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Pulse Doppler Radar Target Recognition using a
Two-Stage SVM Procedure

It is possible to detect and classify moving and stationary

targets using ground surveillance pulse-Doppler radars (PDRs).

A two-stage support vector machine (SVM) based target

classification scheme is described here. The first stage tries to

estimate the most descriptive temporal segment of the radar

echo signal and the target signal is classified using the selected

temporal segment in the second stage. Mel-frequency cepstral

coefficients of radar echo signals are used as feature vectors in

both stages. The proposed system is compared with the covariance

and Gaussian mixture model (GMM) based classifiers. The effects

of the window duration and number of feature parameters over

classification performance are also investigated. Experimental

results are presented.

I. INTRODUCTION

Detection and classification of ground moving

and stationary targets are among the main functions

of ground surveillance pulse-Doppler radars (PDRs).

Human operators take an essential part in the target

classification based on Doppler frequencies of an

object. Trained operators can classify a target with

a reasonable degree of accuracy by listening to the

audio tone of the target. However, this audio-based

classification scheme increases the work load of the

operator. As a result he or she may not properly

execute other radar functions. In addition, operators

have to be trained to recognize PDR echo sounds [1].

Therefore, an automatic classification system

will be an important improvement and will

provide valuable support for ground surveillance

pulse-Doppler operators [2, 3]. In [2] preliminary

results of radar target recognition using speech

recognition based methods [4] are reported. In [3]

Doppler signatures and cepstrum feature parameters

are classified using hidden Markov models (HMMs)

and Gaussian mixture models (GMMs) and an average

recognition rate of 88% is achieved. It is reported that

a neural network classifier performs much worse than

the HMM-GMM based classifier [3]. This is probably

due to the nonstationary nature of the spectrum of

target signal. Recently, another HMM-based approach

presenting a PDR target recognition method was
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Fig. 1. Spectrogram of PDR echo signal of wheeled vehicle.

Fig. 2. Spectrogram of PDR echo signal of tracked vehicle.

reported in [5]. This recognition method relies on

the track data for determining the target dynamics,

and uses the mel-scale cepstrum for feature extraction

from the recorded data.

Support vector machines (SVMs) were

successfully used in many recognition and

classification problems [6]. In this article we propose

the use of a two-stage SVM-based approach. In the

first stage, a set of SVMs tries to estimate the most

descriptive temporal segment of the radar echo signal

and in the second stage another set of SVMs classifies

the target using the selected temporal segment. It is

experimentally shown that the SVM based approach

provides superior classification accuracies compared

with other recent methods in a publicly available

dataset [7]. Mel-frequency cepstrum coefficients

(MFCCs) are used as feature parameters. They are

extensively used in speech recognition and sound

classification [4, 8—12]. The proposed method is

compared with the GMM-based classifier and a

recently introduced covariance matrix based approach,

which is used in object detection in images [13].

Fig. 3. Spectrogram of PDR echo signal of single person.

Fig. 4. Spectrogram of PDR echo signal of two persons.

This paper is organized as follows. In Section IIA,

MFCC feature extraction from PDR signals is

described. In Section III, our novel two-stage SVM

approach is introduced and presented. In Section IV

the covariance matrix method is explained. In

Section V experimental classification results are

presented. Finally, concluding remarks are presented

in Section VI.

II. PDR ECHO SIGNALS AND CEPSTRAL FEATURE
EXTRACTION FROM PDR SIGNALS

In this section, properties of PDR echo signals are

reviewed and the cepstral domain feature extraction

process from the radar echo signals is described.

The PDR echo signals used in this paper are

collected by a 9 GHz ground surveillance radar [7].

The radar has 3 MHz bandwidth, 12 ¹s pulsewidth,

125 m range resolution and 4 deg azimuth resolution.

Signals are recorded with a sampling frequency of

5.682 KHz. Spectrograms of some PDR echo signals

are shown in Figs. 1—5. The recording procedure was
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Fig. 5. Spectrogram of PDR echo signal of clutter.

explained in [7] and [14] in detail. Targets from the

following categories were recorded in the publicly

available database [7]:

a wheeled vehicle,

a tracked vehicle,

a single person,

two persons,

the vegetation clutter.

