
916 IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, VOL. 60, NO. 3, MARCH 2011

A Modular Real-Time Fieldbus Architecture
for Mobile Robotic Platforms

Uluç Saranlı, Member, IEEE, Akın Avcı, Student Member, IEEE, and M. Cihan Öztürk, Student Member, IEEE

Abstract—The design and construction of complex and recon-
figurable embedded systems such as small autonomous mobile
robots is a challenging task that involves the selection, interfacing,
and programming of a large number of sensors and actuators.
Facilitating this tedious process requires modularity and extensi-
bility both in hardware and software components. In this paper,
we introduce the universal robot bus (URB), a real-time fieldbus
architecture that facilitates rapid integration of heterogeneous
sensor and actuator nodes to a central processing unit (CPU) while
providing a software abstraction that eliminates complications
arising from the lack of hardware homogeneity. Motivated by
our primary application area of mobile robotics, URB is designed
to be very lightweight and efficient, with real-time support for
Recommended Standard (RS) 232 or universal serial bus con-
nections to a central computer and inter-integrated circuit (I2C),
controller area network, or RS485 bus connections to embedded
nodes. It supports automatic synchronization of data acquisition
across multiple nodes, provides high data bandwidth at low de-
terministic latencies, and includes flexible libraries for modular
software development both for local nodes and the CPU. This
paper describes the design of the URB architecture, provides
a careful experimental characterization of its performance, and
demonstrates its utility in the context of its deployment in a legged
robot platform.

Index Terms—Distributed control, embedded systems, fieldbus,
instrumentation architecture, mobile robots, real-time data acqui-
sition, universal robot bus (URB).

I. INTRODUCTION

COMPLEX embedded instrumentation systems have be-
come an essential part of almost every imaginable ap-

plication area in today’s world. Regardless of whether such
systems are deployed in commercial, technological, or scien-
tific settings, there is an increasing need for a rapid development
and revision cycle to decrease the time spent on integration
problems already solved in numerous other similar situations.
This requires architectural support for modularity and exten-
sibility while also preserving real-time performance and long-
term reliability.

For commercially successful and large-scale application do-
mains such as computers and computing peripherals, general-

Manuscript received March 10, 2010; revised May 26, 2010; accepted
July 19, 2010. Date of publication November 11, 2010; date of current version
February 9, 2011. The works of A. Avcı and M. C. Öztürk were supported by
the Scientific and Technological Council of Turkey (TUBITAK) under Project
109E032. The Associate Editor coordinating the review process for this paper
was Dr. Antonios Tsourdos.

The authors are with the Department of Computer Engineering, Bilkent Uni-
versity, Ankara 06800, Turkey (e-mail: saranli@cs.bilkent.edu.tr; akinavci@
gmail.com; m.cihanozturk@gmail.com).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TIM.2010.2078351

purpose networking, instrumentation for process control, and
the automotive industry, standardization has been achieved for
many of the underlying technological components, resulting
in a substantially accelerated development process. However,
such standardization has not yet been possible for other fields
that either do not yet have sufficient commercial outreach
or are based on relatively new scientific discoveries. Among
important examples are instrumentation applications such as
biomedical and biomechanical applications [1], wireless sensor
networks [2], manufacturing facilities [3] as well as home,
office, or hotel automation applications [4].

Our focus in this paper is on the equally important area of
autonomous mobile robotics, a rapidly emerging field for a
number of important application areas such as search and res-
cue [5], humanitarian demining [6], space exploration [7], and
other more specific domains including automated transportation
(i.e., automated guided vehicles [8]) and miniature assembly
[9]. A common aspect of all these application areas is their
need to satisfy very strict weight and power constraints for
autonomous operation in the field while incorporating a large
array of sensory and actuation modalities to support a reliable
and real-time interface to the physical environment. Moreover,
the presence of numerous open research problems associated
with these applications necessitates flexibility in the quantity
and layout of available sensors and actuators. Currently, the
lack of a compact, modular, and flexible instrumentational in-
frastructure that supports a wide variety of connectivity options
while preserving real-time performance leads to the develop-
ment of a new integrated design for every new robot platform.
Such integrated custom designs substantially increase the time
required for both the initial prototype development as well as
further design iterations.

This paper introduces a new modular real-time instrumenta-
tion architecture, i.e., the universal robot bus (URB), to address
these problems both for the specific domain of autonomous
mobile robots as well as other similarly structured domains.
Inspired by, but substantially extending the earlier RiSEBus
[10] protocol, the new architecture that we describe in this paper
incorporates the following three novel contributions.

1) The URB architecture and protocols provide strict real-
time performance guarantees (with respect to both de-
terministic latency and bandwidth) in the presence of a
heterogeneous collection of connectivity alternatives such
as the Recommended Standard (RS) 232, RS485, univer-
sal serial bus (USB), industry standard architecture (ISA),
inter-integrated circuit (I2C), and controller area network
(CAN) protocols. Existing architectures are either very

0018-9456/$26.00 © 2010 IEEE

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Bilkent University Institutional Repository

https://core.ac.uk/display/52922872?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

SARANLI et al.: MODULAR REAL-TIME FIELDBUS ARCHITECTURE FOR MOBILE ROBOTIC PLATFORMS 917

rigid in their support for connectivity protocols [11], [12]
or cannot provide real-time performance guarantees for
high-bandwidth operation [13]–[17].

2) The URB framework enables modularity and flexibility
in the deployment of small-scale but complex instrumen-
tation systems through the provision of a standardized
set of application programming interfaces (APIs) and
associated interface libraries, significantly accelerating
both initial development and later modification while
still satisfying associated performance requirements. This
results in a level of hardware/firmware modularity similar
to what unified robotic programming architectures, such
as ROS [18], OROCOS [19], and Microsoft Robotics Stu-
dio [20], try to achieve for high-level robot programming.

3) URB protocols allow accurate automatic synchroniza-
tion of instrumentation components distributed within a
system, ensuring consistency and synchrony of sensory
acquisition and actuator output.

The relevance of the URB framework to the instrumentation
and measurement community comes from the fact that all of
these features are needed for real-time discrete control systems
where accurate measurements (both in terms of timing and
sensory accuracy) and quick response to rapidly changing
environmental conditions are necessary. Although we use the
development of a small mobile robotic platform to illustrate the
utility and performance of our design, URB is equally suited
for use within similarly structured instrumentation problems
such as wearable computing, biomechanical measurement sys-
tems or sensor networks. Our review of existing literature in
Section II also shows that none of the existing fieldbus architec-
tures in the literature provide a comparable degree of flexibility
and real-time performance under a similarly unified design.

