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ABSTRACT

Motion capture is an increasingly popular animation technique; however data acquired by motion capture can become
substantial. This makes it difficult to use motion capture data in a number of applications, such as motion editing, motion
understanding, automatic motion summarization, motion thumbnail generation, or motion database search and retrieval. To
overcome this limitation, we propose an automatic approach to extract keyframes from a motion capture sequence. We treat
the input sequence as motion curves, and obtain the most salient parts of these curves using a new proposed metric, called
’motion saliency’. We select the curves to be analysed by a dimension reduction technique, Principal Component Analysis
(PCA). We then apply frame reduction techniques to extract the most important frames as keyframes of the motion. With
this approach, around 8% of the frames are selected to be keyframes for motion capture sequences. Copyright © 2010
John Wiley & Sons, Ltd.

KEYWORDS

motion saliency, motion capture, keyframe extraction, PCA

*Correspondence

Tolga Capin, Department of Computer Engineering, Bilkent University, Ankara, Turkey.
E-mail: tcapin@cs.bilkent.edu.tr

1. INTRODUCTION

Motion capture is a central technique in the creation of com-
puter games, virtual environments, digital special effects in
movies and medical applications. The power of motion cap-
ture comes from its ability to produce very realistic results,
even for the most complex motions, in real time. Unfortu-
nately, problems still arise when motion capture is used. It is
costly to capture an action, as repeated trials are commonly
needed. Another problem of motion capture is that apply-
ing the captured sequence to a different character model
requires a complex retargeting process.

Keyframing delivers a potential solution that overcomes
the disadvantages of the use of motion capture alone: mas-
sive amounts of motion capture data can be summarized by
keyframes, and keyframe editing can be used on an already
captured sequence to obtain a new motion without having to
go through the costly process of recapturing. This process
requires that representative frames be selected from a very
large set of frames of a motion capture sequence, which is
the focus of this work.

In this paper, we propose a new multiscale approach to
extract keyframes from a motion capture sequence. We treat
the input motion data as a set of motion curves, and find
the most salient parts of these curves that are crucial in the
representation of the motion behaviour. We apply the idea of

motion saliency, a new multiscale metric, to motion curves
in the first step of our algorithm. The multiscale property of
our approach allows us to measure the degree of difference
between the ‘centre’ frame and the ‘surround’ frames, in
different time scales. Then in the second step, we apply
clustering and keyframe reduction techniques to obtain the
most important keyframes of the motion.

There are a large number of potential applications of
our solution. An obvious application of our technique is
as a tool in summarization: it allows the user to acquire an
image preview of the motion. This approach is commonly
used in automatic thumbnail generation for motion cap-
ture databases. Our technique is also applicable for motion
editing; it allows the user to manually edit the motion by
automatically selecting relevant keyframes. Our method can
also be used as a tool in a wide variety of applications,
such as motion understanding, motion compression, motion
database search and retrieval.

As discussed in the previous work section, there exist
prior brute-force approaches to extract better set of
keyframes; however, they are computationally expensive
with computational complexity O(n2), where n is the num-
ber of frames in the motion capture sequence. Our algorithm
solves the same problem with O(n) complexity, and pro-
vides a solution that can be used in interactive applications
and for processing large motion capture databases.
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The remainder of the paper is organized as follows. First,
we survey previous work on keyframe extraction and the
saliency model of attention. Then, we explain our multi-
scale keyframe extraction approach with a new metric to
estimate the importance of a frame. Lastly, we provide the
experimental results and applications of our approach, and
present discussions and conclusions of our work.

2. RELATED WORK

We draw upon different areas of research for our keyframe
extraction method. The following sections discuss the rele-
vant work in these areas.

2.1. Keyframe Extraction

Various methods have been proposed for keyframe extrac-
tion; these methods can be classified into three categories
in terms of their approach: (i) curve simplification, (ii) clus-
tering and (iii) matrix factorization. Figure 1 illustrates the
difference among these approaches, and the related work
for each category is summarized and discussed below.

