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Abstract We study the problem of computing the lower hedging price of an
American contingent claim in a finite-state discrete-time market setting under pro-
portional transaction costs. We derive a new mixed-integer linear programming for-
mulation for calculating the lower hedging price. The linear programming relaxation
of the formulation is exact in frictionless markets. Our results imply that it might be
optimal for the holder of several identical American claims to exercise portions of
the portfolio at different time points in the presence of proportional transaction costs
while this incentive disappears in their absence.

Keywords American Contingent Claims · Transaction Costs · Mixed-integer
Programming · Linear Programming · Martingales · Incomplete Markets · Pricing ·
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1 Introduction

The purpose of the present note is to examine, using integer programming, the prob-
lem of computing a fair price (in the sense of not allowing arbitrage) for the holder
(buyer) of an American contingent claim (ACC) in a discrete-time, finite state incom-
plete market model where the stock trades incur transaction costs proportional to the
magnitude to the trade. Since American contingent claims allow the holder to exercise
the claim at any point during its lifetime as opposed to their European counterparts
which can only be exercised at maturity, the computation of a fair price also involves
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the choice of an optimal exercise strategy, which opens the way to modeling with
binary variables. King (2002) showed the connections between linear programming
and modern techniques of contingent claim pricing in mathematical finance in the
context of European claims. The main contribution of the present note is to further the
bond between finite dimensional optimization and mathematical finance by adding an
integer programming model to the list of finite-dimensional optimization approaches
useful for pricing contingent claims in financial markets.

It is well-known that a fair price for the buyer (lower hedging price) of an American
contingent claim, given for the first time in Harrison and Kreps (1979), is computed
as the maximum over a set of stopping times of the minimum of discounted expected
pay-off at the point of stopping over all martingale measures for the buyer of the
American claim, and the maximization over a set of stopping times of the maximum
of discounted expected pay-off at the point of stopping over all martingale measures
for the seller of the American claim. No-arbitrage pricing of American claims was
first studied by Bensoussan (1984) and Karatzas (1988) for complete markets in con-
tinuous time. A good reference for continuous time pricing of American contingent
claims is Detemple (2005); see also the survey by Myeni (1992). The book by Föllmer
and Schied (2004) contains a thorough discussion of pricing and hedging American
claims in discrete time but infinite state space setting. A derivation of these formulae
in a discrete-time, finite state probability context can be found in Chalasani and Jha
(2001).

In the presence of transaction costs proportional to the magnitude of the stock trades
it is usually the case that perfect replication is impossible, and therefore the markets
become incomplete. Koehl et al. (1999), Jaschke (1996) and Ortu (2001) study ACCs
in discrete time, while Karatzas and Kou (1998) study no-arbitrage pricing and hedg-
ing of ACCs in continuous time under portfolio constraints, and Buckdahn and Hu
(1998) consider jump diffusions for the stock price process in a similar context. Davis
and Zariphopoulou (1995) study utility maximization for pricing American claims.
Bouchard and Temam (2005) extend and generalize the discrete-time results of Chala-
sani and Jha for the upper hedging price to general discrete time markets in an infinite
state space setting. In a separate line of work, Tokarz and Zastawniak (2006) develop
efficient dynamic programming algorithms for pricing American options in discrete
time under small transaction costs, and Roux and Zastawniak (2006) extend previ-
ous work by removing the restriction on transactions costs. It is important to note
that Roux and Zastawniak (2006) allow a revision of portfolio positions before new
prices are revealed. This feature of their formulation enables them to work with path
independent portfolio and exercise strategies. However, as illustrated and discussed
in Edirisinghe et al. (1993), path independent strategies can be sub-optimal hedging
strategies in the presence of transaction costs. Our models in the present paper allow
a revision of the portfolio (and exercise) only after new prices are revealed, and are
based on path dependent strategies.

In Chalasani and Jha (2001), Bouchard and Temam (2005) and Pennanen and King
(2006), the seller price (the upper hedging price) is thoroughly studied. In the present
paper, we focus on the lower hedging problem and give for the first time (to the best
of the authors’ knowledge) an integer programming formulation for computing the
lower hedging price, departing from a max- min expression of Chalasani and Jha for
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Integer Programming Model 3

the lower hedging price. Then we exhibit a numerical example showing that a linear
relaxation might lead to a non-zero duality gap, contrary to a claim made in Chalasani
and Jha (2001). This result implies that it might be optimal for the holder of several
identical ACCs to exercise them partially at different time points. For frictionless mar-
kets, the linear programming relaxation is exact. Hence, there is no incentive for the
holder of ACCs not facing transaction costs to exercise them partially. The formulation
is easily extended to allow dividend paying stocks.

