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We report phosphorescent organic light-emitting diodes with a substantially improved light outcoupling

efficiency and a wider angular distribution through applying a layer of zinc oxide periodic nanopillar

arrays by pattern replication in non-wetting templates technique. The devices exhibited the peak

emission intensity at an emission angle of 40� compared to 0� for reference device using bare ITO-

glass. The best device showed a peak luminance efficiency of 95.5 6 1.5 cd/A at 0� emission (external

quantum efficiency—EQE of 38.5 6 0.1%, power efficiency of 127 6 1 lm/W), compared to that of the

reference device, which has a peak luminance efficiency of 68.0 6 1.4 cd/A (EQE of 22.0 6 0.1%,

power efficiency of 72 6 1 lm/W). VC 2013 American Institute of Physics.

[http://dx.doi.org/10.1063/1.4791786]

Organic light-emitting diodes (OLEDs) have attracted

great interest because of their great potential in display and

lighting industries. Even though a 100% internal quantum ef-

ficiency (IQE) has been realized by using phosphorescent

emitters,1 the external quantum efficiency (EQE) encounters

a bottleneck, which is due to the low light extraction effi-

ciency. In conventional OLEDs in a planar waveguide-like

structure, because of the refractive index difference between

organics (n � 1:8) and ITO (1:8), glass substrate (1:5), and

air (1:0),2 total internal reflection (TIR) occurs at the or-

ganic/ITO-glass substrate and glass-air interfaces. This

results in about 50% of internally generated light being

trapped in the organic/ITO layers (organic/ITO mode), and

about 30% are trapped in the glass substrate (glass mode).

Therefore, only around 20% of internally generated photons

can be extracted into air.3–5

The low light extraction efficiency of OLEDs leaves

much room for improvement. Techniques such as substrate

roughening6 and microlens array (MLA)7,8 were applied to

the backside of glass substrate to outcouple the glass mode,

while techniques like photonic crystals (PCs),9,10 low index

gridding,11–13 and corrugation structures14,15 were commonly

introduced inside the OLEDs structure to extract light trapped

in the organic/ITO mode. Among the above mentioned tech-

niques, PCs attracted much attention because of their capabil-

ity to control photons in various ways by designing different

photonic nanostructures.9,10,16,17 However, most of these

techniques involve several steps necessary for fabricating

PCs such as chemical vapour deposition (CVD), electron

beam (EB) lithography, and reactive ion etching (RIE), etc.,9

which are very time consuming and cost inefficient for

industrial production. The pattern replication in non-wetting

templates (PRINTs) technique,16,18,19 in contrast, is a simple,

cost-effective method to fabricate the PC gratings with high

throughput.

In this paper, we proposed and demonstrated nano-meter

sized zinc oxide (ZnO) pillars prepared by the PRINT tech-

nique at the backside of glass substrate as the light extraction

medium for OLEDs. Significant improvement was achieved

compared to the reference device using bare ITO-glass. The

best device shows a maximum emission intensity level at

40� viewing angle. At 0� viewing angle, it yields a maximum

luminous efficacy of 95.5 6 1.5 cd/A, which corresponds to

40.4% improvement compared to that of the reference device

(68.0 6 1.4 cd/A) measured at 0�. When integrated over all

viewing angles, we achieved an EQE of 38.5 6 0.1% (power

efficiency of 127 6 1 lm/W), corresponding to about 75%

enhancement in total light output. Both two-dimensional

Lumerical finite difference time domain (FDTD) simulation

and numerical fitting using diffraction theory were carried

out to verify the experimental results. The improvement is

attributed to the combined effects of diffraction grating and

higher extraction probability due to the light incident on ver-

tical walls of the ZnO nanopillars. Furthermore, the light

extraction efficiency is more sensitive to the variation in fill-

ing factor at lower fill factor (FF) value as compared to

higher values.