The rest of this paper is organized as follows. In Section II,
we summarize existing work in this area. We then give an
overview of the URB framework in Section III, followed by
a description of API components for developers using the URB
framework in Section IV. Section V describes novel technical
aspects of URB in how deterministic performance and node
synchronization is achieved, followed by a careful experimental
characterization of performance in Section VI. Section VII
concludes this paper.

II. BACKGROUND AND EXISTING WORK

In general, instrumentation architectures with distributed
control and data acquisition elements are called fieldbuses [21]–
[23]. Despite this seemingly unifying definition, there has been
numerous application-specific fieldbus designs with different
strengths and weaknesses [11]. Among these, the Foundation
fieldbus is probably one of the most widely used and standard-
ized alternative [13], [22]. It is widely adopted by numerous
commercial field devices and many off-the-shelf interfacing
board and component alternatives are available to the designers
of instrumentation systems. As a result of this wide adoption,
significant research effort has also been devoted to its real-
time applications, characterizing and improving predictability
of communications [24], [25] and the impact of delays on
closed-loop control [26]. Unfortunately, size, power, and weight
constraints associated with the design of autonomous mobile

robots are much more severe and limiting than those associated
with domains in which existing large-scale fieldbus alternatives
are intended to be used.

Nevertheless, our domain also exhibits many constraints
paralleling problems that led to the development of the fieldbus
concept. Most importantly, there is a clear need for a modular
and extensible interfacing standard since the use of custom
interfaces to every sensor or actuator component impairs ex-
tensibility and increases the cost of revisions [16], [22]. In ad-
dition to such practical advantages, the provision of a modular
instrumentation architecture was also shown to yield substantial
gains in the deployment of novel control strategies for robotic
platforms [27]. Advantages of similar modularity features were
also described in [28], where a possibly heterogeneous set of
remotely positioned embedded devices were accessed through
a standardized general packet radio service interface to yield a
distributed data acquisition system. Finally, the use of shared
communication buses adopted by fieldbus systems results in
substantially reduced cabling, eliminating one of the most
common sources of failure for rapidly moving mobile robot
platforms with severe vibrations and other physical disturb-
ances [11].

Since simplicity and deterministic performance are critical
for our application domain, physical layer protocols such as the
Ethernet [29], [30], designed primarily for non-real-time local
and wide area network deployments, are not appropriate for
our use. Similarly, the relatively high bandwidth requirements
of fast mobile robotic platforms, where control loops typically
operate at 1 kHz, preclude the use of slower fieldbus protocols
such as Profi-Bus [14], LON [15], [16], BAC-Net [17], Mod-
Bus, and FIP. Combined with our need to modularly interface
with even very simple miniature microcontroller-based sensor
and actuator nodes, direct adoption of most existing fieldbus
designs, hence, becomes very difficult.

In this context, one of the more appropriate physical layer
protocols is the CAN, a two-wire serial communication bus
standard originally developed for the automotive industry to
reduce cabling cost and provide immunity to electrical noise
[12], [31]. The CAN protocol has been successfully adopted for
robotics applications, delivering both real-time performance
[32], and modularity properties [12] that we observed were
necessary for mobile robotic platform designs. However,
exclusive adoption of the CAN protocol for the physical layer
substantially constrains the usable selection of computing
components to only high-end relatively large options that may
be inappropriate for miniature sensory interfaces. Our goal is
to provide support for as many different connectivity options
as possible while maintaining the same modularity and real-
time performance properties. A similar argument precludes
exclusive adoption of the USB [33], further disadvantaged by
the significant software development effort associated with
USB devices and their associated operating system drivers.
Nevertheless, we recover the utility of both of these protocols
through their optional use within a URB system.

III. OVERVIEW OF THE URB ARCHITECTURE

Physically, the URB is a two-tiered architecture with support
for a heterogeneous collection of connectivity standards. As

918 IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, VOL. 60, NO. 3, MARCH 2011

Fig. 1. Physical topology of a URB system. CPU–node connectivity is established through bridges, each of which controlling a single downlink bus shared
among associated nodes and communicates with the CPU through a dedicated uplink connection.

Fig. 2. Logical view and firmware structure of a URB node. A total of 16 (eight inputs, eight outputs) double-buffered message boxes are supported by
each node.

shown in Fig. 1, the first tier consists of URB bridges connected
to a central processing unit (CPU) through a variety of pro-
tocols such as RS232, USB, ISA, and peripheral component
interconnect. We call the connection between a bridge and
the CPU the uplink. In contrast, the second tier consists of
application-specific URB nodes each connected to one of the
bridges through a simple shared bus protocol such as I2C, CAN,
or RS485. The connection between a bridge and its nodes is
called the downlink.

The novelty of our design lies in the provision of a standard
set of bridge implementations for each uplink/downlink proto-
col pair, together with a standard set of libraries for both the
CPU software and node firmware to provide a logically cen-
tralized abstraction, wherein each node appears to be directly
accessible from the CPU with intermediate bridges handling the
necessary translation between different protocols and physical
connectivity standards. The biggest challenge in the realization
of this architecture is the design of both the low level protocols
associated with each connectivity alternative and the associated
software libraries to support reliable real-time operation with
the necessary modularity properties. Nevertheless, the resulting
logical node access model admits reusable node and CPU
software components, allowing rapid deployment of new sys-
tems with minimal design overhead while preserving real-time
performance. In summary, the URB architecture incorporates
the following key features:

1) transparent support for a wide variety of connectivity
protocols used within the same system;

2) deterministic real-time performance with predictable la-
tency, high bandwidth, and low protocol overhead;

3) automatic synchronization of local node heartbeats across
nodes on a single downlink;

4) automatic discovery and identification of nodes;
5) standard APIs for rapid development of both URB node

firmware and associated CPU software.

The first three items above represent major contributions of
this paper. Subsequent sections will detail associated architec-
tural details and experimentally characterize the performance
of our design.

IV. DEVELOPER’S VIEW OF THE URB ARCHITECTURE

A. Logical View of a URB Node

To achieve flexibility and modularity, URB adopts a logically
centralized communication model that is inspired from the
USB [33], where a collection of endpoints provide structured
communication channels with the CPU. As such, each URB
node provides 16 double-buffered message boxes (eight inboxes
and eight outboxes) with individually configurable fixed sizes
of up to 32 bytes available to application programmers. As
shown in Fig. 2, application firmware on a URB node can use
the URB node API to access these message boxes with all
low-level downlink communications handled by the URB node
libraries.

