
Information Sciences 180 (2010) 2743–2762

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Bilkent University Institutional Repository
Contents lists available at ScienceDirect

Information Sciences

journal homepage: www.elsevier .com/locate / ins
Efficient successor retrieval operations for aggregate query processing
on clustered road networks

Engin Demir a, Cevdet Aykanat b,*

a Department of Computer Science and Engineering, Ohio State University, 43210 Columbus, OH, USA
b Department of Computer Engineering, Bilkent University, 06800 Bilkent, Ankara, Turkey

a r t i c l e i n f o a b s t r a c t
Article history:
Received 18 December 2008
Received in revised form 12 November 2009
Accepted 19 March 2010

Keywords:
Storage management
Data retrieval operation
Road networks
Clustering
Hypergraphs
0020-0255/$ - see front matter � 2010 Published b
doi:10.1016/j.ins.2010.03.015

* Corresponding author. Tel.: +90 312 2901625; f
E-mail addresses: demir@cse.ohio-state.edu (E. D
Get-Successors (GS) which retrieves all successors of a junction is a kernel operation used to
facilitate aggregate computations in road network queries. Efficient implementation of the
GS operation is crucial since the disk access cost of this operation constitutes a considerable
portion of the total query processing cost. Firstly, we propose a new successor retrieval
operation Get-Unevaluated-Successors (GUS), which retrieves only the unevaluated succes-
sors of a given junction. The GUS operation is an efficient implementation of the GS oper-
ation, where the candidate successors to be retrieved are pruned according to the
properties and state of the algorithm. Secondly, we propose a hypergraph-based model
for clustering successively retrieved junctions by the GUS operations to the same pages.
The proposed model utilizes query logs to correctly capture the disk access cost of GUS
operations. The proposed GUS operation and associated clustering model are evaluated
for two different instances of GUS operations which typically arise in Dijkstra’s single
source shortest path algorithm and incremental network expansion framework. Our simu-
lation results show that the proposed successor retrieval operation together with the pro-
posed clustering hypergraph model is quite effective in reducing the number of disk
accesses in query processing.

� 2010 Published by Elsevier Inc.
1. Introduction

1.1. Motivation

In geographic information systems (GIS), with the advance of global positioning systems, the importance of applications
that manage spatial data is increasing. GIS software systems store the geographic data either in disk-based files or in large
scale database management systems according to the volume of data. Software systems modeling the spatial networks (e.g.,
ArcGIS, gvSIG, PostLBS) store network data in two different layers, namely the geometric network and logical network. In the
geometric network, junctions and links are stored with their class features to visualize the data. On the other hand, in the
logical network, a special data structure is stored to represent the topology of the network. In this topology, commodities
flow through links, and links connect together at junctions, where flow from one link is transferred to another. In a logical
network, geometry is not important but the connectivity of links and junctions is. That is why systems modeling the spatial
networks deal with almost exclusively with the logical network.
y Elsevier Inc.

ax: +90 312 2664047.
emir), aykanat@cs.bilkent.edu.tr (C. Aykanat).

https://core.ac.uk/display/52922854?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1016/j.ins.2010.03.015
mailto:demir@cse.ohio-state.edu
mailto:aykanat@cs.bilkent.edu.tr
http://www.sciencedirect.com/science/journal/00200255
http://www.elsevier.com/locate/ins

2744 E. Demir, C. Aykanat / Information Sciences 180 (2010) 2743–2762
A well-known example of spatial networks is road networks, which form an integral part of many GIS applications such as
intelligent traveling systems, vehicle telematics, location-aware advertising, and guided-tours to tourists. A road network is
represented as a two-tuple ðT ;LÞ, where T and L, respectively, denote the junctions and the road segments (links) between
pairs of junctions. In this representation, ‘ij 2 L denotes a link from a junction ti 2 T to a successor junction ti 2 T . Several
attributes are associated with junctions (e.g., locations, turn restrictions) and links (e.g., length, average speed limit, capacity,
type, location related information). Additionally, point-of-interest data is also associated with junctions and links. Due to the
large volume of road network data, it is primarily stored in the secondary storage. When the read/write time of network data
in the secondary storage is compared with the computation cost of the network queries, disk access cost could be very high
during query processing.