Data collection is done in controlled environment

and conditions. The recorded targets were within

the line-of-sight of the radar in an open field, in the

presence of ground clutter with low vegetation and

without any interference. One target at a time was

recorded in each case. Target motions are controlled

and they were close to the radar to obtain high

signal-to-noise ratio (SNR) PDR signals. All targets

were 200—600 m away from the radar. For each

case, only one target was recorded at a time [14].

During recording each target was detected and tracked

automatically by the radar, allowing continuous

target echo records. Target signals were obtained at

different speeds (slow (10 to 20 km/hr), normal (20

to 30 km/hr), and fast (30 to 90 km/hr) for vehicles

and 2 to 9 km/hr for people) and various bearing

angles (0,15,30,45,60 deg) towards the radar. Target

people data were also obtained at (0,15,30,45,60 deg)

bearing angles towards the radar.

Target signal spectrograms of a wheeled vehicle, a

tracked vehicle, one and two persons, and the clutter

are shown in Figs. 1, 2, 3, 4, and 5, respectively.

These plots indicate that targets have (nonstationary)

time-varying spectrograms. This is because targets are

moving in this study. Therefore a single feature vector

is not sufficient to represent a given target signal.

Similar to the speech and audio analysis, the target

signal should be divided into short time windows and

a representative feature vector should be obtained for

each window of the PDR signal of a given target. It

is assumed that the signal is stationary in each short

time window as in speech analysis. As a result, a

sequence of MFCC feature vectors representing the

recorded target echo signal is obtained. The nature

of the target can be determined from the sequence of

MFCC vectors.

A. Cepstral Feature Extraction

In this paper, MFCCs are used as feature

parameters to represent radar target echo signals as

in [2] and [3]. In this section the real cepstrum is

reviewed first. Afterwards, the MFCC is reviewed. As

pointed out above the MFCC is the most widely used

feature parameter in speech and speaker recognition.

In [15] the one-dimensional (1-D) cepstrum is

introduced as the inverse Fourier transform of the log

magnitude spectrum of a signal. This is also called as

real cepstrum. The cepstrum x̂[n] of a discrete-time

signal x[n] is defined as follows:

x̂[n] = F¡1(log(jX(ejw)j)) (1)

where (jX(ejw)j) is the magnitude of the discrete-time
Fourier transform (DTFT) of the signal x[n].

The MFCC method introduced by Davis and

Mermelstein [8] is basically a variant of cepstrum

representation. Instead of the linearly-spaced

frequency values used in the normal cepstrum,

logarithmically-spaced bands are used in

mel-frequency cepstrum, which approximates the

human auditory system’s response more closely

than the real cepstrum. This frequency warping

allows a better representation of speech signals than

the linearly-spaced frequency domain bands. The

logarithmic spacing of bands also provides a more

descriptive representation of PDR target echo signals

because most of signal energy is in low frequency

bands as shown in spectrogram plots (Figs. 1—5).

Computation of MFCCs is carried out using the

discrete cosine transform (DCT) of a log power

spectrum on a nonlinear mel-scale of frequency

domain [9] as follows:

x̃[i] =

NX
k=1

Xk cos

·
i

μ
k¡ 1

2

¶
¼

20

¸
, i= 1,2, : : : ,M

(2)

where M is the number of MFCC coefficients and

Xk, k = 1,2, : : : ,N represents the log-energy output

of the kth bandpass filter, which divide the spectrum

in a logarithmic manner [8, 10, 11]. As described

above the target echo signal is divided into short

time windows of 50 ms duration as in speech and

for each time window of the PDR target echo

signal a mel-cepstral vector containing the MFCC

coefficients x̃[i] is obtained. In speech processing, a

sequence of M-dimensional MFCC vectors obtained

from overlapping time windows is computed to

represent a given word or an utterance, and these
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MFCC vectors are successfully used in modeling

various unstationary audio and sound signals

including impact acoustical signals [10—12]. Similarly,

a sequence of MFCC vectors is obtained for a given

PDR signal. Classification of the target echo sound

will be based on the sequence of MFCC vectors.