Two of these message boxes, i.e., outbox 0 and inbox 0, are
reserved for sending node identification information to the CPU
and receiving protocol commands from the CPU, respectively.
Outbox 0 is of particular importance since, as shown in Fig. 3,
it allows each node to be uniquely identified by an 8-bit class,

SARANLI et al.: MODULAR REAL-TIME FIELDBUS ARCHITECTURE FOR MOBILE ROBOTIC PLATFORMS 919

Fig. 3. Left: Outbox 0 used to identify the URB node. Right: Inbox 0 used to
send custom commands to the node.

encoding the functionality of the node, and a 6-bit index, dis-
tinguishing multiple nodes with the same class attached to the
same URB system. This structure allows automatic discovery
of nodes and runtime queries of node status.

B. Application Software on URB Nodes

To facilitate the development of application-specific nodes,
URB provides a standard node API. First, a set of methods is
provided to initialize the class and index of a node as well as set
fixed message box sizes and access their contents as shown on
the left column in Fig. 4. More importantly, however, the API
expects the application firmware to instantiate functions listed
on the right column of Fig. 4, implementing key functionality
necessary to interface with the URB framework as well as
application-specific features.

The functions app_bootup() and app_init() are called
when the node is powered up and app_reset() is invoked
when the node receives a reset command on inbox 0. The
URB node library internally implements the main round-robin
loop and calls app_idle() at every iteration of this loop (not
necessarily periodically), allowing the application to do polling.
In contrast, app_update() is periodically invoked and can
be used by the application to implement periodic tasks. The
preferred frequency of invocation for this update function is
1 kHz, but any other frequency can also be chosen by the
application programmer through appropriate clock and timer
configurations on the node microcontroller during firmware
initialization. As described in Section V-E, the URB framework
also allows calls to app_update() to be synchronized across
nodes, making it possible to ensure timing consistency across
multiple nodes provided that the initial update frequencies of
all nodes are similarly configured. Finally, app_signal() is
called with a signal identifier upon reception of an associated
command on inbox 0 and calls to app_fault() inform the
application of fault conditions. This simple node API provides
flexibility while allowing rapid deployment of simple node
applications.

C. Application Software on the URB CPU

As described above, message boxes on each node provide
structured communication channels between the CPU and URB
nodes. Information on the size and structure of each message
box has to be shared by both the CPU software and node
firmware for which the mechanism is left unspecified by the
protocol. Developers can either ensure consistency through
shared header files or utilize a dedicated message box for this

purpose. Nevertheless, in the presence of this shared knowl-
edge, the URB CPU library, currently implemented in C++,
provides a simple means by which nodes attached to the system
can be identified and associated message boxes can be accessed.

The singleton URBInterface class provides the entry point
of the API. During initialization, application software is ex-
pected to invoke its addBusManager(. . .) method to register
each bridge connected to the system, through manager class
instances associated with corresponding types of uplink (i.e.,
USBManager, RS232Manager, etc.). This process also initiates
node discovery on each downlink bus and identifies all nodes
connected to the system. Following this initialization and dis-
covery, the findNode(. . .) method can be used to locate a node
with a specific class and index, returning a NodeAccessor
class instance through which associated message boxes can be
accessed. The methods newRequest() and submitRequest()
can then be used to initiate URB transmissions, with user-
specified callbacks invoked upon completion.

Fig. 5 illustrates a simple program which periodically reads
from a specific URB node. It should be noted that access to a
node is independent of which bridge it is connected to and what
type of downlinks are in use. Callbacks are asynchronously
invoked by bus managers upon reception of requested data
and allow modular processing of data flow between different
nodes and associated software components. In case of a failure,
either in the form of a checksum mismatch or a downlink
communication timeout as described in Section V-D, the call-
back function can check error flags in the response packet to
identify the source of the problem and proceed accordingly.
No automatic retransmission attempts are done by the URB
framework to ensure predictable performance. Naturally, real-
time performance critically depends on the implementation
details of specific bus managers and associated low level uplink
and downlink protocols, which we will detail in the subsequent
sections. However, this API provides the level of modularity
that we observed to be necessary for rapid deployment and
revision of instrumentation within mobile robotic platforms.

V. INTERNALS OF THE URB ARCHITECTURE

A. Uplink and Downlink Communication Protocols

As a result of the heterogeneous use of physical connectivity
standards within the URB framework, each different type of
uplink and downlink connection implements its own physical
and transport layer protocols. Nevertheless, URB enforces a
common structure on the link-control layer protocols which we
summarize in this section.

Taking place across dedicated connections, uplink commu-
nications consist of request packets addressed to a node on
the corresponding downlink bus. Request packets encode a
downlink-specific address field for the targeted node, together
with the message box number to be accessed and its size.
Requests are processed in the order that they are received by
the bridge, which performs necessary communications on the
associated downlink and prepares a response packet, either with
the contents of the outbox to be read, or a success flag for writes
to a node inbox. Fig. 6 illustrates uplink request and response
packet formats.

920 IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, VOL. 60, NO. 3, MARCH 2011

Fig. 4. Left: Functions provided by the URB node API. Right: Functions to be implemented by the application firmware.

Fig. 5. Example program that periodically reads data from a given outbox on a specific URB node.

Fig. 6. (Left) Request and (right) response packet formats for uplink and
downlink communications.

Downlink communications mirror the structure of the uplink
protocol, except with the request size and flag fields removed
since transport layer protocols for I2C, CAN, and RS485 pro-

vide necessary mechanisms to implicitly infer packet size. Note
that protocol overhead is minimized for both uplink and down-
link communications, allowing maximum channel utilization
and increased bandwidth.

B. RS232 Uplink Implementation

We have designed and implemented a URB bridge with
support for RS232 uplink connections that can be used for low-
to-medium-bandwidth applications and easy testing of simple
node implementations, as illustrated in Fig. 7. Since RS232 is
widely available on all desktop and small embedded computers,
URB support for an RS232 uplink provides a very versatile
benchtop testing facility for node development.