Curve Simplification Based Algorithms are principally
based on simplifying a motion curve as a set of straight lines,
which describe the original curve with a certain error mar-
gin. An initial work of curve simplification belongs to Lim
and Thalmann [1]. Their method uses Lowe’s algorithm [2]
for curve simplification. Starting with the line which com-
bines the start and end points of the curve, the algorithm
divides the line into two line segments if the maximum
distance of any point on the curve from the line is larger
than a certain error rate. The algorithm performs the same
process recursively for each new line segment, until the
desired error rate is achieved. Another approach that aims
to find the keyframes based on motion curves is the work of
Okuda et al. [3,4] This algorithm detects the keyframes in
motion capture data by using frame decimation: the frames
are decimated one by one, according to their importance.
When a desired number of keyframes are obtained, the pro-
cess stops. Another related work is Matsuda and Kondo’s

approach [5]. First, the solution finds the fixed frames of the
motion, which satisfy one of the following: (i) local min-
imum or maximum value, (ii) one of the end points of a
straight line, (iii) a point that has a ‘large angle difference’
on both sides; that is, the points which are at least 50% of the
amplitude far away from the neighbour frames. Having the
fixed frames of the motion that cannot be deleted, Matsude
et al. apply reduction operations to the other characteristic
frames and find the keyframes of the motion. However, this
method is not optimal; it has been reported that on average,
55% of all frames are selected to be keyframes of a motion.

Clustering Based Methods transform the keyframe
extraction process into a clustering algorithm. In this
approach, similar frames are grouped into clusters, and
a representative frame is selected from each cluster as
a keyframe. Similarity is defined here as a function of
weighted distance between joints of the character between
frames [6]. Park et al. [7] represent motion capture data in
quaternion form, and apply Principal Component Analysis
(PCA) and k-means clustering on quaternions. Then, scat-
tered data interpolation is used to extract keyframes out of
these clusters. The order of frames is an important part of
keyframe extraction, but these approaches generally do not
take the order of frames into account in the clustering step.

Matrix Factorization Based Methods represent frames
of motion sequence as matrices, such as feature frame
matrices formed by colour histograms of frames. By using
techniques such as singular value decomposition [8] or low-
order discrete cosine transform (DCT) [9], the summary of
the motion is constructed. Key-Probe is such a factorization
technique, which constructs a frame matrix that holds vertex
positions of a 3D mesh, and processes this matrix to extract
the key matrix [10]. Every other frame in the sequence is a
linear combination of this key matrix. The key matrix can
be calculated by specifying the number of keyframes or an
error threshold.

Each of these approaches has its advantages and disad-
vantages. Curve simplification algorithms are very efficient
in terms of speed, but these algorithms have to consider only
a subset of the curves which represent the motion in order
work efficiently; and there is no single way to select the

Figure 1. Summary of approaches for keyframe extraction. (a) Curve simplification based methods extract and analyse motion curves
of each DOF; (b) clustering based methods compare the motion frame by frame to group similar frames into clusters; (c) matrix
factorization based methods form a matrix, where frame-byframe comparison is computed, and keyframes are then extracted by

using matrix algebra.
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best subset among all subsets. On the other hand, clustering
and matrix factorization methods do not have to select such
subsets, and they can operate on the entire set of data. The
disadvantage of clustering algorithms is that they do not take
the order of the frames into account. However, discarding
the time domain in keyframe extraction is a big disadvan-
tage. The best performing methods, in terms of extracting
the most favourable keyframes, are the matrix factorization
methods; however, these algorithms perform very slowly
due to their quadratic running time complexity.

2.2. Human Motion

Several researchers have observed that there is a lot of
redundancy in human motion [1], which is caused by the fact
that human joints act in a coordinated manner for any kind
of motion [11]. Various animation methods, covering a wide
range of techniques from inverse kinematics to procedural
animation, make use of this property. Coleman et al. [12]
use coordinated features of human motion, such as max-
ima of acceleration and directional acceleration, to extract
staggered poses out of a capture sequence. Procedural gen-
eration of grasping motion is another popular technique;
Parent states the motions of all fingers are inter-related in
the grasping motion [13]. Other studies have also shown
that the spine controls the human motion, and therefore
torso, arms and head, are involved even in a simple walk-
ing motion [13]. All these and similar findings arise from
the fact that the human body aims to minimize the total
amount of strain on the body, thus many joints strain in a
little amount to account for a great strain on a single joint.
Furthermore, many human motions, such as walking, are
cyclic in nature and create uniformity in joint positions [14].
Methods which analyse human motion exploit this feature
by defining joint groups, where joints in a joint group are
functionally dependent on each other [15].