In location-based services, the position and accessibility of spatial objects are constrained to underlying networks
such as roads, highways, and railways. Route planning applications such as MapQuest, MapPoint, map services of major
search engines and mobile cell-phone operators have become essential tools for obtaining driving directions. In such
applications, the distance between two objects is determined by the length of the shortest path connecting these
two objects in the network. In the network-based query processing, network distances can be either computed on-
the-fly [17,29,41] using the state-of-the-art shortest path algorithms [14,19] or pre-computed and stored on disk to
support efficient distance computations [12,21,22,24]. On the other hand, the underlying network can be transformed
into another representation in which a network distance between two objects can be found in constant time [30,31].
There is no best strategy for network distance computation as the performance of these strategies depend on the net-
work properties such as network size, object density, and frequency of network updates. In general, the performance
optimization in network query processing has a focus on minimizing the cost of network data accesses and network
distance computations.

In query processing, shortest path computation algorithms traverse the network using the connectivity information
rather than geometric proximity information. Hence, network queries use topological operations such as Get-Successors
(GS) and aggregate sequence operations such as Find and Get-A-Successor (GaS). The GaS and GS operations are unique to
aggregate network queries including route evaluation and path computations, and they, respectively, retrieve one and all
successors of a junction to facilitate aggregate computations on networks. Efficient implementations of the GaS and GS oper-
ations are crucial since the disk access cost of these successor retrieval operations constitute a considerable portion of the
total query processing cost.

The expected disk access cost of successor retrieval operations can be reduced by clustering successively accessed
data into the same disk pages [18]. This way, a junction with its successors that are most likely to be accessed together
via the GaS and GS operations are allocated in the same disk page. Furthermore, query logs can be used to predict the
future access patterns. Recent query logs can be used to discover the access frequencies of the data so that both the
connectivity information and the access frequencies of junctions can be utilized to achieve efficiency gains in query pro-
cessing [26].
1.2. Related work

In this section, related work on disk-based data allocation schemes for road networks is presented. Huang et al. [20] de-
scribe a general scheme, where links of the network are stored in a separate link table. In their approach, the link table is
clustered into disk pages such that each page stores the information of links whose source coordinates are closely located.
This approach is based on spatial locality, and hence the clustering of links does not utilize the connectivity information.

In the following studies, the importance of connectivity information in networks is realized, and graph models [32,39] are
proposed to cluster the data into disk pages. Shekhar and Liu [32] propose the junction-based storage scheme, where each
junction together with its connectivity information is stored in a data record. They evaluated their graph clustering model for
the junction-based storage scheme by both uniform access frequencies and frequencies extracted from query logs. The usage
of query logs is reported to yield better performance results. The clustering model proposed by Woo and Yang [39] achieves
the minimum number of disk pages based on the assumption that records have fixed size. These graph clustering models are
used in the recent spatial query processing and clustering works [1,22,40,41].

Papadias et al. [29] propose a data structure that integrates connectivity information with the spatial properties. The suc-
cessor lists of junctions that are close in space according to their Hilbert ordering are placed in the same disk page. This ap-
proach uses the connectivity information in order to cluster data into disk pages but does not utilize the access frequencies of
junctions in queries.

In a recent work [15], we show that although the clustering graph models accurately capture the disk access cost of GaS
operations, it cannot correctly capture the disk access cost of GS operations. In the same work, we propose a clustering
hypergraph model that correctly captures the cost of GS operations for the junction-based storage scheme. The record access
patterns of previous queries are extracted from the query logs and used to correctly capture the disk access cost of operations
in the upcoming queries. In this model, records are clustered into disk pages by hypergraph partitioning, where the parti-
tioning objective corresponds to minimizing the disk access cost of GS operations in network queries. In [16], we introduce
the link-based storage scheme, where each link together with its connectivity information is stored in a data record. We also
propose a clustering hypergraph model for this new storage scheme.

