.

Distribution Flexibility

measure

95% CI on mean R

n¼ 150; m¼ 5 n¼ 200; m¼ 6

Lower

bound

Upper

bound

Lower

bound

Upper

bound

Norm–

Norm
w2

pDLB

7.6 14.6 20.3 31.0

Tri–Norm w2

pDLB

3.1 12.1 8.0 14.2

Exp–Exp 1

pf 00LB

6.9 19.0 1.5 11.9

Exp–Norm 1

f 00LB

8.6 13.0 1.0 7.6

Table 12
Mean rescheduling cost performance R (%).

n2m MTTR b Norm-Norm Tri-Norm Exp-Exp Exp-Norm

w2

pDLB

w2

pDLB

1

pf 00LB

1

f 00LB

15025 Low 0.1 11.6 7.0 17.4 10.7

0.15 9.9 7.4 20.5 12.0

0.2 11.1 4.6 17.9 9.7

0.25 10.8 1.8 14.7 7.7

Total 10.9 5.2 17.6 10.0

High 0.1 14.7 12.0 4.5 16.3

0.15 10.1 10.9 12.1 12.2

0.20 11.2 9.1 9.3 8.9

0.25 9.4 7.0 7.2 8.6

Total 11.4 9.8 8.3 11.5

Total 11.1 7.6 13.0 10.8

20026 Low 0.1 32.2 16.6 8.5 4.9

0.15 26.6 10.9 5.6 2.9

0.2 26.3 9.2 3.3 1.5

0.25 24.9 10.3 6.1 �0.7

Total 27.5 11.7 5.9 2.1

High 0.1 25.6 12.8 7.3 11.8

0.15 24.5 8.7 8.0 6.6

0.20 24.9 9.5 7.0 4.6

0.25 20.2 11.1 7.7 2.8

Total 23.8 10.5 7.5 6.5

Total 25.6 11.7 6.7 4.3

S. Gürel et al. / Computers & Operations Research 37 (2010) 1002–10131012
achieve a significant improvement in the rescheduling cost
compared to the SPT rule. From Table 11, we can see how many
times each flexibility measure achieves better rescheduling cost
than the SPT after rescheduling. w2=pDLB outperformed the SPT
rule in 55 cases out of 80. w=pf 00LB outperforms SPT 56 times.

We next tested proposed algorithm on larger problem size
instances with 150 jobs and five machines and with 200 jobs and
six machines. For these problems, we only considered the
flexibility measures which gave the best mean R value in 100
jobs 3 machines case for each failure–repair time distribution pair.
When there are more machines, schedules are generally less
vulnerable to a single machine breakdown. This is due to the fact
that one can distribute disrupted jobs to more machines which
would result in less compression cost. Therefore, different than
100 jobs 3 machines case, we considered MTTR levels of 0.15 and
0.2 in our randomly generated runs. Furthermore, when finding
the available capacities of each machine, D½i�’ s, we have used a
relatively smaller multiplier 0.1 in the MJA formulation, which
was 0.2 in 100 jobs 3 machines case. We again took 10 replications
for each setting. Table 12 gives mean R values for selected
flexibility measures. Our computational results indicate that the
proposed scheduling approach outperforms the SPT rule at
different levels of MTTR and match-up time for larger problem
instances as well.

Finally, we present the 95% confidence intervals for mean R

values in Table 13. All of the flexibility measures used in different
distribution pairs give a positive lower bound on mean R value,
which clearly indicates that our algorithm is significantly better
than the SPT rule with respect to minimizing the rescheduling
cost.

Using given probability distributions of failure and repair
times, we anticipate when and how long each machine could be
down and by using designed flexibility measures we schedule the
most flexible jobs to the most critical time zones on each machine.
Our computational results indicate that combining the proposed
probabilistic sequencing idea with proposed flexibility measures
are quite efficient in preparing flexible schedules for solving
rescheduling cost problems under match-up time limitations. We
have tested proposed approach against the SPT sequencing rule
and observed a statistically significant difference in rescheduling
cost performance. We have also observed that in most of the cases
our anticipative scheduling approach performs better than the
SPT rule based initial schedules in terms of rescheduling costs.
Our results indicate that when the failure–repair behavior pattern
is known for a machine, it is quite critical to use the cost function
and compression related information in forming initial schedules
so that in case of a failure a schedule can be repaired at a
reasonable cost. For example, our algorithm outperforms the SPT
rule for normal distribution case since proposed downtime
probability, PdðtÞ, calculations more accurately capture the
disruptive events due to gradual wear (e.g. expected values have
an approximately symmetric behavior around a mean value), as
opposed to random failures that are represented by an exponen-
tial distribution. In the next section, we give concluding remarks.
5. Conclusion

In this paper, we have proposed an anticipative scheduling
approach for scheduling with controllable processing times. We
showed that anticipative decision making in preparing initial
schedules can avoid excessive rescheduling costs that may result
by reactive processing time adjustments.