III. SUPPORT VECTOR MACHINE BASED TARGET
CLASSIFICATION APPROACH

Recently, SVMs have been successfully used in

a wide range of classification problems [6, 16—18].

In this section, a two-stage SVM-based classification

method employing MFCC feature vectors is developed

for PDR target echo signal classification as shown in

Fig. 6.

An ordinary SVM [6] is a binary decision engine

providing a decision for a given input feature vector

according to decision surfaces in an M-dimensional

vector space of feature vectors. Decision boundaries

are determined during the training phase of the

SVM. Decision boundaries are hyperplanes in

M-dimensional spaces. During the recognition phase,

the goal is to decide which class a new feature

vector will belong to. A decision about a test input

is reached by comparing the test vector to the decision

hyperplane. Therefore, SVMs are not computationally

costly decision engines during the recognition process.

Direct application of SVMs yields poor

performance on speaker identification and speech

recognition, as indicated in [17]. This is because a

single M-dimensional MFCC feature vector is not

enough to represent a given word or utterance as the

speech signal is nonstationary and SVMs do not have

a built-in structure to handle time-varying signals and

problems. Similarly, PDR signals are not stationary

signals, either. Therefore, the temporal behavior of the

signal has to be incorporated into the classification

process. The proposed two-stage SVM classification

system provides a solution to the classification of

time-varying radar echo signals.

Although the overall system can be trained with

long duration echo signals, only a short duration

echo signal may be available during the recognition

phase. Therefore a matching temporal region has to

be determined for decision making. The goal of the

first stage of our system is to determine the most

representative temporal region of the given target

signal. The target signal is classified based on the

selected temporal region in the second stage.

The proposed system uses the “simulated

probability” concept in SVMs [18]. Ordinary

SVM classifiers simply determine where the given

feature vector is in the feature space and provide the

corresponding class label (approximate target value).

They do not provide any probability information.

Probabilities can be assigned to feature vectors in

the SVM framework according to the distance of

the feature vector to the decision surface [18]. If the

Fig. 6. Two-stage PDR echo signal classification scheme based

on SVMs.

feature vector is close to (far away from) the decision

surface a low (high) probability value is assigned.

Probability estimates, which provide information

about the confidence of the decision, are used to select

a representative time category for a given target in the

proposed classification method.

In the next subsections, the training and testing

procedures of the two-stage SVM classification system

are described.

A. Training and Testing of the First Stage SVMs

The aim of this stage is to match the PDR echo

signal of a target to a corresponding time category

in the training database. For example, the first 5 s

and the last 20 s of the wheeled vehicle sound have

different frequency characteristics compared with the

time window of [5, 20] seconds as shown in Fig. 1.

This is because the target PDR signal shows different

Doppler characteristics when the target enters and

leaves the beam of the radar. Similarly, the initial and

the last portions of all target signals are different from

the middle part the signal. After examining various

target signals we decided to divide the recorded target

PDR signals into four categories: the initial segment,

the first middle segment, the second middle segment,

and the last segment. This is similar to the state

concept in HMMs. During the training phase MFCC

vectors extracted from short time segments are used

to train SVMs corresponding to four time categories

(or time states). The first stage SVMs determine a

matching time category among four possible cases

for a given 5 s or shorter duration radar echo signal

and this decision is used by the second stage SVMs

instead of using a time-averaged representation of the

target MFCC vectors during classification.

As described in the previous section the decision

space of SVMs are formed from the MFCC feature

vectors, which are computed from 50 ms long short

time windows. Since the duration of the recorded

PDR signal is in the order of seconds, a sequence of
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MFCC feature vectors is computed for a given echo

signal.

During the recognition phase, the target echo

signal is assumed to be shorter than 5 s (if not, it can

be divided into 5-s long segments and the following

analysis can be carried out for each 5-s long segment).

The MFCC vectors obtained from 50 ms short time

windows of the PDR signal are computed. The first

stage SVMs produce a probability estimate for each

MFCC feature vector. For each time category, an

average probability value is obtained as follows

pl =
1

L

LX
i=1

pi,l, l = 1,2,3,4 (3)

where L is the number of MFCC vectors extracted

from the test signal, pi,l is the probability estimate for

the ith MFCC vector by the lth SVM corresponding to

the lth time category. The time state of the input test

signal is simply selected according to the maximum pl
value.