E. Demir, C. Aykanat / Information Sciences 180 (2010) 2743–2762 2745
1.3. Contributions

Our contributions are twofold. First, Get-Unevaluated-Successors (GUS) is introduced as a new successor retrieval opera-
tion for spatial network queries, which is overlooked in the literature. In network traversal algorithms, all successors of a
junction need not be retrieved in each invocation of the GS operations since some of them may already be accessed and eval-
uated during processing a query. If the network is highly connected, than it is more probable that evaluation of some of the
junctions are already performed and they do not need to be retrieved and evaluated again during query processing. Thus,
GUS is an efficient implementation of the GS operation, where the candidate successors to be retrieved are pruned during
query processing.

Second, a clustering hypergraph model that captures the disk access cost of GUS operations correctly for the junction-
based storage scheme is proposed. The proposed model utilizes query logs to minimize the number of disk page accesses
to be incurred by the network queries using GUS operation as the underlying successor retrieval operation. Furthermore,
the proposed model tries to guarantee full space utilization and hence keeps the number of allocated disk pages at a reason-
able amount.

The proposed GUS operation and associated hypergraph-based clustering model are evaluated for two different instances
of GUS operations: Get-Unprocessed-Successors and Get-Unvisited-Successors. The former operation typically arises in Dijk-
stra’s single source shortest path algorithms, and the latter operation typically arises in incremental network expansion
framework.

The rest of the paper is organized as follows. Some background material is discussed in Section 2. The proposed GUS oper-
ation is introduced and discussed in Section 3. The clustering hypergraph model proposed for the GUS operations is discussed
in Section 4. Experimental results are presented and discussed in Section 5. Finally, the paper is concluded in Section 6.
2. Preliminaries

2.1. Junction-based storage scheme

The adjacency list data structure is frequently used for storing the connectivity information of a road network in the sec-
ondary storage. In the junction-based storage scheme, each junction of the network is stored in a data record. Each record ri

stores the data associated with junction ti and its connectivity information including the predecessor and successor lists. The
data associated with junction ti contains the coordinate of junction ti and its attributes. The predecessor list PreðtiÞ denotes
the list of incoming links of ti, whereas the successor list SucðtiÞ denotes the list of outgoing links of ti. Each element in PreðtiÞ
stores the disk address of the source junction th of an incoming link ‘hi. The predecessor lists are used in maintenance oper-
ations to update the successor lists. In the successor list, each element in SucðtiÞ stores the disk address of the destination
junction tj of an outgoing link ‘ij as well as the attributes of ‘ij. The record sizes are not fixed because of the variation in
the predecessor and successor list sizes. If all links of a junction ti are bidirectional, a storage saving can be achieved since
the predecessor and successor lists of ti contain exactly the same set of junctions. Hence, it suffices to store only the succes-
sor list of ti.
2.2. Data allocation problem in road networks

The record-to-page allocation problem that we focus on can be defined as follows: Given a road network and data access
frequencies extracted from the query logs, allocate a set of data records R ¼ fr1; r2; . . .g to a set of disk pages P ¼ fP1;P2; . . .g
such that the expected disk access cost is minimized as much as possible while the number of allocated disk pages is kept
reasonable. Typically, allocation of data to disk pages can be modeled as a clustering problem, where the clustering objective
is to try to store the records that are likely to be successively accessed in the same pages. This way, efficiency in query pro-
cessing can be achieved since the records relevant to the query can be fetched with fewer disk accesses.
2.3. Graph and hypergraph partitioning

An undirected graph G ¼ ðV; EÞ is defined as a set of vertices V and a set of edges E. Every edge eij 2 E connects a pair of
distinct vertices v i and v j. Each vertex v i has a weight wðv iÞ, and each edge eij has a cost cðeijÞ. P ¼ fV1;V2; . . . ;VKg is a K-way
vertex partition of G if each part Vk is non-empty, parts are pairwise disjoint, and the union of parts gives V.