We have considered a rescheduling problem to minimize the
increase in total manufacturing cost subject to a match-up time
constraint. We have designed an anticipative scheduling algo-
rithm which uses proposed flexibility measures that can estimate
which jobs can absorb a possible disruption at lowest cost.
Proposed algorithm also uses downtime probability functions in
determining the job sequence on each machine. Computational
results show that considering flexibility measures of jobs and
probabilistic nature of machine breakdowns in preparing an initial
schedule can significantly improve rescheduling cost perfor-
mance. As a future research direction, it is possible to consider
different reactive scheduling problems in different scheduling
environments. This would require developing problem specific
flexibility measures. We think that it may also be interesting to
consider risky jobs as well as risky machines in preparing initial
schedules.
Appendix A. Derivation of PdðtÞ for the distributions used in
the computational study

Norm–Norm case: In this combination, both failure and repair
times are assumed to have a normal distribution. If the failure

ARTICLE IN PRESS

S. Gürel et al. / Computers & Operations Research 37 (2010) 1002–1013 1013
time is expected to be symmetrically distributed around a mean,
this combination is suitable. This is actually a realistic case if the
machine breakdown is due to a gradual wear process.

Lemma A.1. Let X �Normalðm1;s1Þ and Y �Normalðm2;s2Þ.

PdðtÞ ¼

Z 1
0

Z t

t�y
fX ðxÞ � fYðyÞdx dy

where fYðyÞ ¼
1

s
ffiffiffiffiffiffi
2p
p e�ðy�mÞ

2=2s2

and

fX ðxÞ ¼
1

s
ffiffiffiffiffiffi
2p
p e�ðx�mÞ

2=2s2

:

Exp–Exp case: Exponential failure time and exponential repair
time (Exp–Exp) is widely used in the stochastic literature.
Therefore, we considered this case although we do not consider
exponential repair time as realistic in our problem. Below, we
derive the PdðtÞ for the Exp–Exp combination.

Lemma A.2. Let X � ExponentialðlxÞ and Y � ExponentialðlyÞ. Then,
PdðtÞ ¼ lx=ly � lxðe�lxt � e�lytÞ.

Proof. By Lemma 3.1,

PdðtÞ ¼

Z t

�1

ð1� FYðtÞÞ � fX ðxÞdx¼

Z t

0
e�lyðt�xÞ � lxe�lxt dx¼ lxe�lyt

�

Z t

0
eðly�lxÞx dx¼

lx

ly � lx
ðe�lxt � e�lytÞ: &

Exp–Norm case: Exponential failure is generally a logical
approach as it has memoryless property. On the other hand, it
may not be appropriate to use exponential repair time since
memoryless property may not be suitable in a machining
environment. We generally expect to have an approximately
symmetric behavior around a mean value when we consider the
repair time of a machine. PdðtÞ of Exp–Norm case can be calculated
as below:

Lemma A.3. Let X � ExponentialðlÞ and Y �Normalðm;sÞ. Then, the

down probability is calculated as

PdðtÞ ¼

Z t

0
ðe�lðt�yÞ � e�ltÞfYðyÞdyþ

Z 1
t
ð1� e�ltÞfYðyÞ dy;

where fYðyÞ ¼ ð1=s
ffiffiffiffiffiffi
2p
p
Þe�ðy�mÞ

2=2s2
.

Tri–Norm case: This combination is triangular failure time and
normal repair time. Tri–Norm is suitable if there is no distribution
information for the failures but only the mean values are available.