Since the universal asynchronous receiver/transmitter
(UART) standard is an asynchronous point-to-point protocol,

SARANLI et al.: MODULAR REAL-TIME FIELDBUS ARCHITECTURE FOR MOBILE ROBOTIC PLATFORMS 921

Fig. 7. URB bridge prototype with support for both RS232 and USB uplink
connections. Current prototype measures 4 × 5 cm to facilitate debugging, but
a much smaller version is in development.

no extensions to the common protocol described in Section V-A
is needed. URB RS232 bridges simply buffer incoming request
packets from the uplink, process them in the order that they
are received, performing necessary downlink transactions with
the appropriate downlink protocols, and immediately send
the corresponding response packets back to the CPU. The
RS232Manager class instance on the CPU uses separate read
and write threads to asynchronously service requests and their
responses. As described in Section VI-B, this yields very low
latencies, determined primarily by the UART baud rate and the
downlink speed.

C. Real-Time USB Uplink Implementation

In this section, we describe how we can use a high-speed
USB connection as the physical connectivity layer of a URB
uplink connection. This task entails the following two major
challenges: 1) obtaining predictable real-time behavior (primar-
ily in terms of determinacy) through careful management of
USB host controller behavior and 2) minimizing latency by
proper scheduling of USB request blocks for uplink packet
transmission. The methods we propose in this section can
achieve both of these goals and represents a novel approach
applicable to other real-time applications for the USB standard.

In general, interfacing with USB devices requires an associ-
ated kernel driver on the CPU. As shown in Fig. 8, our design
involves joint development of a kernel driver that communicates
with the bridge through the host controller, together with the
USBManager class, which controls buffering and delivery of
URB requests through the uplink.

During high-speed operation, the USB host controller ac-
cepts request blocks from kernel drivers and schedules associ-
ated transactions within 1-ms time slots [33]. The time at which
the actual transmission takes place depends on a variety of fac-
tors, including the type of the transmission (control, interrupt,
bulk, or isochronous) as well as the existing load associated
with other devices on the same bus. Moreover, unlike the bidi-
rectional nature of RS232 communications, the host controller
is in charge of initiating all transactions in a USB system,
making it impossible for the bridge (which acts as a USB slave
device) to signal its need for sending back response packets.

A timeline of activities for our URB USB uplink implemen-
tation is illustrated in Fig. 9. First, to maximize bandwidth, a
thread created by the USBManager class buffers node requests
from the application software and sends them to the kernel
driver once every 1 ms, matching the scheduling frequency of
the host controller. This ensures that only one request block,

with as much payload as possible, is sent to the host controller
at every cycle (assuming no non-URB devices are attached
to the same host controller), ensuring both determinacy and
maximizing the amount of data that can be sent to the bridge.

Upon reception of this write request, the kernel driver bun-
dles it into a USB request block and issues a write request to
the USB host controller, which schedules it for transmission at
the next USB cycle. The completion of this request is followed
by the invocation of a write callback in the kernel, which then
prepares an associated read request block and submits it to
the host controller for retrieval of USB bulk response packets.
The end of this sequence is marked by the invocation of the
read callback function, which then signals the read thread to
retrieve and buffer response packets. This carefully scheduled
USB data exchange mechanism, coordinated through operating
system facilities such as spin locks and wait queues, ensures
that the worst-case latency from the time a request is issued to
the reception of its response is 3 ms, which is confirmed by
our experimental results presented in Section VI-B. Part of this
latency, i.e., 1 ms, is caused by the operating system scheduling
period for the write and read threads in addition to the 2-ms
USB latency detailed in Fig. 9.

A very important feature of our USB uplink implementation
is that it allows two transactions to be simultaneously active
(e.g., write n and read (n − 1) as in Fig. 9), making it possible
to utilize USB bandwidth for both a read and a write operation
during every 1-ms cycle. Waiting for the write–read sequence
to be finished before initiating the next write operation would
have wasted 50% of the bandwidth, with further implications
on the allowable control loop frequency. Further details on our
URB USB uplink implementation can be found in [34].

D. I2C Downlink Implementation

I2C is a two-wire synchronous serial protocol that can
achieve speeds exceeding 1 Mb/s with proper bus termination
[35]. Its relatively high speed and universal availability in
almost all microcontrollers make it a very attractive option
for URB downlink communications. Its simplicity compared to
more robust but complex protocols such as CAN motivated our
prototype downlink instantiation to use the I2C as its underlying
physical layer.

Challenges in this adoption primarily arise from the relatively
noise-prone nature of I2C communications, particularly in the
presence of bidirectional isolator components on the data and
clock lines. Since these lines rely on open-drain interfaces,
a problematic node can result in the entire bus to become
stuck at a low digital level, making any further communication
impossible. Our I2C downlink implementation addresses this
issue by proper timeout mechanisms that issue a bus reset when
such conditions are detected. The inclusion of a checksum field
in the packet format of Section V-A also increases robustness by
enabling detection of erroneous data transmission. All results
presented in Section VI use this I2C downlink implementation,
for which further details can be found in [36]. Note, however,
that the URB framework allows the use of any shared bus
standard for its downlink connections if associated bridge and
node libraries are implemented.

922 IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, VOL. 60, NO. 3, MARCH 2011

Fig. 8. Organization of the URB USB uplink implementation.

Fig. 9. Timeline of activities for USBManager read and write threads, kernel
callback functions within the USB driver, and physical USB communications.
Request n is sent by the write thread to the kernel driver, which then receives the
associated write callback. This callback issues a read request, which is serviced
in the next USB cycle and ends with the invocation of the read callback. This
wakes up the read thread, which retrieves response packets from the kernel
driver.

E. Synchronization of Node Heartbeat Clocks

One of the most important real-time features for a robotic
platform is the deterministic accuracy of relative timing for data
acquisition and command update across different sensors and
actuators in the system. When instrumentation and computation
associated with these components is physically distributed on
the robot, maintaining this accuracy becomes increasingly dif-
ficult [37]. Similar problems have most widely been studied in
the context of clock synchronization for multiprocessor systems
and sensor networks and can be categorized into convergence-,
agreement-, and diffusion-based algorithms [38]. The first two
types of algorithms require access to the internal clocks of
other components in the system, introducing substantial com-
munication overhead and, hence, is not directly suitable for
our architecture. Similarly, diffusion-based algorithms rely on
direct communication between processing units [39], which
is structurally incompatible with the URB framework where
nodes are configured as slaves.

In this section, we describe a novel synchronization algo-
rithm compatible with the topology and operation of the URB
framework that allows synchronous data acquisition across all
nodes connected to a single shared downlink connection. Our
approach closely parallels the receiver–receiver clock synchro-
nization algorithms for sensor networks [40], [41] and relies on
the broadcasting of a SYNC message on the shared bus, to which
local heartbeat timers on each node lock onto using period and
phase feedback and ideas from phase-locked loops [42].