Our method removes such redundancies in human motion
using the PCA method. PCA has been used successfully for
a number of applications in computer animation. For exam-
ple, Alexa and Müller [16] have applied this technique to
mesh deformations, yielding up to 100 times compression
of meshes. Glardon et al. [17] have applied the PCA tech-
nique to a set of motion captured walking animations, for
reconstruction of parameters that provide high-level control
over subsequent procedural walking animation. Sattler et al.
[18] use PCA to compress mesh animations. This method
uses Clustered PCA to employ clustering on the mesh, and
then applies PCA to compress each cluster by itself. Barbic
et al. [19] use different models of representation to classify
motion capture segments, and they conclude that the best
representation is provided by Probabilistic PCA.

2.3. Saliency

Our method builds upon the saliency model that is pop-
ular in the perception field. Saliency, which characterizes

the level of significance of the subject being observed, has
been a focus of cognitive sciences for more than 20 years.
Saliency is commonly thought as a visual cue, but in effect
it is a multiscale metric to measure the significance of the
subject as the result of its contrast from its neighbours. Itti
et al. [20] describe one of the earliest methods to compute
the saliency map of 2D raster images. Lee et al. [21] have
introduced the saliency model of 3D static meshes, using
the curvature property of mesh vertices. They have shown
how the computed saliency values can be used to drive the
simplification of the 3D mesh or best viewpoint selection.

We propose a new motion saliency metric for motion
frames, based on the multiscale centre--surround operator
on Gaussian-weighted mean curvatures in the motion curve.
In earlier work, Bulut and Capin [22] use a centre--surround
operator to detect important frames from the motion curve.
This approach has the shortcoming of selecting a single
joint among all the joints to analyse for keyframing, which
yields a large error if the wrong joint is selected. Also com-
pared to this earlier work, our proposed method analyses
each degree of freedom (DOF) according to its importance
by dimensionality reduction, and selects keyframes from a
number of motion curves to obtain an optimal amount of
keyframes. Finally, our proposed approach uses a multiscale
operator with different neighbourhood sizes. The multiscale
property of our approach allows us to measure the degree
of difference between the ‘centre’ frame and the ‘surround’
frames, in different time scales. This type of approach leads
to a more robust detection of keyframes. We explain the
details of the proposed algorithm in the next section.

3. APPROACH

Our method is composed of four steps: dimension reduction,
computing motion saliency, candidate keyframe selection
and clustering (Figure 2). The first step involves dimen-
sion reduction of the input motion sequence. Our approach
considers each joint angle of the character as a separate
dimension of the signal, and applies PCA to reduce input
dimension space. Next, an initial set of candidate keyframes
is selected in the reduced dimensions, using the proposed
motion saliency metric. Our method of computing the
saliency of each frame is based on the centre--surround oper-
ator of Itti et al. [20]. In the final step, clusters are formed for
neighbouring candidate keyframes and the most significant
keyframe is selected within each cluster.

There are clear advantages for decoupling these three
tasks as opposed to solving them jointly. First, the human
motion is essentially a high-dimensional signal, and dimen-
sion reduction helps to remove redundancies in the motion
input. Second, rather than focusing on local features of
frames that typically have large variations; our solution aims
to capture the saliency of frames by searching over vary-
ing ranges of frame neighbourhood. Third, the candidate
keyframes tend to form groups, because of the high frame
rate for motion capture and the smooth nature of human
motion; and the clustering step helps to exploit the similarity
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Figure 2. General outline of the method.

in neighbouring frames. From a computational point of
view, by solving each of the problems separately in linear
time, our entire algorithm runs in linear time.

3.1. Step 1: Dimension Reduction

Human motion is a high-dimensional signal, and it would
be infeasible to consider every dimension of the motion
in keyframe extraction. However, there are strong correla-
tions between different joint groups, as shown by previous
research discussed above. To propose a general solution, we
assume that the joints that form these groups are not fixed,
and they differ from one motion to another.