The above framework can determine a time

category even for a single 50 ms duration PDR echo

signal. However, this will not be reliable. At least a

1-s long time segment (L= 20) is necessary to get

reasonable probability estimates in (3). When we have

a 5-s long target echo data, L= 100, which provides

reliable probability estimates in (3).

In one-against-all classification, the binary SVM

of each category separates members of that category

from members of other classes. In this approach,

there may be a gray area in the decision space in a

multi-class classification problem, when only binary

decisions are allowed. Since we use probability

estimates, it is highly unlikely that the probability

estimates pl in (3) will become exactly equal to each

other. We have also not encountered any classification

problems in our experimental studies.

B. Training and Testing of the Second Stage SVMs

In an ordinary SVM-based classification scheme,

a single SVM for each target class is designed

and tested according to one-against-all strategy to

determine the type of the target. In this paper, an

SVM for each target class is designed for each time

category. Since the nature of a typical radar echo

signal is different for each time category, it is better

to design different SVMs for each time category for a

given target class. To make a final decision, the SVM

of the selected time category is used. The decision

space of second stage SVMs is also formed from

the MFCC feature vectors, which are computed from

50-ms long time windows as in the first stage SVMs.

During the recognition phase, it is assumed that

the time category of the test signal is determined in

the first stage. MFCC vectors of the input test signal

are processed by the target class SVMs of the current

time category, which produce a probability estimate

for each feature vector. For the kth target class, an

average probability value is obtained as follows

qk =
1

L

LX
i=1

qi,k (4)

where qi,k is the probability estimate for the ith MFCC

vector and L is the number of MFCC vectors extracted

from the test signal. The target class is determined

according to the maximum qk.

If the duration of the PDR signal is longer than

5 s, then the probability values qk are computed for

each 5-s long segment and the target category is

determined according to the highest qk value of all

segments.

We compared the proposed two-stage SVM

procedure to the GMM method and the covariance

matrix based method and experimentally observed

that the proposed two-stage approach provides higher

classification rates. We present our experimental

results in Section V. We do not describe the

well-known GMM method here but briefly review the

recently introduced covariance matrix method in the

next section.

IV. THE COVARIANCE MATRIX BASED PDR SIGNAL
CLASSIFICATION

Porikli et al. introduced the covariance matrix

method as a new image region descriptor, and

experimentally showed that the covariance method

is superior to other image texture classification

methods [13]. A multiplier-less operator is also

introduced in [19] approximating the covariance

matrix. This multiplier-less operator reduces the

computational cost and increases the performance

of the covariance matrix based method in some

image processing problems. It is experimentally

observed that the covariance method provides the

second-best PDR signal classification results after

the two-stage SVM process described in the previous

section.

We construct a covariance matrix from MFCC

coefficients instead of the actual signal samples. We

divide the PDR signal into short time windows of

duration 50 ms and compute an MFCC vector in each

window as in the SVM-based method introduced in

the previous section. Let x be a d-dimensional MFCC

feature vector for a short time window. Let us assume

that there are N time segments in a given PDR echo

signal. As a result we have N d-dimensional feature

vectors (xk)k=1,:::N .

The covariance matrix of a given PDR signal is

defined as follows

§ =
1

N ¡ 1
NX
k=1

(xk ¡¹)(xk ¡¹)T (5)

where ¹ is the mean vector of the feature vectors.
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Euclidean distance measure is not a good distance

measure for covariance matrices [20]. Since many

machine learning methods operate on Euclidean

spaces, they cannot be used in a straightforward

manner for covariance matrix parameters [13]. The

nearest neighbor (NN) algorithm is used as the

classifier. A generalized eigenvalue based distance

metric is used to compare covariance matrices in the

NN algorithm. This distance measure was introduced

in [20], and used as a part of the NN method:

D(§1,§2) =

vuut dX
k=1

log2¸i(§1,§2) (6)

where ¸i(§1,§2) are the generalized eigenvalues of
covariance matrices §1 and §2. During the training
phase covariance matrices of the training data are

computed and they are stored. During the recognition

phase distances between the instance covariance

matrix to be classified and the covariance matrices

in the training database are computed. Then, the test

instance is assigned to the class of its NN. In the

K-NN approach the test instance is compared with

the K NNs in the training set using (6).