Fig. 10 illustrates the local synchronization algorithm used
by each URB node to tune its internal heartbeat clock. First,
during each node update cycle, we estimate the period of the
incoming downlink heartbeat Td with a simple exponential filter
as follows:

T̂d[k + 1] = T̂d[k] − Kd

(
T̂d[k] − Td

)
(1)

Fig. 10. Local phase-locked loop for the node heartbeat clock. A SYNC
message broadcast on the downlink is used as a global clock.

where Td denotes the measured period of the downlink heart-
beat, T̂d denotes its local estimate, and Kd determines the filter
time constant. We then use this smoothed estimate as the period
of the local clock, which is adjusted with a feedback term
to match its phase to the incoming downlink heartbeat. The
computation of the local timer period T on the node, hence,
takes the form

T [k + 1] = T̂d[k + 1] − Kn(tn − td + Δtadj) (2)

where tn and td denote the measured times for the latest node
and downlink heartbeat signals, whereas Δtadj is a constant
offset that can be used to impose a desired phase lead on the
local clock.

In this context, we use the idea of allowing a fixed phase lead
Δtadj on the local node heartbeat to substantially decrease data
acquisition latency. Consider the scenario illustrated in Fig. 11,
where two URB nodes are attached to a single bridge. When the
internal update cycles of the two nodes and the data requests
from the bridge are not synchronized, at the worst case, data
sent back by a node can be up to 1 ms old as is the case with
the second data request in Fig. 11. This results in a worst-case
increase of 1 ms in data latency.

In contrast, when both nodes are synchronized with the
bridge heartbeat, and a sufficient phase lead is introduced,
freshly acquired data components can be sent as a response to
bridge requests, as illustrated in Fig. 12. The maximum time
spent on the node for data acquisition and buffer updates tacq
can easily be measured by the node and then used as the desired
phase lead with Δadj = tacq to yield the desired behavior. Dif-
ferent nodes with different values of tacq will adjust themselves
accordingly, ensuring synchrony between the end of acquisition
at every node and the reception of data with minimum latency
by the bridge. Section VI-C details our experimental results
on the performance and accuracy of this algorithm. Note also
that the same method can be used to synchronize the heartbeat
signals for bridges within a URB system, making it possible to
synchronize not only nodes one a single downlink, but all nodes
connected to the system.

VI. PLATFORM EXPERIMENTS AND PERFORMANCE

In this section, we present our experimental results on the
performance of an entire URB system, including the CPU

SARANLI et al.: MODULAR REAL-TIME FIELDBUS ARCHITECTURE FOR MOBILE ROBOTIC PLATFORMS 923

Fig. 11. Timeline of data acquisition and communication transactions for two unsynchronized nodes.

Fig. 12. URB system with one bridge and two nodes with synchronization enabled. Data acquisition on all nodes finishes simultaneously and right before the
downlink heartbeat is received. Latency from the end of data acquisition to the shipment of data is minimized.

Fig. 13. SensoRHex hexapod robot platform.

software, the uplink connection, the bridge firmware, the down-
link connection, and the node firmware, operating at a main
loop frequency of 1 kHz. To also illustrate the modularity prop-
erties of the system, all of our experiments will be presented in
the context of the SensoRHex robot platform, which uses URB
as its instrumentational infrastructure.

A. SensoRHex Hexapod Platform

RHex is a power and computationally autonomous hexapod
robot that has been capable of dynamic locomotion at very
high speeds over very difficult rough terrain [43]. However, its
relatively old centralized electromechanical design has made
it very difficult to go beyond basic behaviors with substantial
effort required to incorporate new sensors and revised actuator
modules [44]. We have used the URB architecture to design
SensoRHex, as shown in Fig. 13, preserving the morphology
of RHex but replacing the computational infrastructure with a
much more modular and extensible design. In the following
sections, we will both describe how the URB architecture
has been used to realize this design and present experimental
performance figures for components we described in the scope
of this paper.

The SensoRHex platform consists of six legs, each attached
to a gearhead/motor/encoder unit (see Fig. 17). Each dc motor
is controlled by a URB-enabled controller node, which also
measures the armature voltage and current as well as the motor
case temperature and interfaces to a Hall effect sensor for
calibration. The computational infrastructure incorporates two
PC104 stacks each with a 500-MHz AMD Geode CPU card.
Both CPU units run stripped-down Linux installations with
1-kHz tick frequency. The robot has three onboard Li-Poly bat-
teries, managed by custom electronics that also serves as a URB
node and reports voltage, current, and battery status information
to the CPU. Finally, there is a small inertial measurement node
and an infrared distance measurement node attached to the
system as well.

Fig. 14 illustrates the structure and layout of components on
the SensoRHex platform. Two URB USB bridges interface with
three motor controller nodes each, ensuring that high bandwidth
data transfer can be realized. In contrast, low-bandwidth nodes,
including the battery management, inertial measurement, and
infrared sensor nodes, are attached to the main CPU through a
URB RS232 link. This architecture is readily extensible with
either the addition of new bridges or by attaching additional
nodes to existing downlink buses, provided that their bandwidth
requirements do not exceed the associated limits.

Due to the highly dynamic nature of the robot platform,
motor control nodes need to be accessed at a minimum fre-
quency of 1 kHz to ensure stability of closed-loop behaviors.
In contrast, nodes attached to the RS232 can operate at 100 Hz
since the time constants of associated sensors are rather large
and filtering can be done on the nodes. Based on these require-
ments, we configured the USB uplink connections to operate in
high-speed mode with 10 Mb/s raw bandwidth and the RS232
uplink to use 115 200 Bd since this was the highest frequency
supported by the microcontrollers. The downlink connection
for all three buses operates at 400 kb/s due to the presence
of isolator chips and large amounts of noise coming from the
motor amplifiers. It is important to note that the architectural

924 IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, VOL. 60, NO. 3, MARCH 2011

Fig. 14. Structure of the computational infrastructure on SensoRHex.

Fig. 15. Average round-trip (from URB request submission to callback invo-
cation) latencies for 1000 read requests across an RS232 uplink operating at
115 200 Bd and an I2C downlink at 400 kb/s as a function of data payload with
a loop frequency of 1 kHz.

support that we provided for different uplink and downlink
connectivity options within the URB architecture allowed us
to fine tune the computational infrastructure according to our
requirements.

B. Bandwidth and Latency

To obtain general performance figures for our uplink and
downlink implementations, we first characterize in this section
the latency and bandwidth limitations of our RS232 and USB
uplink implementations connected to a test node with config-
urable message box sizes.