2 Preliminaries

Throughout the paper, we refer to the optimal value of an optimization problem P as
opt (P). We assume as in Chalasani and Jha (2001), King (2002) that security prices
and other payments are discrete random variables supported on a finite probabil-
ity space (�,F , P) whose atoms are sequences of real-valued vectors (asset values)
over discrete time periods t = 0, 1, . . . , T . The market evolves as a discrete, non-
recombinant scenario tree (hence, suitable for incomplete markets; see Edirisinghe
et al. (1993) for a discussion) in which the partition of probability atoms ω ∈ �

generated by matching path histories up to time t corresponds one-to-one with nodes
n ∈ Nt at level t in the tree. The set N0 consists of the root node n = 0, and the
leaf nodes n ∈ NT correspond one-to-one with the probability atoms (also referred
to as paths or scenarios) ω ∈ �. We use ωt to mean the node at time t on path ω. In
the scenario tree, every node n ∈ Nt for t = 1, . . . , T has a unique parent denoted
π(n) ∈ Nt−1, and every node n ∈ Nt , t = 0, 1, . . . , T − 1 has a non-empty set of
child nodes C(n) ⊂ Nt+1. We denote the set of all nodes in the tree by N , and the
set of all nodes except the root node and the leaf nodes by N̄ . The set A(n) denotes
the collection of ascendant nodes or the unique path leading to node n (excluding
itself) from node 0. We also use the notation t (n) to denote the time period that the
node n belongs to, D(n) for all descendants of node n (including node n itself). The
probability distribution P is obtained by attaching positive weights pn to each leaf
node n ∈ NT so that

∑
n∈NT

pn = 1. For each non-leaf (intermediate level) node in
the tree we have, recursively,

pn =
∑

m∈C(n)

pm, ∀ n ∈ Nt , t = T − 1, . . . , 0.

Hence, each non-leaf node has a probability mass equal to the combined mass of its
child nodes.

A random variable X is a real valued function defined on �. It can be lifted to the
nodes of a partition Nt of � if each level set {X−1(a) : a ∈ R} is either the empty set
or is a finite union of elements of the partition. In other words, X can be lifted to Nt

if it can be assigned a value on each node of Nt that is consistent with its definition
on �. This kind of random variable is said to be measurable with respect to the infor-
mation contained in the nodes of Nt , or equivalently, Ft -measurable. A stochastic
process {Xt } is a time-indexed collection of random variables such that each Xt is
measurable with respect Nt . While not needed in the finite probability setting, the
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σ -algebras Ft generated by the partitions Nt are such that, F0 = {∅,�}, Ft ⊂ Ft+1
for all 0 ≤ t ≤ T − 1 and FT = F . A decision process is said to be (Ft )

T
t=0-

adapted if for each t = 0, . . . , T , the decision depends on the element of Ft that has
been realized at stage t . The expected value of Xt is uniquely defined by the sum
E

P[Xt ] := ∑
n∈Nt

pn Xn . The conditional expectation of Xt+1 on Nt is given by the

expression E
P[Xt+1|Nt ] := ∑

m∈C(n)
pm
pn

Xm .

The market consists of a riskless asset (cash account) and a risky security with
prices at node n given by the scalar Sn . We assume the cash account appreciates in
value by a factor R ≥ 1 in each period. Transaction costs are modeled as follows: at
node n, selling one share of stock the investor gets Sn(1 − μ), and has to disburse
Sn(1 + λ) upon acquisition of one share of stock. Our choice of two instruments is
by no means a limitation of our models, and all the development in the paper can be
re-iterated for a financial market with several risky securities and a claim with pay-off
contingent on the values of several securities.

An ACC F is a financial instrument generating a real-valued stochastic (cash-flow)
process (Ft )t=0,...,T . At any stage t = 0, . . . , T , the holder of an ACC may decide
to take Ft in cash and terminate the process. Using this definition, an American call
option on a stock S with strike price K corresponds to F = S − K . American put
is obtained by reversing the sign of F . We can define a European call option with
maturity T by setting Ft = 0 for t �= T . Bermudan call options having exercise date
set T ′ ⊂ {1, . . . , T } can be defined by setting Ft = 0 for t /∈ T ′. In our finite prob-
ability space setting an American contingent claim F generates payoff opportunities
Fn , (n ≥ 0) to its holder depending on the states n of the market.