The covariance matrix combines multiple features

which may be correlated. The diagonal entries of

the covariance matrix reflect the variance of each

feature and the nondiagonal entries reflect the

correlations. For radar signals, correlation is an

important property to be exploited since consecutive

signal segments include information about the same

target. Furthermore, the averaging operation in the

covariance computation filters out the noise which

corrupts the signal [13].

Recognition results of the covariance matrix

method are close to the two-stage SVM procedure in

the Ben-Gurion University [7] database. It may even

provide the best results in other databases.

V. EXPERIMENTAL RESULTS

In this section the classification results for a

single-stage SVM method, the proposed two-stage

SVM described in Section III, the covariance

method described in the previous section, and

the well-known GMM method are presented. As

mentioned in Section IIA there are five PDR signal

classes corresponding to wheeled vehicles, tracked

vehicles, a single person, two persons, and the clutter.

As pointed out in Section II, the PDR data collection

process is described in detail in the document located

at (http://www.ee.bgu.ac.il/»testproj/ReadMe.doc).
MFCC vectors are used as feature parameters in all

methods. It is experimentally observed that MFCC

is superior to ordinary real cepstrum as in speech

recognition and speaker identification problems. A

total of 1496 PDR MFCC vectors for each category

from the database located at Ben-Gurion University

Fig. 7. Classification accuracy of GMM method using cepstrum

and MFCC features for five-class PDR classification problem as

function of number of feature vector entries. Model order is 10

for all classes.

TABLE I

Confusion Matrix of GMM Classifier with MFCC Coefficients in

Five-Class Problem

One Two

Wheeled Tracked Person Persons Clutter

Wheeled 92.1 7.0 0 0 0.9

Tracked 4.1 95.9 0 0 0

One Person 0 0 95.0 5.0 0

Two Persons 0 0 0.3 99.7 0

Clutter 0 0 0 2.8 97.2

[7] are used for training and 1056 test vectors are

used for testing purposes. MFCC vectors are extracted

from 50-ms long short time windows. Since a human

operator classifies targets by listening to the PDR

echo sounds, the short time window duration is

selected as the same as the window duration in speech

recognition applications. The data used in training

is not included in the test set. As can be seen from

Figs. 1, 2, 3, 4, and 5, the PDR signal can be assumed

to be stationary in short-time windows. Therefore, an

MFCC vector extracted from a 50-ms long window

will represent that window in an accurate manner.

The classification performance of the GMM-based

classifier with both cepstrum and MFCC coefficients

is shown in Fig. 7. Similar results are obtained in

all of the classification schemes. This is essentially

because most of the signal energy lies in low

frequency bands in PDR signals as in speech. As a

result MFCC vectors produce better results because

more emphasis is given to low-frequency bands

during the MFCC computation compared with regular

cepstrum which gives equal emphasis to all frequency

values. Table I presents the confusion matrix of the

GMM-based classifier using the MFCC vector as

the feature vector. The experiments are done with

a mixture model order of 10 and the feature vector

length is also 10 for all classes. The GMM-based

approach achieved an average classification accuracy
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TABLE II