We use the PCA dimension reduction technique to take
account of this correlation [16]. The PCA technique analy-
ses differences and similarities of data consisting of many
trials and a high number of variables, in order to find suit-
able bases for dimension reduction. We use the PCA method
to find the principal components of the input motion. In
other words, we reduce the number of degrees of freedom
in the motion capture sequence while not losing much of
the ‘information’ content of the motion. There are various
methods to perform PCA, such as SVD (Singular Value
Decomposition) and covariance matrices [16]. In this work,
we use covariance matrices, because extracting eigenvalues
from the covariance matrix helps us to find the importance of
every component. We use these eigenvalues in the candidate
keyframe selection stage.

We build the PCA model so that each joint angle (repre-
sented as three Euler angles) is considered as a dimension
in the high dimensional space. We construct an n × m data
matrix:

M =




f1 = {p11 . . . p1m}
...

fn = {pn1 . . . pnm}


 = [J1 . . . Jm]

where m is the original number of degrees of freedom, and n
is the number of frames in the motion, which is standardized
in each column. We then construct an m × m covariance
matrix from this data, and find eigenvectors and eigenvalues
of this matrix. We choose the most significant k eigenvectors
as the new bases by selecting eigenvectors with the highest
k eigenvalues. As a result, we form a row feature vector R
by

R = (eig1 . . . eigk)

where eigi is the ith significant eigenvector. Thus, by choos-
ing k eigenvectors, we reduce the number of dimensions of
the human motion data from m to k. We then construct the
reduced motion matrix F, as

FT = R × DT = [D1 . . . Dk]T

where F is a n × k matrix, and k dimensions are represented
as separate k curves, Di. The percentage variance main-
tained during the dimension reduction can be found by the
ratio of the sum of the selected eigenvalues to the sum of
all eigenvalues.

We observe that there is no single number of dimensions
k suitable for every motion sequence. This greatly depends
on the nature of the motion. Naturally, a higher number of
dimensions have to be used for highly dynamic motions,
such as jumping, running, etc. in order to maintain visual
quality in the constructed motion. A detailed analysis of this
parameter is presented in the results section.

3.2. Step 2: Computing Motion Saliency

The second step selects the candidate keyframes in the
reduced dimensions. To identify the salient frames in the
motion curves, we apply multiscale Gaussian filters. Our
method of computing the saliency of each frame is based
on the centre--surround operator of Itti et al. [20], which

6 Comp. Anim. Virtual Worlds 2011; 22:3–14 © 2010 John Wiley & Sons, Ltd.
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measures the degree of difference between the ‘centre’ and
‘surround’ of an image element. Lee et al. [21] have used
this metric for 3D mesh geometry to calculate the regions of
the mesh that attract attention. Our method for computing
the significance of motion frames uses a similar curvature-
based centre--surround operator, adapted to motion curves.

The first step in our saliency computation is calculating
standard curvatures of the motion curves in the neighbour-
hood of each frame i [23]:

C(Dij) = |D′′
ij|(

1 + D2
ij

)3/2

where Dij is the value of principal curve j at frame i in the
lower dimension space, calculated by PCA.

The second step computes the Gaussian-weighted aver-
age of the curvature in the neighbourhood of a point for each
curve, assuming a Gaussian distribution with mean 0 and
standard deviation σ and centred at that point. We calculate
values for fine-to-coarse scales, with standard deviation (σ1,
σ2, σ3, σ4) [21]:

G(f, σ) =
∑

x∈N(f,2σ) C(f )e[−||x−f ||2/(2σ2)]∑
x∈N(f,2σ) e

[−||x−f ||2/(2σ2)]

where G(f, σ) is the Gaussian-weighted average of curva-
ture at frame f. To compute the motion saliency of a frame
f, we use the saliency definition of frame f at a scale level i
as Si(f) following the approach proposed by Lee et al. [21].
Extracting poses out of important features of animation is
better done in multiple scales, because the features of ani-
mation can be categorized on multiple scales, such as the
individual poses of a walking animation on a small scale
and the transition from a long walking motion to a jumping
motion on a bigger scale. To be able to capture all features
on different scales we apply our multiscale model:

Si(f ) = |G(f, σi) − G(f, 2σi)|
where σi is the standard deviation of the Gaussian filter at
scale i. Although any ratio can be choosen for σi, our moti-
vation in selecting small ratios between scales is to avoid

disregarding the highly temporal coherency in human ani-
mation and to eliminate problems arising when choosing a
large neighbourhood, such as foot skating. A detailed expla-
nation for σ parameter is presented in the results section.