Fig. 15 illustrates API level average round-trip latencies for
1000 periodic read requests across an RS232 uplink connection
at 115 200 Bd with a loop frequency of 1 kHz for different
data payload sizes. The RS232 communication speed limits
the uplink packet length to 12 bytes within a millisecond,
corresponding to a maximum data payload of 10 bytes. Our
implementation has been able to achieve this performance with
a maximum latency of 2 ms (half of which is caused by
the operating system thread scheduling frequency). The linear
increase in latency as a function of the data payload is a direct
result of the asynchronous nature of RS232 communications,
with the request callback being invoked immediately after
transmission is finished. Note that larger payload sizes are
possible if the loop update frequency is reduced.

In contrast, the USB uplink implementation allows much
higher bandwidth, allowing a full size packet with 31 bytes of
data content transmitted within a single loop period of 1 ms. As
shown in Fig. 16, the USB uplink provides a constant latency
of 3 ms as predicted by the analysis of Section V-C. When the

Fig. 16. Average round-trip (from URB request submission to callback in-
vocation) latencies for 1000 data read requests across a USB uplink and an
I2C downlink at 400 kb/s as a function of data payload with a loop frequency
of 1 kHz.

USB uplink is used, the I2C downlink connection and the bridge
firmware become bottlenecks for the maximum bandwidth that
can be achieved. Note, however, that both the 3-ms latency
and the uplink bandwidth are preserved when multiple bridges
are connected to the same hub, making the USB uplink very
modular and extensible.

C. Synchronization Accuracy

To characterize the performance of the synchronization algo-
rithm, we proposed in Section V-E, we will use three different
metrics. First, the initial convergence delay is defined as the
time it takes for all nodes to converge to the same heartbeat
period and phase. Second, the internode heartbeat difference is
defined as the time difference between any two nodes on the
same bus. Finally, single-node jitter is defined as the variation
in the heartbeat period of a single node. Note that an important
factor in all of these figures in the nondeterminacy associated
with data acquisition on each node since our algorithm attempts
to synchronize the end of data acquisition rather than just the
heartbeat timers themselves.

Table I summarizes our results, obtained with 20 independent
experiments on a single I2C downlink with two nodes. Times
of key transition events were measured with an oscilloscope.
These figures show that the synchronization algorithm performs
very well, with fast convergence and steady-state synchroniza-
tion errors below 1 µs.

D. Application: High-Bandwidth DC Motor Control

In this section, we describe our final set of experiments for
high-bandwidth closed-loop control of SensoRHex’s hip motor

SARANLI et al.: MODULAR REAL-TIME FIELDBUS ARCHITECTURE FOR MOBILE ROBOTIC PLATFORMS 925

TABLE I
PERFORMANCE METRICS FOR NODE SYNCHRONIZATION

FOR 20 EXPERIMENTS MEASURING KEY TRANSITIONS

WITH AN OSCILLOSCOPE

Fig. 17. URB-capable motor driver unit. Our prototype provides encoder,
voltage, and current feedback and allows driving dc motors with up to 10 A
continuous, 20 A peak current. The unit is shown mounted on one of
SensoRHex’s hip motors.

Fig. 18. Closed-loop PD motor control performance for a 0.5-Hz sinusoid
reference input (blue line) and an RS232 uplink connection. The magnified plot
at the top right corner shows accurate tracking with only a 2-ms lag.

units illustrated in Fig. 17. Using the URB node API, the motor
driver unit provides two message boxes: Outbox 1 provides
high bandwidth sensory information (6 bytes data payload),
and inbox 1 accepts motor voltage commands (2 bytes data
payload). Normally, the driver node is also capable of perform-
ing closed-loop control directly, but we use the CPU to close
the proportional–derivative (PD) control loop for the results we
present in this section to characterize the performance of the
entire URB system.

Fig. 18 shows the motor shaft position control performance
at 1 kHz through an RS232 uplink and an I2C downlink con-
nection for a 0.5-Hz sinusoid reference signal. Consistent with
our previous measurements of 2 ms latency, properly tuned PD
gains yield a tracking lag of approximately 2 ms for the actual
motor shaft position (shown in red) with respect to the refer-
ence trajectory (shown in blue). This confirms that the URB
framework performs as expected even under the severe noise
conditions of the SensoRHex platform.

Fig. 19 illustrates the results of the same experiment per-
formed with a USB uplink condition. This time, the tracking
error increases slightly, corresponding to the 3-ms latency
associated with our USB uplink implementation. Nevertheless,

Fig. 19. Closed-loop PD motor control performance for a 0.5-Hz sinusoid
reference input (blue line) and a USB uplink connection. The magnified plot at
the top right corner shows accurate tracking with only a 3-ms lag.

Fig. 20. (Top) Motor shaft angle and (middle and bottom) armature voltage
and current measurements from one of SensoRHex’s hip units during two steps
(one forward and one backward) of an alternating tripod gait under 1-kHz
closed-loop PD control through a URB USB uplink connection. The direction
of rotation for the leg was changed around t = 0.53 s to illustrate transient
currents.

the USB uplink still preserves real-time performance consistent
with our analysis and previous experiments. Note that, here, we
use the term real-time to primarily refer to the determinacy of
latency and bandwidth performance.

Finally, Fig. 20 illustrates shaft angle and armature cur-
rent and voltage measurements from one of SensoRHex’s hip
modules while executing an alternating tripod gait [43]. The
overshoots on slowing the leg down (around t = 0.1 s) and
changing the direction of rotation (around t = 0.53 s) are due
to the large inertia associated with SensoRHex’s legs. The
relatively noisy voltage measurements are a result of the fact
that a 40-kHz pulsewidth modulation signal is used to drive the
motor voltage. Nevertheless, once again, the URB framework
works as expected, with deterministic latency and bandwidth
performance. These experimental results, hence, show that the
architecture we proposed successfully meets both the flexibil-
ity and deterministic real-time performance requirements we
observed were necessary for instrumentation within resource-
constrained mobile robot platforms.