Confusion Matrix of Covariance Approach with MFCC Feature

Vectors in the Five-Class Problem

One Two

Wheeled Tracked Person Persons Clutter

Wheeled 95.3 4.7 0 0 0

Tracked 2.8 97.2 0 0 0

One Person 0 0 97.8 2.2 0

Two Persons 0 0 0 100.0 0

Clutter 0 0 0 1.1 98.9

TABLE III

Confusion Matrix of Single Stage SVM Approach with MFCC

Vectors in the Five-Class Problem

One Two

Wheeled Tracked Person Persons Clutter None

Wheeled 89.4 7.6 0 0 0 3.0

Tracked 6.4 89.2 1.5 0 0 2.9

One Person 0 0 91.4 8.6 0 0

Two Persons 0 0.9 3.8 94.1 0 1.2

Clutter 1.7 0 1.8 2.50 93.1 0.9

TABLE IV

Confusion Matrix of Two-Stage SVM Approach with MFCC

Coefficients in Five-Class Problem

One Two

Wheeled Tracked Person Persons Clutter None

Wheeled 96.4 2.6 0 0 0 1.0

Tracked 1.2 97.8 0 0 0 1.0

One Person 0 0 97.4 1.8 0 0.8

Two Persons 0 0 0 100.0 0 0

Clutter 0 0.9 0 0 99.1 0

of 96.0%. Longer MFCC vectors do not improve the

classification accuracy.

Table II presents the confusion matrix of the

covariance-based approach when 22 MFCCs are used.

The covariance approach achieves a classification

accuracy of 97.8%, which is higher than the best

result obtained by the GMM-based approach.

Single-stage SVM with a radial bases function

kernel has an average classification accuracy of only

91.4% as shown in Table III. SVMs are essentially

binary classifiers. Therefore, for multiple classes

(more than two classes), a single SVM is constructed

for each class using the one-against-all strategy.

The LIBSVM software [18] is used to train the

SVMs, which implements the sequential minimal

optimization (SMO) algorithm [18] and provides an

estimated probability value for each MFCC vector of

the test PDR echo signal. The average value of the

estimated probabilities are computed using the entire

PDR signal. The class with the highest probability is

selected as the classification result.

The proposed two-stage SVM approach described

in Section III makes use of temporal characteristics

of signal, which is not the case for traditional

single-stage SVM classification. In this approach, the
average classification accuracy is 98.1%. Table IV
shows the confusion matrix with an MFCC vector
of size 10. Although the computation load is higher
than single-stage classification methods, it provides
the highest classification accuracy. However, this
recognition accuracy is very close to the covariance
matrix based approach which may produce better
results in other data sets obtained under different
PDRs or under different conditions.

VI. CONCLUSION

In this paper, a two-stage SVM-based target
classification scheme is presented. In the first stage
the most descriptive temporal segment of a given
radar echo signal is determined and the target is
classified using the selected temporal segment in the
second stage. Mel-frequency cepstral coefficients
of radar echo signals are used as feature vectors in
both stages. Experimental results indicate that the
proposed two-stage SVM and the covariance-based
classification methods outperform the GMM-based
classification method. The main advantage of the
two-stage SVM method over the ordinary single-stage
SVM, the covariance matrix method, and the
GMM-based classification is that it reaches a decision
about a test signal according to the temporal behavior
of the PDR signal which is nonstationary in nature. In
ordinary SVMs and GMMs temporal information is
not used.
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Adaptive Clutter Measurement Density Estimation
for Improved Target Tracking

In a surveillance situation the origin of each measurement

is uncertain. Each measurement may be a false (clutter)

measurement, or it may be a target detection. Probabilistic

methods are usually used to discriminate between the clutter

and the target measurements. Clutter measurement density is

an important parameter in this process. The values of the clutter

measurement density in the surveillance space are rarely known

a priori, and are usually estimated using sensor data and track

information. A novel approach is presented and evaluated for

estimating the values of clutter measurement density, which

significantly enhances target tracking. Simulation results validate

this approach.

I. INTRODUCTION

The surveillance systems usually amplify received

signals and take detections whenever the amplitude

of the received signal is greater than the detection

threshold. The surveillance space projections of

these detections are input to the target tracking filter

employed, and in this paper these projections are

referred to as the (target tracking) measurements.

Measurements may also have additional components

or features [1—3], including the amplitude or the

Doppler velocity. Proposed clutter measurement

density estimator does not preclude measurement

features from being used in the usual manner.

If the targets are present, they are detected in

every scan with a probability of detection PD < 1.

Additionally, detections may be generated by other

random phenomena, including the thermal noise

effects and random objects in the surveillance space.

In this paper these nontarget random detections are

termed clutter. At each measurement time, the target

tracking filter is presented with a set of measurements,

without prior information on the origin of each

measurement.
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