(σ1 = σ, σ2 = 3

2
σ; σ3 = 2σ; σ4 = 5

2
σ)

The final motion saliency S(f) is computed by adding
the saliency maps at all scales after applying nonlinear
normalization operator [20]. Since we have a number of
saliency maps, each saliency map has to be normalized
within the same values to ensure equal contribution of each
saliency map. Therefore, we first normalize each saliency
map between [0, H], where H is the greatest saliency value
among all the saliency maps. Then we find the global max-
imum Mi of the saliency map and calculate mean mi of the
local maxima excluding Mi and then multiply the saliency
map by (Mi − mi)2. This multiplication gives the nonlinear
property to the normalization; and it eliminates excessive
number of salient points which would arise in a linear nor-
malization.

If a point is significant for the motion, it is due to its
location on the curve. That is, if its value shows a remarkable
change according to the values of neighbouring points, it is
a significant frame. If a remarkable change occurs in the
value of the point between the results of the two Gaussians,
then its motion saliency has a higher value. Figure 3 shows
the saliency values on a sample motion curve.

3.3. Step 3: Candidate Keyframes

After the calculation of the saliency value for each frame
on the motion curve, we define the frames having a saliency
value greater than average saliency for the motion as can-
didate keyframes. Figure 4 shows the result of this process
on the curve given in Figure 3.

The value σ is a significant parameter in keyframe selec-
tion process and it is not uniform for every motion sequence.
Our approach is to reduce σ as the motion becomes more

Figure 3. Saliency values of frames in a sample joint in walking action.
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Figure 4. Set of candidate keyframes are indicated on sample curve. Each of the points indicated in red are more salient than the
average saliency value.

dynamic, in order to maintain fast and frequent changes in
these types of motions. This parameter is examined in detail
in the results section.

3.4. Step 4: Clustering

In the third step, we form clusters for neighbouring can-
didate keyframes, and select the most significant keyframe
within each cluster. The selected keyframes from differ-
ent curves tend to form clusters, due to the redundancy of
human motion as discussed above. Extracting each frame in
every group as a keyframe results in an excessive number
of candidate keyframes. Since each group actually repre-
sents similar keyframes in the motion, it is only sufficient
to select the most significant frame among each group to
represent that group. For every cluster, i.e. for each of group
of sequential frames, the selection of the most significant

frame is done by calculating a weighted average among
each cluster. The weight of each frame is assigned as the
eigenvalue of the curve where this frame was found salient.

However, the human motion is continuous and there may
be times where clusters overlap each other while the actor
is finishing a pose and starting another. Therefore we limit
the maximum number of elements in a group to 2σ, because
every frame takes into account a neighbourhood of 2σ while
calculating the saliency of that frame.

4. COMPLEXITY

The computational complexity of the system can be
assessed by evaluating the complexity of each step in Fig-
ure 5. The combination of these complexities will yield the
overall complexity of the algorithm.

Figure 5. Algorithm.
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The first step of the algorithm places the values in matrix
M, which can be trivially done in linear time during pro-
cessing of the motion capture sequence. In the second step,
the PCA method is used to perform dimension reduction.
This part of the algorithm governs the complexity of the
algorithm, because of the matrix operations involved in the
algorithm. The calculation of the covariance matrix involves
the multiplication of one m × n and one n × m matrix which
can be done in O(m2n) time. The calculation of eigenvectors
and eigenvalues are performed in constant time, indepen-
dent of the number of frames, because inputs and outputs
of this function are always m × m matrices. Lastly, the
matrix multiplication between a n × m and m × k matrix
takes O(kmn) time. Since the system operates on motion
capture data, the number of sensors is fixed for every motion
and does not increase asymptotically. Therefore, the number
of captured degrees of freedom, value m, can be consid-
ered as constant. The system sets a bound on the number
of principal components, which also renders k as constant.
Therefore, the PCA operation effectively becomes an O(n)
process for this system.