A stopping time τ is a random variable that maps each scenario (path) ω ∈ � to a
number [0, 1 . . . , T ], with the restriction that for any t , the indicator random variable
1Iτ=t is Ft -measurable. In other words, if there is some path ω with τ(ω) = t , and
ωt = u, then for every path ω′ containing u, we must have τ(ω′) = t . Therefore, for
any path ω, there is a unique stopping point ωτ(ω). For any adapted process {Xt }, we
denote by Xτ the random variable that maps a path ω ∈ � to Xτ(ω)(ω), where the
notation Xt (ω) refers to the value of X at time t on path ω. Let T be the set of all
stopping times.

For any probability measure P and exercise strategy (stopping time) τ , we say that
P is a (λ, μ, τ)-approximate martingale measure, if P-almost surely,

S∗
t (1 − μ) ≤ E

P[S∗
τ |Nt ] ≤ S∗

t (1 + λ) ∀t < τ (1)

where S∗
t denotes the discounted stock price St R−t . We use P(λ, μ, τ) to denote the

set of all (λ, μ, τ)-approximate martingale measures.
The buyer’s objective is to compute the largest amount it can borrow to acquire the

claim while picking a suitable exercise time for the claim and covering this debt by
self-financing portfolio transactions in the financial market (here represented by cash
and the risky asset) using the proceeds from the claim at the chosen date of exercise.
In other words, the buyer’s strategy is to find the maximum amount, x∗ say, he/she can
borrow (by short selling stock) to acquire the claim and with the remaining cash to ini-
tiate a self-financing, adapted portfolio trading strategy and a stopping time (exercise
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strategy) τ such that at time τ the value of the portfolio and the pay-off from the claim
are sufficient to close all short positions to avoid any losses. The buyer has to enforce
this strategy over all paths. It is clear (see also Theorem 8.2 Chalasani and Jha 2001)
that if the buyer can acquire the claim for a price inferior to x∗, then this constitutes
an arbitrage opportunity for the buyer as follows. The buyer still borrows x∗, acquires
the claim for a price p < x∗, ending up with the difference x∗ − p at time 0, follows
the optimal self-financing portfolio strategy and the exercise strategy to repay the debt
in all states of the world; see Chalasani and Jha (2001).

Since for a fixed exercise strategy, the valuation of the claim can be expressed as
an expectation using convex duality theory, the following max- min expression for
the lower hedging price hlow(λ, μ, F) of an ACC F was given in Theorem 12.2 of
Chalasani and Jha (2001):

hlow(λ, μ, F) = max
τ∈T

min
P∈P(λ,μ,τ)

E
P[F∗

τ ] (2)

where F∗
t denotes the discounted ACC pay-off Ft R−t . This price is finite if and only

if the market is arbitrage free in the sense of Chalasani and Jha (see definition on
Chalasani and Jha 2001, p. 53 and Theorem 13.1), which we assume to be the case in
the sequel.

Three assumptions are made in Chalasani and Jha (2001): (a) debt must be repaid
in cash, (b) no transaction cost is incurred when a portfolio is liquidated to settle a
debt, and (c) no new portfolio positions are taken at period T . It is clearly the case that
Chalasani and Jha are interested in path dependent portfolio and exercise strategies
which we also adopt. The numerical example at the opening of Sect. 3 below illustrates
the importance of this point.

3 The Formulation

Consider a two period example in Fig. 1 where we assume for simplicity that the cash
account does not generate any interest. The numbers next to nodes in the tree are the
stock prices. The stock price is initially 10 at t = 0. It either goes up to 15 or down
7 at t = 1 with some probabilities. If it is equal to 15 at t = 1, then either it goes up
to 18 or down to 14 at t = 2. If it is equal to 7 at t = 1, then either it goes up to 13 or
down to 4 at t = 2. This gives a non-recombinant stochastic tree with node 0 as the
root, node 1 (up to 15) and node 2 (down to 7) at t = 1. At t = 2, from node 1, the tree
evolves to either node 3 (up to 18 from 15) or to node 4 (down to 14 from 15); from
node 2 it evolves to either node 5 (up to 13 from 7) or to node 6 (down to 4 from 7). We
assume λ = μ = 0.01. We want to calculate the lower hedging price of an American
call option with strike price equal to 10 (an at-the-money American call).