926 IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, VOL. 60, NO. 3, MARCH 2011

VII. CONCLUSION

In this paper, we have introduced the URB, a new modular
fieldbus architecture with deterministic real-time performance,
which is designed for use within instrumentation systems such
as autonomous mobile robot platforms where high-bandwidth
real-time measurement and control of environmental interac-
tions are needed. The architecture we proposed has a two-
tiered structure and supports a heterogeneous collection of
communication protocols within the same system, making it
possible to integrate components with differing sizes and capa-
bilities within the same system. As such, URB offers a level of
flexibility beyond what is provided by existing fieldbus designs,
with a programming model that features a transparent interface
through which the development of application software remains
completely independent of the topological connectivity of com-
ponents. Through careful design of low-level protocols for
supported types of physical connections, URB also preserves
desired real-time properties with low predictable latencies and
high bandwidths. Finally, we also proposed a synchronization
algorithm compatible with the URB framework that success-
fully synchronizes data acquisition across multiple nodes con-
nected to the system, allowing us to both reduce latency and
ensure timing consistency of data acquired on a distributed set
of sensory nodes, critical for uniform sampling rate discrete-
time control.

We have shown that the proposed architecture can provide
both the modularity and real-time performance properties that
are critical for autonomous mobile robots and similarly con-
strained instrumentation applications through a set of system-
atic experiments. We used the URB architecture for the design
and implementation of our six-legged dynamic legged robot
design, SensoRHex, and characterized both the latency and
bandwidth properties of a practical URB deployment. Our
experiments have established that the framework maintains
its performance, even under the severe conditions of a fully
operational dexterous legged robotic platform. We believe that
the modularity, flexibility, and real-time performance offered by
the URB framework will be useful for the instrumentation and
measurement community by substantially accelerating the de-
sign and deployment of new systems with as much component
reuse as possible.

In the future, we hope to complete support libraries for
additional physical connectivity protocols such as CAN and
RS485 for shared bus connections to URB nodes. Moreover,
further refinements on the protocol are possible to facilitate
node firmware updates, version control, and data correction.
Nevertheless, the current URB design is sufficient to provide
a consistent, easy-to-use, and very lightweight fieldbus alterna-
tive with support for real-time operation that is suitable for use
within small-scale instrumentation applications such as mobile
robotic platforms.

ACKNOWLEDGMENT

The authors would like to thank H. Komsuoglu for his work
on RiSEBus, which constitutes the basis for the design of URB,
and G. Gültekin and H. Mıdoḡlu for their contributions to the
design of SensoRHex’s motor control node.

REFERENCES

[1] D. Prutchi and M. Norris, Design and Development of Medical Elec-
tronic Instrumentation: A Practical Perspective of the Design, Construc-
tion, and Test of Medical Devices. Hoboken, NJ: Wiley-Interscience,
2004.

[2] J. Yick, B. Mukherjee, and D. Ghosal, “Wireless sensor network survey,”
Comput. Netw., vol. 52, no. 12, pp. 2292–2330, Aug. 2008.

[3] A. Willig, K. Matheus, and A. Wolisz, “Wireless technology in industrial
networks,” Proc. IEEE, vol. 93, no. 6, pp. 1130–1151, Jun. 2005.

[4] M. Chan, D. Estève, C. Escriba, and E. Campo, “A review of smart
homes—Present state and future challenges,” Comput. Methods Programs
Biomed., vol. 91, no. 1, pp. 55–81, Jul. 2008.

[5] R. R. Murphy, “Human–robot interaction in rescue robotics,” IEEE
Trans. Syst., Man, Cybern. C, Appl. Rev., vol. 34, no. 2, pp. 138–153,
May 2004.

[6] E. U. Acar, H. Choset, Y. Zhang, and M. Schervish, “Path planning for
robotic demining: Robust sensor-based coverage of unstructured environ-
ments and probabilistic methods,” Int. J. Robot. Res., vol. 22, no. 7/8,
pp. 441–466, Jul. 2003.

[7] P. S. Schenker, T. L. Huntsberger, P. Pirjanian, E. T. Baumgartner, and
E. Tunstel, “Planetary rover developments supporting mars exploration,
sample return and future human–robotic colonization,” Auton. Robots,
vol. 14, no. 2, pp. 103–126, Mar. 2003.

[8] J.-H. Lee and H. Hashimoto, “Controlling mobile robots in distributed
intelligent sensor network,” IEEE Trans. Ind. Electron., vol. 50, no. 5,
pp. 890–902, Oct. 2003.

[9] A. A. Rizzi, J. Gowdy, and R. L. Hollis, “Distributed coordination in
modular precision assembly systems,” Int. J. Robot. Res., vol. 20, no. 10,
pp. 819–838, Oct. 2001.

[10] M. J. Spenko, G. C. Haynes, J. A. Saunders, M. R. Cutkosky,
A. A. Rizzi, R. J. Full, and D. E. Koditschek, “Biologically inspired climb-
ing with a hexapedal robot,” J. Field Robot., vol. 25, no. 4/5, pp. 223–242,
Apr./May 2008.

[11] U. Nunes, J. A. Fonseca, L. Almeida, R. Araújo, and R. Maia, “Using dis-
tributed systems in real-time control of autonomous vehicles,” Robotica,
vol. 21, no. 3, pp. 271–281, Jun. 2003.

[12] J. L. Fernandez, M. J. Souto, D. P. Losada, R. Sanz, and E. Paz, “Commu-
nication framework for sensor–actuator data in mobile robots,” in Proc.
IEEE Int. Symp. Ind. Electron., Jun. 2007, pp. 1502–1507.

[13] I. Verhappen and A. Pereira, Foundation Fieldbus: A Pocket Guide. Re-
search Triangle Park, NC: ISA, 2002.

[14] E. Tovar and F. Vasques, “Real-time fieldbus communications using
Profibus networks,” IEEE Trans. Ind. Electron., vol. 46, no. 6, pp. 1241–
1251, Dec. 1999.

[15] Echelon Corp., Palo Alto, CA, 078-0183-01a edition Introduction to the
LONWORKS System, 1999.

[16] J. A. Janet, W. J. Wiseman, R. D. Michelli, A. L. Walker,
M. D. Wysochanski, and R. Hamlin, “Applications of control networks in
distributed robotic systems,” in Proc. IEEE Int. Conf. Syst., Man, Cybern.,
Oct. 11–14, 1998, vol. 4, pp. 3365–3370.

[17] S. T. Bushby, “BACnet: A standard communication infrastructure for
intelligent buildings,” Autom. Construction, vol. 6, no. 5/6, pp. 529–540,
1997.

[18] M. Quigley, B. Gerkey, K. Conley, J. Faust, T. Foote, J. Leibs, E. Berger,
R. Wheeler, and A. Y. Ng, “ROS: An open-source robot operating sys-
tem,” in Proc. Open-Source Softw. Workshop Int. Conf. Robot. Autom.,
2009.