The next step of the algorithm creates the saliency maps
by filtering the curvature values of the principal compo-
nents, all of which can be done in linear time by sequentially
computing these values. Lastly, clustering sequential can-
didate frames together is performed in linear time.

Therefore, on the overall, each step contributes to the
algorithm with O(n) complexity, therefore the entire system
runs in O(n).

5. RESULTS

We have tested our method using motions from the motion
capture database of Carnegie Mellon University [24]. From
this database, we have selected motions with different
dynamic properties to measure the performance of our algo-
rithm under different conditions. We have selected walking
and stretching as low-dynamic motions, and playing basket-
ball and boxing as high-dynamic motions. All the motion
capture sequences were recorded with 120 frames/sec. In
order to assess the quality of our work, we have evalu-
ated the reconstruction of the original motion back from
the frames selected as keyframes. We have used a metric,
mean squared error, to quantitatively describe the quality
of the reconstructed motion.

The first observation is that more keyframes must be
selected in a motion as it becomes more dynamic, other-
wise the visual quality of the reconstructed motion degrades
significantly. Another important observation is that there
is a direct relationship between the number of selected
keyframes and the error rate of the constructed motion. Dif-
ferent values of σ and k yield different sets of keyframes.
These parameters are studied in detail in the next section.

We use Euler joint angles as the main representation
method in the system. We have used quaternion spheri-
cal interpolation for reconstruction of the motions from the
keyframes We also provide results with motion curves in the

Euclidean body coordinate space that is local to the body,
with body root as the origin, for comparison.

5.1. Keyframe Extraction

We have compared our results with two state-of-the-art
keyframe extraction techniques: Frame Decimation [4] and
Curve Simplification [25], both for low- and high-dynamic
types of motions. We have slightly modified these two algo-
rithms to be able to compare them with our approach: all
methods are assumed to take the same desired number
of keyframes as input. In the case of frame decimation,
no changes had to be made because the initial algorithm
already depends on the required number of keyframes
as the stopping condition. Curve Simplification, however,
depends on another metric, called ‘tolerance’, which defines
the maximum distance between the original curve and
constructed curve. There is no direct conversion between
tolerance and the number of selected keyframes; therefore
we have modified this approach to continue until the desired
number of keyframes are acquired. The output of each algo-
rithm is an interpolated motion sequence, with a rate of
120 frames/second.

Naturally, due to interpolation for in-between frames, the
method might not be able to reconstruct a motion exactly as
its original on a per frame basis, even if optimum keyframes
were selected. Therefore, we compute the mean squared
error rate of the techniques using the formula:

E =
[∑

i
(
∑

k
|Fo

i (k) − Fr
i (k)|2)

n × j

]

where Fo
i (k) and Fr

i (k) are the (x, y, z) body coordinate values
of kth joint of the ith frame in the original and reconstructed
motions respectively, n is the number of frames, and j is the
number of dimensions in the skeleton (62 for our motions).
Table 1 shows the comparison of this error for Frame Dec-
imation, Curve Simplification, and our approach. The table
illustrates that our algorithm creates an error rate higher than
of Frame Decimation [4], as expected, as Frame Decima-
tion applies a brute-force approach that creates near-optimal
keyframes. However, our approach is asymptotically more
efficient than Frame Decimation with increasing number
of frames, since the complexity of our algorithm is lin-
ear compared to O(n2) complexity of Frame Decimation.
Our algorithm performs better in terms of error rate com-
pared to the Curve Simplification Algorithm [25], which has
�(nlogn) complexity. Table 1 also shows that body coor-
dinate representation yields better performance than Euler
angle representation because less keyframes are selected
with less error.

To be able to compare the error rates among different
motions, we have also calculated the PSNR (peak signal-
to-noise ratio) using the formula below for Euler angle
representation:

PSNR = 20 × log10(
MAX√

E
)
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Table 1. Comparison of keyframe extraction algorithms in the Euler angle space and body coordinate space.