Using (2) and evaluating different possibilities, the optimal value accurate to six
digits is 2.435125 and attained using the following optimal exercise strategy: exercise
if the stock price evolves to node 1 at t = 1, exercise at t = 2 if the stock price evolves
to node 5. Notice that the optimal strategy is a path dependent exercise strategy. In
fact, the two path independent exercise strategies that are of interest in this example,
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Fig. 1 A numerical example for
P1(0.01, 0.01)
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e.g., exercise only at t = 1 or only at time t = 2 are both sub-optimal with objective
function values 1.812500 and 2.415296, respectively.

Now, we derive a formulation for the lower hedging price. First let us deal with
the inner minimization for a fixed exercise strategy that is treated as a constant. We
use binary variables en for exercise decisions, i.e., the ACC is exercised at node n if
en = 1, and is not exercised at node n if en = 0. Since the ACC can only be exercised
once over each path (scenario) in the tree, one has to enforce the restriction:

∑

m∈A(n)∪{n}
em ≤ 1, ∀ n ∈ NT . (3)

The above is in one-to-one correspondence with the stopping time definitions in Sect. 2.
We use E to denote the set of all binary valued en , n ∈ N satisfying (3).

Now, for a given set of fixed values e∗
n for en , n ∈ N respecting the above restric-

tion (3), since the optimal exercise strategy is a not necessarily a path independent
strategy, we must allow for the possibility that all time periods 1, . . . , T are eligible
to be picked as the stopping time τ over a given path as long as there is at most one
exercise period over all paths. Therefore, we express the inner minimization problem
in (2) taking into account all exercise possibilities as:

min
qn ,n∈N

∑

n∈N \{0}
qne∗

n F∗
n + e∗

0 F0

subject to the restrictions

qn S∗
n (1 − μ) ≤

∑

m∈D(n,t ′)
qm S∗

m ≤ qn S∗
n (1 + λ)∀n ∈ Nt ,∀t < t ′, and t ′ ∈ [1, . . . , T ],
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qn =
∑

m∈C(n)

qm∀n ∈ Nt , ∀t ∈ [0, . . . , T − 1],

q0 = 1, and qn ≥ 0, ∀n ∈ NT .

Let Q(λ, μ) denote the set of probability measures Q = {qn}n∈N satisfying the above
constraints. Hence, we can rewrite expression (2) as:

max
e∈E

min
Q∈Q(λ,μ)

∑

n∈N \{0}
qnen F∗

n + e0 F0. (4)

Now, attaching Lagrange multipliers b0 to the last constraint, bn to each of the second
set of constraints for n ∈ N \ {0}, and (non-negative) dt ′

n and ut ′
n to each of the first

set of constraints, we obtain the Lagrange function

L(qn, bn, ut ′
n , dt ′

n ) =
∑

n∈N \{0}
qne∗

n F∗
n + e∗

0 F0

+
T∑

t ′=1

∑

t<t ′

∑

n∈Nt

dt ′
n

⎡

⎣qn S∗
n (1 − μ) −

∑

m∈D(n,t ′)
qm S∗

m

⎤

⎦

+
T∑

t ′=1

∑

t<t ′

∑

n∈Nt

ut ′
n

⎡

⎣
∑

m∈D(n,t ′)
qm S∗

m − qn S∗
n (1 + λ)

⎤

⎦

+
∑

n∈N \{0}
bn

⎛

⎝qn −
∑

m∈C(n)

qm

⎞

⎠ + b0

⎛

⎝
∑

m∈C(0)

qm − 1

⎞

⎠.

and are ready to compute the dual problem through

max
bn ,ut ′

n ,dt ′
n

min
qn

L(qn, bn, ut ′
n , dt ′

n ).

After rearranging and minimizing the Lagrange function separately over each qn ≥ 0
for all n ∈ N we obtain the Lagrange dual problem

max −b0 +
T∑

t=1

(
dt

0S0(1 − μ) − ut
0S0(1 + λ)

) + e∗
0 F0

s.t. bn ≤ Rbπ(n) + e∗
n Fn +

∑

m∈A(n)

Sn

(
ut (n)

m − dt (n)
m

)

+
T∑

t=t (n)+1

Sn
(
(1 − μ)dt

n − (1+λ)ut
n

)
,∀n ∈ N̄ ,

0 ≤ Rbπ(n) + e∗
n Fn +

∑

m∈A(n)

Sn(uT
m − dT

m ), ∀ n ∈ NT
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8 M. Ç. Pınar, A. Camcı

with the non-negativity constraints on all the variables ut
n, dt

n , for all n ∈ N and all
t ∈ [0, 1, . . . , T ].