[19] H. Bruyninckx, “Open robot control software: The OROCOS project,” in
Proc. IEEE Int. Conf. Robot. Autom., 2001, vol. 3, pp. 2523–2528.

[20] J. Jackson, “Microsoft robotics studio: A technical introduction,” IEEE
Robot. Autom. Mag., vol. 14, no. 4, pp. 82–87, Dec. 2007.

[21] Industrial Communication Networks—Fieldbus Specifications, IEC
61158, 2000.

[22] M. Santori and K. Zech, “Fieldbus brings protocol to process control,”
IEEE Spectr., vol. 33, no. 3, pp. 60–64, Mar. 1996.

[23] R. Patzke, “Fieldbus basics,” Comput. Standards Interfaces, vol. 19, no. 5,
pp. 275–293, Mar. 1998.

[24] S. H. Hong and I.-H. Choi, “Experimental evaluation of a bandwidth
allocation scheme for foundation fieldbus,” IEEE Trans. Instrum. Meas.,
vol. 52, no. 6, pp. 1787–1791, Dec. 2003.

[25] S. H. Hong and S. M. Song, “Transmission of a scheduled message using a
foundation fieldbus protocol,” IEEE Trans. Instrum. Meas., vol. 57, no. 2,
pp. 268–275, Feb. 2008.

[26] Q. Li, D. J. Rankin, and J. Jiang, “Evaluation of delays induced by
foundation fieldbus H1 networks,” IEEE Trans. Instrum. Meas., vol. 58,
no. 10, pp. 3684–3692, Oct. 2009.

SARANLI et al.: MODULAR REAL-TIME FIELDBUS ARCHITECTURE FOR MOBILE ROBOTIC PLATFORMS 927

[27] K.-S. Hwang, C.-Y. Lo, and W.-L. Liu, “A modular agent architecture
for an autonomous robot,” IEEE Trans. Instrum. Meas., vol. 58, no. 8,
pp. 2797–2806, Aug. 2009.

[28] A. Z. Alkar and M. A. Karaca, “An Internet-based interactive embedded
data-acquisition system for real-time applications,” IEEE Trans. Instrum.
Meas., vol. 58, no. 3, pp. 522–529, Mar. 2009.

[29] R. M. Metcalfe and D. R. Boggs, “Ethernet: Distributed packet switching
for local computer networks,” Commun. ACM, vol. 19, no. 7, pp. 395–
404, Jul. 1976.

[30] G. Held, Ethernet Networks: Design, Implementation, Operation, & Man-
agement. New York: Wiley, 2002.

[31] CAN specification 2.0a, Stuttgart, Germany, 1991.
[32] M. Wargui and A. Rachid, “Application of controller area network to

mobile robots,” in Proc. Electrotech. Conf., Bari, Italy, May 1996, vol. 1,
pp. 205–207.

[33] Universal Serial Bus Specification, Apr. 27, 2000.
[34] C. Ozturk, “A USB-based real-time communication infrastructure for

robotic platforms,” M.Sc. thesis, Dept. Comput. Eng., Bilkent Univ.,
Ankara, Turkey, 2009.

[35] Philips Semicond., Eindhoven, The Netherlands, The I2C-BUS Specifi-
cation, Jan. 2000. ver. 2.1.

[36] A. Avci, “The Universal Robot Bus: A local communication infrastruc-
ture for small robots,” M.Sc. thesis, Dept. Comput. Eng., Bilkent Univ.,
Ankara, Turkey, 2008.

[37] M. Gergeleit and H. Streich, “Implementing a distributed high-resolution
real-time clock using the CAN-bus,” in Proc. Int. CAN Conf., Mainz,
Germany, 1994.

[38] F. B. Schneider, “Understanding protocols for byzantine clock synchro-
nization,” Cornell Univ., Ithaca, NY, Tech. Rep. TR87-859, 1987.

[39] Q. Li and D. Rus, “Global clock synchronization in sensor networks,”
IEEE Trans. Comput., vol. 55, no. 2, pp. 214–226, Feb. 2006.

[40] P. Verissimo, L. Rodrigues, and A. Casimiro, “Cesiumspray: A precise
and accurate global time service for large-scale systems,” Real-Time Syst.,
vol. 12, no. 3, pp. 243–294, May 1997.

[41] S. PalChaudhuri, A. K. Saha, and D. B. Johnson, “Adaptive clock syn-
chronization in sensor networks,” in Proc. 3rd Int. Symp. IPSN, 2004,
pp. 340–348.

[42] J. Encinas, Phase Locked Loops. New York: Springer-Verlag, 1993.
[43] U. Saranli, M. Buehler, and D. E. Koditschek, “RHex: A simple and highly

mobile robot,” Int. J. Robot. Res., vol. 20, no. 7, pp. 616–631, Jul. 2001.
[44] P.-C. Lin, H. Komsuoglu, and D. E. Koditschek, “A leg configuration

measurement system for full-body pose estimates in a hexapod robot,”
IEEE Trans. Robot., vol. 21, no. 3, pp. 411–422, Jun. 2005.

Uluç Saranlı (S’94–M’02) received the B.Sc. degree
in electrical and electronics engineering from the
Middle East Technical University, Ankara, Turkey,
in 1996 and the M.Sc. and Ph.D. degrees in computer
science from the University of Michigan, Ann Arbor,
in 1998 and 2002, respectively.

He was subsequently a Postdoctoral Fellow with
the Robotics Institute, Carnegie Mellon University,
Pittsburgh, PA, until 2005. He is currently an Assis-
tant Professor with the Department of Computer En-
gineering, Bilkent University, Ankara. His research

interests include the analysis and control of dynamic locomotion with legged
robots, nonlinear dynamical systems, embedded systems, software architec-
tures for robot programming and control, and formal methods applied to
planning and robotic autonomy.

Akın Avcı (S’04) received the B.Sc. and M.Sc. de-
grees from Bilkent University, Ankara, Turkey, in
2006 and 2008, respectively. He is currently working
toward the Ph.D. degree at the University of Twente,
Enschede, The Netherlands.

His research interests include embedded systems,
robotics wireless sensor and actuator networks, iner-
tial sensors, and activity recognition.

M. Cihan Öztürk (S’04) received the B.Sc. de-
gree from Hacettepe University, Ankara, Turkey, in
2006 and the M.Sc. degree from Bilkent University,
Ankara, in 2009.

He is currently an Embedded Software Engineer
with Aselsan, a Turkish defense industry company.
His research interests include embedded systems,
BSP and device driver development, and robotics.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues false
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