Low dynamic motions High dynamic motions

Stretching Walking Basketball Boxing

No. of frames 4592 800 No. of frames 4905 3000
Euler representation

(� = 10, k = 7) No. of keyframes 131 38 (� = 3, k = 10) No. of keyframes 616 311
Saliency error 0.06 0.0005 Saliency error 0.024 0.0088
Curve simplification error 0.15 0.0069 Curve simplification error 0.045 0.0105
Frame decimation error 0.02 0.0001 Frame decimation error 0.020 0.0027

Body coordinate space
(� = 10, k = 7) No. of keyframes 117 23 (� = 3, k = 10) No. of keyframes 559 305
Saliency error 0.0527 0.0004 Saliency error 0.0033 0.0057
Curve simplification error 0.0847 0.0140 Curve simplification error 0.0067 0.0087
Frame decimation error 0.0269 0.00008 Frame decimation error 0.0017 0.0024

where MAX is the greatest value which a joint angle can take
(i.e. 360 degrees). In the body coordinate system, each joint
has different bounds for its allowed positions, thus a PSNR
value cannot be determined for the constructed motions with
body coordinate representation.Table 2 shows the PSNR
values of the three approaches. As illustrated in Table 2,
for low-dynamic motions, all the three keyframe extraction
methods provide higher signal-to-noise ratio---thus, a better
reconstruction of the motion---than high-dynamic motions.

5.2. Extraction Parameters

Unlike prior approaches for keyframe extraction, our
method has two parameters that can be used to control
the extraction process. As discussed, prior solutions assign
fixed weights to bones or joints of the skeleton, with limited
control of the extraction results. In our approach, we have
investigated the effect of the two parameters on the resulting
choice of keyframes.

The first parameter k, which is used in the Dimen-
sion Reduction step, describes the number of dimensions
desired to express the high-dimensional motion capture
data. Increasing k increases the number of clusters; as a
result, the number of total keyframes will increase in the cor-
responding motion. The value of k is important to capture
sufficient significant information from the original data---
high dynamic motions need a greater number of dimensions,
not to miss important changes in various joints of the skele-
ton. As shown in Figure 6(a) and (b), there is a significant

decline in error during the reconstruction of motions when
k > 7. Even for a low dynamic and slowly changing type of
motion as walking, there is a great quality loss when k is
low and σ is high. The result of our empirical tests shows
that k ∈ [7,10] ensures a satisfactory visual quality.

The second parameter σ is used to describe the number
of neighbouring frames to be taken into consideration dur-
ing filtering and clustering steps. Increasing σ smoothens
the Gaussian filter and thus creates larger clusters, result-
ing in a smaller number of keyframes for the motion. For
better accuracy in the constructed motion, a smaller σ

value must be used. We have tested a different σ range
for high- and low-dynamic motions. Low-dynamic motions
can have a greater value of σ, since there is no rapid change
in the motion. Our tests show that σ ∈ [7,10] give satis-
factory signal-to-noise ratios, between 35 and 55 dB, for
low-dynamic motions. As shown in Figure 6(c) and (d), for
values of σ greater than 3, the error in reconstructed motion
increases significantly, resulting in the loss of fast changes
in the motion. Thus, high-dynamic motions become very
unnatural and foot-skating problems start to appear. We rec-
ommend using σ ≤ 3 for high-dynamic motions to ensure
satisfactory visual quality.

5.3. Motion Curve Representation

We have also compared our algorithms with the two prior
approaches, when the body coordinate space is used, instead
of Euler angles. Table 1 shows the results when the three

Table 2. Peak signal-to-noise ratio values for reconstructed motions in Euler angle space.