The above problem combined with the outer maximization over e ∈ E yields the
problem P1(λ, μ)

max −b0 +
T∑

t=1

(
dt

0S0(1 − μ) − ut
0S0(1 + λ)

) + e0 F0

s.t. bn ≤ Rbπ(n) + en Fn +
∑

m∈A(n)

Sn(ut (n)
m − dt (n)

m )

+
T∑

t=t (n)+1

Sn
(
(1 − μ)dt

n − (1+λ)ut
n

)
, ∀n ∈ N̄ ,

0 ≤ Rbπ(n) + en Fn +
∑

m∈A(n)

Sn(uT
m − dT

m ), ∀ n ∈ NT

1 ≥
∑

m∈A(n)∪{n}
em ∀ n ∈ NT

en ∈ {0, 1} , ∀ n ∈ N

and the non-negativity constraints on all the variables ut
n, dt

n , for all n ∈ N and all
t ∈ [0, 1, . . . , T ].

Hence, we have proved the following.

Theorem 1 hlow(λ, μ, F) = opt (P1(λ, μ)).

This problem has a very clear hedging interpretation. We view the non-negative
variable ut

n as a long position in the risky asset acquired at node n for liquidation at
time period t . Similarly we let non-negative variable dt

n denote a short position in the
risky asset open at node n to be closed at time period t . We view bn as the cash position
at node n. The first set of constraints express the following balance requirement for
each “interior” (non-leaf nodes also excluding the root node) node: cash available from
the parent node (magnified by the interest) plus pay-off from the option in case of exer-
cise and proceeds from short sales after accounting for transaction costs, and proceeds
from liquidation of earlier long positions (without incurring transaction costs) should
be sufficiently large to balance new long positions destined for liquidation in future
time points (with transaction costs) and closing of short positions earlier established at
no transaction cost. A similar interpretation holds for the leaf nodes where no transac-
tion costs are involved, since no new positions are acquired. These hedging constraints
are in one-to-one correspondence with the hedging strategy of the buyer as announced
on Chalasani and Jha (2001, pp. 52–53): the buyer starts out by borrowing a certain
amount at time 0 to acquire the ACC, and chooses a path dependent exercise strategy
from which he/she obtains a certain pay-off with which to close his/her initial debt.

Now, let us return to the numerical example introduced at the beginning of this sec-
tion. When we solve the problem as a mixed-integer programming problem we obtain
the following hedging strategy: short sell 0.502917 shares of stock at time t = 0 to
be closed (without transaction costs) at time t = 1, with the proceeds of this short
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sale (0.502917×9.9) acquire the American call for 2.435125, and keep the remaining
2.54375 in the cash account. If the stock price moves up at time t = 1, exercise the
option to collect 5, and using the cash position coming from node 0, close the short
position. If the stock moves down, do not exercise, close the short position from node
0, and acquire a new short position in the stock of the order of 1/3 shares to be closed
at time t = 2. This leaves 1 1

3 in cash. If the stock moves up to 14, exercise the option,
and with the total cash close the short position in the stock. If the stock price moves
down to 4, just close the short position using the available cash.

In the case where the stock makes dividend payments Dn at node n, model P1(λ, μ)

is easily modified, and an extension of Theorem 1 can be proved. This extension is
left as an exercise.

In the next section we investigate a relaxation of P1(λ, μ) in connection with
randomized stopping times.

4 Randomized Stopping Times and Relaxation

Chalasani and Jha (2001) (Sect. 9) and Pennanen and King (2006) obtained pric-
ing expressions for the seller of an ACC in terms of randomized stopping times. A
randomized stopping time (Baxter and Chacon 1977; Chalasani and Jha 2001) is a
non-negative adapted process (in our case, node function) Z with the property that on
every path ω one has

T∑

t=0

Z(ωt ) = 1.

That is, the sum of random variables Z0, Z1, . . . , ZT is equal to 1 on every path. When
a randomized stopping time Z is used to describe an exercise strategy, we can think
of the value Zn at node n as the probability of exercise at node n given that node n
has been reached.

Stopping times are degenerate randomized stopping times. A stopping time τ cor-
responds to the randomized stopping time Z τ whose values are restricted to lie in the
set {0, 1} and defined as follows for any ω ∈ �, and t ∈ {0, 1, . . . , T }:

Z τ (ωt ) =
{

1 if τ(ω) = t,
0 otherwise

The ordinary (or pure) stopping times are extreme points of the convex set of random-
ized stopping times, or the set Z of randomized stopping times is the convex hull of
the set T stopping times.