Lemma A.4. Let X � Triangularða; b; cÞ and Y �Normalðm;sÞ. Then,

PdðtÞ ¼

2

ðb� aÞðc � aÞ

R t�a
0

yð2t � yÞ

2
� ay

� �
fYðyÞdy

þ
R1

t�a

ðt � aÞ2

ðb� aÞðc � aÞ
fYðyÞdy if artrc;

R1
t�a AðtÞfYðyÞdyþ

R t�c
0 Bðt; yÞfYðyÞ dy

þ
R t�a

t�c Cðt; yÞfYðyÞ dy if crtrb;

8>>>>>>>>><
>>>>>>>>>:
where

AðtÞ ¼

c � a

b� a
þ2ðbt � t2=2� bcþc2=2Þ

ðb� aÞðb� cÞ
;

Bðt; yÞ ¼
2ðby� tyþy2=2Þ

ðb� aÞðb� cÞ
;

Cðt; yÞ ¼
2ðc2=2� ac � ðt � yÞ2=2þcðt � yÞÞ

ðb� aÞðc � aÞ

þ
2ðbt � t2=2� bcþc2=2Þ

ðb� aÞðb� cÞ
:

From Lemmas A.1–A.4, we see that a closed form expression for
PdðtÞ is only available for the Exp–Exp combination, that might
explain why it is widely used in the literature. For the other
combinations, PdðtÞ can only be approximately calculated.
References

[1] Aytug H, Lawley MA, McKay K, Mohan S, Uzsoy R. Executing production
schedules in the face of uncertainties: a review and some future directions.
European Journal of Operational Research 2005;161:86–110.

[2] Jensen MT. Improving robustness and flexibility of tardiness and total flow-
time job shops using robustness measures. Applied Soft Computing
2001;1:35–52.

[3] Leon J, Wu SD, Storer RH. Robustness measures and robust scheduling for job
shops. IIE Transactions 1994;26:32–43.

[4] Mehta SV, Uzsoy RM. Predictable scheduling of a job shop subject to
breakdowns. IEEE Transactions on Robotics and Automation 1998;14:365–78.

[5] Leus R, Herroelen W. Scheduling for stability in single-machine production
systems. Journal of Scheduling 2007;10:223–35.

[6] Yang B, Geunes J. Predictive–reactive scheduling on a single resource with
uncertain future jobs. European Journal of Operational Research
2008;189:1267–83.

[7] Herroelen W, Leus R. On the merits and pitfalls of critical chain scheduling.
Journal of Operations Management 2001;19:559–77.

[8] Gürel S, Aktürk MS. Optimal allocation and processing time decisions on non-
identical parallel CNC machines: e- constraint approach. European Journal of
Operational Research 2007;183:591–607.

[9] Shabtay D, Steiner G. A survey of scheduling with controllable processing
times. Discrete Applied Mathematics 2007;155(13):1643–66.

[10] Bean JC, Birge JR, Mittenthal J, Noon CE. Match-up scheduling with multiple
resources, release dates and disruptions. Operations Research
1991;39(3):470–83.

[11] Aktürk MS, Görgülü E. Match-up scheduling under a machine breakdown.
European Journal of Operational Research 1999;112:81–97.

[12] Aktürk MS, Atamtürk A, Gürel S. Parallel machine match-up scheduling with
manufacturing cost considerations. Journal of Scheduling, 2009, to appear,
doi:10.1007/s10951-009-0111-2.

[13] Kayan RK, Aktürk MS. A new bounding mechanism for the CNC machine
scheduling problems with controllable processing times. European Journal of
Operational Research 2005;167:624–43.

[14] Aktürk MS, Atamtürk A, Gürel S. A strong conic quadratic reformulation for
machine–job assignment with controllable processing times. Operations
Research Letters 2009;37:187–91.

[15] Adiri I, Bruno J, Frostig E, Rinnooy Kan AHG. Single machine flow-time
scheduling with a single breakdown. Acta Informatica 1989;26:679–96.

[16] Lee CY, Liman SD. Single machine flow-time scheduling with scheduled
maintenance. Acta Informatica 1992;29:375–82.

	An anticipative scheduling approach with controllable processing times
	Introduction
	Literature
	Idle time insertion
	Controllable processing times
	Match-up scheduling

	Contribution
	Organization

	Rescheduling cost minimization problem
	Manufacturing cost function
	Rescheduling problem formulation

	Anticipative scheduling algorithm
	Initial machine-job assignment
	Downtime probability
	Flexibility measures
	Probabilistic sequencing algorithm
	Numerical example

	Computational study
	Conclusion
	Derivation of Pd(t) for the distributions used in the computational study
	References