Figure 1(a) briefly illustrates the PRINT technique used to

fabricate submicron-size ZnO pillar array. Polydimethylsilox-

ane (PDMS) mold was first prepared using the patterned sili-

con master substrate, and then the PDMS mold was pressed on

the backside of patterned ITO glass substrate pre-drop-casted

with ZnO solgel nanoparticles, holding at constant pressure.

The ZnO gel was prepared by stirring the 0.1 M Zn(Ac)2 solu-

tion at 60 �C for 10 h and then filtered by a filter paper with a
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pore size of 400 nm. Following the application of the mold on

ZnO solgel, the substrate was then heated for solvent evapora-

tion. Subsequently, the mold was peeled off, leaving behind

the periodical pillar arrays. Finally, the as-prepared substrate

was annealed at 250 �C for 0.5 h to obtain the ZnO pillars

array.

OLEDs were fabricated with the following device struc-

ture: ITO/MoO3 (20 nm)/4,40,400-tris (N-carbazolyl) triphe-

nylamine (TCTA) (60 nm)/4,40-N,N0-dicarbazole-biphenyl

(CBP): fac tris(2-phenyl-pyridinato-N,C20) iridium (Ir(ppy)3)

(5%, 20 nm)/1,3,5-tris(N-phenylbenzimidazole-2-yl)benzene

(TPBI) (50 nm)/LiF (1 nm)/Al (100 nm), where MoO3 was

used as the hole injection layer (HIL), TCTA as the hole

transport layer (HTL), CBP: Ir(ppy)3 as the emissive layer

(EML), TPBI as the electron transport layer (ETL), LiF as

the electron injection layer (EIL), and Al as the cathode. For

the reference device, OLEDs stacks were fabricated on plain

glass substrate without using any light outcoupling structure,

while the test devices were fabricated on the glass substrate

with their backsides pre-coated with ZnO pillar arrays with

the pitches of 400 nm, 500 nm, 650 nm, and 800 nm, respec-

tively. A schematic diagram of the device structure with the

ZnO pillar array is shown in Figure 1(b). The radii and

heights of the ZnO cylindrical pillars were designed to be

fixed around 200 nm. While the pitches of the ZnO pillar

arrays were measured to be 400 nm, 500 nm, 650 nm, and

800 nm as indicated by the SEM images shown in Figures

2(a)–2(d), respectively.

Figure 3 shows the luminance versus voltage (L–V) and

current efficiency versus current density (CE-J) for the refer-

ence device and the test devices, while the inset shows their

normalized emission spectra. The performance of various

devices was measured at 0� viewing angle (perpendicular to

the emitting surface). From Figure 3(a), it can be seen that

different devices have different luminance behavior, device

with 650 nm ZnO pillar pitch exhibits the largest luminance,

and its luminance reaches 8442 6 100 cd/m2 when the

applied voltage (current density) is 6.43 V (10 mA/cm2).

Under the same electrical conditions, device with the

ZnO pillar pitch of 400 nm, 500 nm, and 800 nm also exhibits

an improved luminance level of 6916 6 200 cd/m2, 7331

6 128 cd/m2, and 6325 6 75 cd/m2, respectively, compared

to the reference device that shows a luminance of 6041

6 16 cd/m2. The enhanced performance of tested devices

implies higher light extraction efficiency compared to the

reference device. The current efficiency also differs signifi-

cantly for different devices. For example, at 0� viewing

angle, device with 650 nm pitch exhibits a maximum effi-

ciency of 95.5 6 1.5 cd/A. This corresponds to 40.4%

improvement as compared to that of the reference device,

which shows a maximum current efficiency of 68.0 6 1.4 cd/A,

while devices with 400 nm, 500 nm, and 800 nm pitches

show maximum current efficiencies of 77.8 6 0.6 cd/A, 82.6

6 3.4 cd/A, 73.7 6 0.1 cd/A, corresponding to an improve-

ment of 14.4%, 21.5%, and 8.4%, respectively, compared to

that of the reference device. The inset depicts the normalized

spectra for the reference device and the tested devices. Cor-

responding to the efficiency improvement levels, we

observed that device with 650 nm pitch has the most signifi-

cantly different spectrum compared to the reference device,

while the device with 500 nm pitch shows slightly less sig-

nificant change in spectrum compared with that of the device

FIG. 1. (a) PRINT process used to fabricate ZnO nanopillar array and (b)

schematic illustration of the OLED stacks with ZnO nanopillar array at the

back side of glass.