In our setting the set Ẽ of randomized stopping times corresponds to the set of
en such that en ∈ [0, 1] for all n ∈ N satisfying the inequalities (3). The practical
meaning of passing from stopping times to randomized stopping times as allowable
exercise strategies is the possibility of different exercise times for a portfolio of iden-
tical ACCs. For a single ACC, a randomized stopping time based exercise strategy can
be interpreted as the probabilities of exercise at nodes n with a fractional en value.
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10 M. Ç. Pınar, A. Camcı

Chalasani and Jha also proposed in Remark 12.3 of Chalasani and Jha (2001) a
formula for the lower hedging price using randomized stopping times. The use of
randomized stopping times in the hedging policy as advocated by Chalasani and Jha
(2001) implies the following linear programming relaxation P2(λ, μ) of P1(λ, μ):

max −b0 +
T∑

t=1

(
dt

0S0(1 − μ) − ut
0S0(1 + λ)

) + e0 F0

s.t. bn ≤ Rbπ(n) + en Fn +
∑

m∈A(n)

Sn(ut (n)
m − dt (n)

m )

+
T∑

t=t (n)+1

Sn
(
(1 − μ)dt

n − (1+λ)ut
n

)
, ∀n ∈ N̄ ,

0 ≤ Rbπ(n) + en Fn +
∑

m∈A(n)

Sn(uT
m − dT

m ), ∀ n ∈ NT

1 ≥
∑

m∈A(n)∪{n}
em ∀ n ∈ NT

en ∈ [0, 1], ∀ n ∈ N

and the non-negativity constraints on all the variables ut
n, dt

n , for all n ∈ N and
all t ∈ [0, 1, . . . , T ]. In other words, the relaxation P2(λ, μ) leads to a new price
h′

low(λ, μ, F) := opt (P2(λ, μ)). Chalasani and Jha in Remark 12.3 of Chalasani and
Jha (2001) hinted that a relaxation of hlow(λ, μ, F) based on randomized stopping
times yields the same value as hlow(λ, μ, F). They did not give an explicit formulation
nor a proof of this statement. However, in our relaxation using randomized stopping
times, one cannot in general expect to find an integer optimal hedge policy by solving
the relaxed problem, i.e., hlow(λ, μ, F) can be smaller than h′

low(λ, μ, F). To see this
it suffices to go back to the small example of Sect. 2. When we solve this example as
a linear program, we obtain an optimal value equal to 2.450000, which is higher than
the value we obtained earlier. This higher value is obtained by the following fractional
exercise policy: 2/3 exercise at node 1, and 1/3 exercise at node 3 or node 4, and full
exercise at node 5 as before.

We have other examples that we do not report to keep the exposition short. On
the other hand, in all computational experience, the linear programming relaxation is
either exact, or leads to very small duality gaps that are easily closed by off-the-shelf
state-of-the-art solvers.

It is clear from the example above that it may be beneficial to the holder of a portfolio
of identical ACCs to exercise portions of the portfolio at different time points.

In the frictionless case, i.e., when λ = μ = 0, the linear programming relaxation
P2(0, 0) of P1(0, 0) yields the same optimal value as P1(0, 0). The proof, while quite
involved, is a modification of the proof of Theorem 1 in Camcı and Pınar (2009), hence
omitted.

Theorem 2 The optimal value of P2(0, 0) is equal to the optimal value of P1(0, 0).
Furthermore, there exists an optimal solution to P2(0, 0) with en ∈ {0, 1} , ∀ n ∈ N .
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The above result implies the formula

hlow(0, 0, F) = max
Z∈Z

min
Q∈Q(0,0)

E
Q[F∗

Z ]. (5)

Following the same proof technique as in Theorem 4 of Pennanen and King (2006)
we can also interchange the max and the min in the above expression, and replace
randomized stopping times with ordinary stopping times as a result of the theorem
above. Notice that Q(0, 0) coincides with the set of measures M that make the stock
price process a martingale (Chalasani and Jha 2001; King 2002; Pennanen and King
2006). Hence, in an arbitrage free market we obtain:

hlow(0, 0, F) = min
Q∈M

max
Z∈Z

E
Q[F∗

Z ].

Finally, the theorem remains valid in the presence of dividend payments as can be
routinely verified.
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