In a given K-way vertex partition P of G, an edge is said to be cut if its pair of vertices fall into two different parts and
uncut otherwise. The partitioning objective is to minimize the cutsize defined over the cut edges Ecut, that is,
CutsizeðPÞ ¼
X

eij2Ecut

cðeijÞ: ð1Þ
The partitioning constraint is to maintain an upper bound on the part weights, i.e., Wk 6Wmax, for each k ¼ 1; . . . ;K , where
Wk ¼

P
v i2Vk

wðv iÞ denotes the weight of part Vk and Wmax denotes the maximum allowed part weight.

2746 E. Demir, C. Aykanat / Information Sciences 180 (2010) 2743–2762
A hypergraph H ¼ ðV;N Þ consists of a set of vertices V and a set of nets N [5]. Each net nj 2 N connects a subset of ver-
tices in V, which are referred to as the pins of nj and denoted as PinsðnjÞ. The size of a net nj is the number of vertices con-
nected by nj, i.e., jnjj ¼ jPinsðnjÞj. The size of a hypergraph H is defined as the total number of its pins, i.e., jHj ¼

P
nj2N jnjj.

Each vertex v i has a weight wðv iÞ, and each net nj has a cost cðnjÞ.
P ¼ fV1;V2; . . . ;VKg is a K-way vertex partition if each part Vk is non-empty, parts are pairwise disjoint, and the union of

parts gives V. In a given K-way vertex partition P, a net is said to connect a part if it has at least one pin in that part. The
connectivity set KðnjÞ of a net nj is the set of parts connected by nj. The connectivity kðnjÞ ¼ jKðnjÞj of a net nj is equal to
the number of parts connected by nj. If kðnjÞ ¼ 1, then nj is an internal net. If kðnjÞ > 1, then nj is said to be cut.

In K-way hypergraph partitioning, the partitioning objective is to minimize a cutsize metric defined over the cut nets. In
the literature, a number of cutsize metrics are employed. In the connectivity-1 metric, which is widely used in VLSI layout
design [2,13] and in scientific computing [4,9,10,25,28,34–37], each net nj incurs the cost cðnjÞðkðnjÞ � 1Þ to the cutsize of a
partition P. That is,
CutsizeðPÞ ¼
X

nj2N
cðnjÞðkðnjÞ � 1Þ: ð2Þ
The partitioning constraint is to maintain an upper bound on the part weights, i.e., Wk 6Wmax, for each k ¼ 1; . . . ;K , where
Wk ¼

P
v i2Vk

wðv iÞ denotes the weight of part Vk and Wmax denotes the maximum allowed part weight.
The hypergraph partitioning problem is known to be NP-hard [27]. However, successful hypergraph partitioning

tools such as hMeTiS [23] and PaToH [11] exist in the literature. These tools utilize the multi-level framework [8]
to provide high quality partitions at reasonable execution time. Although direct K-way hypergraph partitioning [3]
is feasible, the recursive bipartitioning (RB) paradigm is widely used in K-way hypergraph partitioning and known
to be amenable to produce high quality solutions. This paradigm is especially suitable for partitioning hypergraphs
when K is not known in advance. In the RB paradigm, first, a two-way partition of the hypergraph is obtained. Then,
each part of the bipartition is further bipartitioned in a recursive manner until the desired number K of parts is ob-
tained or part weights drop below a given maximum allowed part weight, Wmax. In the RB-based hypergraph partition-
ing, the cut net splitting scheme in [10] is adopted after each bipartitioning step to capture the connectivity-1 cutsize
metric given in (2).
2.4. Clustering graph and hypergraph models

The clustering graph model is proposed by Shekhar and Liu [32], whereas the clustering hypergraph model is proposed in
our earlier work [15]. Given a road network ðT ;LÞ and the frequencies of successor retrieval operations extracted from the
query logs, the clustering graph and hypergraph models are constructed as follows. Let f ðtiÞ denote the frequency of GSðtiÞ
operations invoked on junction ti and f ðti; tjÞ denote the frequency of GaSðti; tjÞ operations invoked on the link from junction
ti to junction tj. ðT ;LÞ is represented as a clustering graph G ¼ ðV; EÞ and a clustering hypergraph H ¼ ðV;N Þ on the same
vertex set. That is, there exist a vertex v i 2 V for each record ri 2 R storing the data associated with junction ti 2 T . The size
of a record ri is assigned as the weight wðv iÞ of vertex v i.