FIG. 2. SEM images of the ZnO nanopillar array with pitch of (a) 400 nm,

(b) 500 nm, (c) 650 nm, and (d) 800 nm, respectively.

FIG. 3. (a) Luminance versus voltage (L–V) and (b) current efficiency ver-

sus current density (CE-J). Inset: normalized emission spectrum for refer-

ence device and devices with different pitches.
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with 650 nm pitch. Furthermore, both devices with 400 nm

and 800 nm pitches show the least deviation from that of the

reference device. The significance of change in spectrum fol-

lows the trend of efficiency improvement, the difference

clearly arises from diffraction of light by the ZnO nanopil-

lars,9,10,20 the deeper reason of the efficiency enhancement

will be described with simulation in later paragraphs.

Figure 4(a) shows the normalized angular emission inten-

sity for the reference and tested devices. The reference and

devices with 400 nm and 800 nm pitches have similar angular

distribution characteristics, where they both show the maxi-

mum emission intensity at the low emission angle (close to

normal incidence) in a typical Lambertian emission pattern.

This implies that the diffraction effect for devices with the

pitch of 400 nm and 800 nm is not very significant. The devi-

ces with 500 nm and 650 nm pitches, however, show very dif-

ferent angular emission behaviors. For example, the device

with 650 nm pitch shows its maximum emission intensity at

an observation angle of 40� and its emission intensity decreas-

ing at only higher emission angles. Although the peak inten-

sity of device with 500 nm pitch was detected at 0� viewing

angle, compared to reference device, it shows a broader emis-

sion at higher angles. The different angular emission behav-

iors could be explained by the grating effect of the ZnO pillar

arrays shown below.

The presence of the periodic ZnO nanopillars enables

the extraction of the trapped light into air. Diffracted light

follows:21,22

k ¼ pðn sin hin þ sin hdif Þ; (1)

where k is the emission wavelength, p is the pitch of ZnO

pillar array, n is the refractive index of the glass substrate,

hin is the incident angle, and hdif is the diffracted angle.

From Eq. (1), if the incidence angle is 0� (inset of Figure

4(d)), the emission intensity of the diffracted light becomes

f ðhÞ ¼ A�
 

cos
pp

k
� sinðhÞ

� �!2

: (2)

Here A represents the amplitude of light extracted by the gra-

ting, p is the pitch of ZnO pillar array, k is the wavelength,

which is set to the peak wavelength 510 nm in this case, and

h is the emission angle viewed from air.

Figure 4(b) shows the intensity of the diffracted light

emitted from the tested devices with different pitches as a

function of the emission angle. These were obtained by sub-

tracting the total angular emission for the corresponding de-

vice with that of the control device. The resulted curves were

fitted using Eq. (2). The fitted lines show good agreement

with the experimental results, especially for devices with

500 nm and 650 nm pitches. The constant A resulted from fit-

ting is 0.05, 0.13, 0.22, and 0.01 for device with 400 nm,

500 nm, 650 nm, and 800 nm pitch, respectively. The much

smaller fitting coefficient for device with 400 nm and 800 nm

pitches further confirms both devices exhibit weaker diffrac-

tion grating effect.