Stretching Walking Basketball Boxing

No. of frames 4592 800 No. of frames 4905 3000
No. of keyframes (� = 10, k = 7) 131 38 No. of keyframes (� = 3, k = 10) 616 311
Saliency PSNR 42.90 64.27 Saliency PSNR 39.28 46.94
Curve simplification PSNR 40.20 49.42 Curve simplification PSNR 38.50 45.92
Frame decimation PSNR 46.42 68.26 Frame decimation PSNR 43.98 50.04
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Figure 6. (a and b) Effect of dimension reduction on the overall error, for high-dynamic and low-dynamic motions. (c and d) Effect of
parameter � on the overall error, for high-dynamic and low-dynamic motions.

approaches are used. In the body coordinate space, each
joint is represented by three DOFs, yielding a total of 90
DOFs. In the Euler angle space, a DOF is present only if the
human body is capable of rotating that joint in that dimen-
sion, with a total of 62 DOFs. Because of the greater DOFs
used in body coordinate space, better error rate is observed
with this representation.
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Figure 7. Keyframe extraction time of our method for different
size of motions.

5.4. Performance

Figure 7 includes the running times for different size of
motions. As shown in Figure 7, for a motion of 100 000
frame motions, with 120 captured frames/second, the pro-
cess takes close to 11 seconds. Figure 7 shows that the
running time of the method increases linearly with respect
to the number of frames, and the method can be used effec-
tively with a window of less than 20 000 frames. Thus, we
can conclude that the method can also be used effectively
in real-time solutions.

6. APPLICATIONS

Our proposed solution can be used in the scope of a vari-
ety of applications. One of the most suitable applications
is as a tool for motion editing: our solution will allow the
user to manually edit the motion by automatically selecting
relevant keyframes. Kwon and Lee [26] use keyframes of
motion capture data to incorporate rubber-like exaggeration
to motion capture sequences. Witkin and Popovic [27] use
keyframes of motion sequences data together with given
constraints, to warp the original animation. Boulic et al.
[28] use lowpass and bandpass pyramids to blend motion
capture sequences using their keyframes. Our solution can

Comp. Anim. Virtual Worlds 2011; 22:3–14 © 2010 John Wiley & Sons, Ltd. 11
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Figure 8. Keyframes of a flip motion and the thumbnail generated from the set of keyframes.

thus be used as a tool to improve these solutions by detecting
keyframes in a motion automatically. Although extraction
of important keyframes is important for motion editing,
issues regarding foot skating and collision detections should
be handled as a separate step while constructing the motion
from keyframes. This aspect of motion editing is not in the
scope of this article; Arikan’s work handles this problem
while compressing the motion capture databases. [29]

The second application of our approach is as a tool in
motion capture data compression. Motion capture compres-
sion methods require a means of detecting the importance
of frames in a motion capture sequence, to correctly capture
the significant parts of the motion and compress the rest of
the information with a lossy compression scheme [29,30].
Such a metric to capture the significance in motion can be
constructed using our method.

Another possible application of our method is a tool for
thumbnail generation of motion capture sequences. In a
motion capture database with a large number of motions, a
desired task would be to have previews of motions available
as thumbnails. These thumbnails can be used by database
queries, or for browsing with a quick preview of motion cap-
ture sequences. In Figure 8, we provide keyframes and the
generated thumbnail for a flip motion, based on extraction

of 12 keyframes from the original motion and concatenation
of these into a single thumbnail image.

7. CONCLUSION

In this paper, we have proposed a new approach for
keyframe extraction from motion capture sequences. Our
method finds the candidate keyframes of the input motion
via the new motion saliency metric. Motion saliency is
calculated by taking the absolute difference between the
Gaussian weighted averages of each point computed at
different scales. Obtaining the candidate keyframes with
this approach, we eliminate redundant keyframes in fur-
ther steps. Based on the experimental results, we conclude
that the method provides a fast solution to the keyframe
extraction problem.

Because of the slight differences in keyframes for each
joint, keyframe extraction using all joints in the body,
instead of a single reference joint, results in an excessive
number of keyframes. Instead of analysing every joint, we
apply dimension reduction by PCA. This gives us local max-
ima and minima of many of the joints, therefore eliminates a
lot of excess keyframes. The performance of our technique

12 Comp. Anim. Virtual Worlds 2011; 22:3–14 © 2010 John Wiley & Sons, Ltd.
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also depends on the choice of σ (number of neighbourhood
frames) and k (number of dimensions to analyse) value in
computing saliency, which is done manually based on the
input motion. There is no fixed formula for the selection
of these parameters, but recommendations in the results
section may be used as a reliable heuristic.
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