The total number of photons emitted can be calculated

by integrating the angular photon density over all angles. Fig-

ures 4(c) and 4(d) show the overall EQE and power efficiency

versus current density. Here the best device (650 nm pitch)

leads to a maximum EQE (power efficiency) of 38.5 6 0.1%

(127 6 1 lm/W), significantly larger than that of the reference

device, which show a maximum EQE (power efficiency)

of 22.0 6 0.1% (72 6 1 lm/W), while device with 400 nm,

500 nm, and 800 nm pitch exhibits efficiency level of

24.6 6 0.1% (81.1 6 0.4 lm/W), 29.9 6 0.1% (98.5 6 6.0 lm/W),

and 23.3 6 0.1% (76.8 6 1.3 lm/W), respectively. The

improvement of EQE and power efficiency shown in Figure 4

is slightly different from that of the current efficiency in

Figure 3(b), this is expected since current efficiency was

measured at specific 0� angle, while both EQE and power effi-

ciency were integrated for all angles to take into account the

non-Lambertian emission angular distribution characteristic

of the tested devices.

To have better understanding of the physics behind the

improvement, a two-dimensional Lumerical FDTD simula-

tion was performed to verify the experiment results. A simu-

lation area of 15 lm� 15 lm is constructed to include

multiple period of patterning. Dipole light source is placed

in emission layer to replicate the light radiation generated

due to electron-hole pair. Physically matched layers are used

as boundary condition to surround the simulation area in

order to absorb any light radiation impinging on it. ZnO

nano-pillar array with 200 nm height and 200 nm radius is

placed over the glass surface as shown in Fig. 1. The period

of ZnO nano-pillar array is varied and light extraction effi-

ciency (LEE) is measured at 510 nm wavelength in the far-

field integrating all extracted light radiation in 1� solid angle.

Figures 5(a) and 5(b) show the intensity field distribution

with propagation of the reference device and device with

ZnO nanopillars, respectively. We can clearly see that light

is escaping out of the glass surface due to the presence of

ZnO nano-pillar array in comparison to light undergoing TIR

from glass-air interface in conventional OLED structure.

Figure 5(c) shows the light extraction efficiency versus fill

FIG. 4. (a) Normalized angular distributions of the reference device and de-

vice with different pitches. (b) Fitting of the angular distribution. (c) EQE

versus current density and (d) power efficiency versus current density. Inset:

Diffraction grating with the presence of ZnO nanopillar arrays.
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factor (FF) for both numerical simulation using Lumerical

FDTD and fitting results using Eq. (2) together with experi-

mental data. Our experimental data show similar trend with

the simulation results. The simulation deviates slightly from

the simplified model using Eq. (2), this implies that pure dif-

fraction grating effect may not be the only reason behind the

improvement. Compared to the light that initially undergoes

TIR in reference OLED, light in tested devices with incident

angle larger than critical angle at ZnO/air interface now has

more chance to be extracted if light incident on the ZnO pil-

lars vertical walls, this could be observed clearly from the

inset of Figure 5(b), which shows the zoom-in image of the

field distribution, the much higher intensity surrounding the

ZnO nanopillars indicates more light were outcoupled

through the nanopillars. From the plot, we also observed that

light extraction ratio is more sensitive to the variation of FF

at lower FF value than that in larger region, the FF for cylin-

drical pillar shaped photonic crystal is calculated by

FF ¼ pr2

p2
; (3)

where r is the radius of the nanopillar and p is the pitch. The

filling factor for ZnO pillars of 400 nm, 500 nm, 650 nm, and

800 nm pitch is 0.8, 0.5, 0.3, and 0.2, respectively. Due to

the inverse square proportional relation between the FF and

pitch, a small FF change at lower limit equivalent to large

variation in pitch. From the experiment results, PC grating

resulted in significant drop in efficiency enhancement when

the filling factor is too large or too small, which agrees with

previous research.17

In conclusion, we have fabricated high efficiency OLEDs

with ZnO pillar array at the backside of the glass substrate

using PRINT technique. The device with the ZnO pillar array

pitch of 650 nm (FF of 0.3) achieved a maximum EQE of

38.5 6 0.1%, which corresponds to 75.0% enhancement in

total light output. Furthermore, the best device reached a

maximum current efficiency of 95.5 6 1.5 cd/A measured at

0� viewing angle, improved by 40.4% compared to the refer-

ence measured at the normal incidence. The improvement

was attributed to the effective diffraction of light trapped in

the glass mode by the ZnO nanopillar arrays.
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