In the clustering graph model, edges represent the disk accesses of both GaS and GS operations. There exists an edge eij

between vertices v i and v j due to GSðtiÞ; GSðtjÞ, GaSðti; tjÞ, and GaSðtj; tiÞ operations if junctions ti and tj are connected by at
least one link. The cost associated with eij is cðeijÞ ¼ f ðtiÞ þ f ðtjÞ þ f ðti; tjÞ þ f ðtj; tiÞ.

In the clustering hypergraph model, nets represent the disk accesses of both GaS and GS operations. There exists a two-pin
net nij with PinsðnijÞ ¼ fv i;v jg due to GaSðti; tjÞ and GaSðtj; tiÞ operations. The cost associated with nij is
cðnijÞ ¼ f ðti; tjÞ þ f ðtj; tiÞ. Furthermore, there exists a multi-pin net ni with PinsðniÞ ¼ fv ig [fv j : tj 2 SucðtiÞg due to GSðtiÞ
operations. The cost associated with ni is cðniÞ ¼ f ðtiÞ.

After modeling the network ðT ;LÞ as a clustering graph/hypergraph, the graph/hypergraph is partitioned into a number
of parts with the disk page size P being the upper bound on part weights. The resulting K-way partition is decoded as assign-
ing the set of records corresponding to the vertices in each vertex part to a distinct page of the K pages to be allocated for the
road network. Since K is not known in advance, recursive bipartitioning framework is used in partitioning both clustering
graph and hypergraph. The partitioning objective in the clustering graph model is to maximize the Weighted Connectivity
Residue Ratio (WCRR) metric, which corresponds to maximizing the sum of the costs of internal edges in a partition. It can be
shown that maximizing WCRR is equivalent to minimizing the cutsize given in (1). In the clustering hypergraph model, the
partitioning objective is to minimize the cutsize according to (2). As shown in [15], the WCRR metric is exactly decodes the
disk access cost of GaS operations under the single-page buffer assumption. However, the WCRR metric has deficiencies in
capturing the disk access cost of GS operations. In the clustering hypergraph model, the cutsize exactly decodes the disk ac-
cess costs of both GaS and GS operations under the single-page buffer assumption. That is, minimizing the cutsize according
to (2) corresponds to minimizing the total number of disk accesses due to GaS and GS operations. Note that the two-pin nets
due to GaS operations in the clustering hypergraph are equivalent to the edges in the clustering graph. Thus, the clustering
graph and hypergraph models are effectively equivalent and display the same the performance in terms of encapsulating the
disk access cost of GaS operations.

Fig. 1. (a) A sample road network, (b) the clustering graph and its 3-way optimum partition, and (c) the clustering hypergraph and its 3-way optimum
partition.

E. Demir, C. Aykanat / Information Sciences 180 (2010) 2743–2762 2747
Fig. 1 shows a sample network with 6 junctions and 9 links to compare the clustering graphs and hypergraphs. This figure
also illustrates the deficiency of the clustering graph model in capturing the disk access cost of GS operations. Assuming only
one GS operation is invoked on each junction, unit cost is assigned to all edges and nets as seen in Fig. 1b and c. The clustering
graph and hypergraph models, respectively, achieve their optimum partitions in Fig. 1b and c under the partitioning con-
straint of two records per page. As shown in Fig. 1b, the cutsize is equal to 6 due to 6 cut edges, whereas the actual cost
is 4. This difference is due to the overestimation of the costs of the GSðt1Þ and GSðt3Þ operations by the clustering graph mod-
el. For example, the disk access cost of GSðt1Þ operation, where the set of successors of t1 is Sucðt1Þ ¼ fv5;v6g, is estimated as
2 � 1 = 2 due to cut edges e15; e16, each with a cost of 1. However, the actual cost is f ðt1Þ ¼ 1 since page P3, which contains
records r5 and r6, is accessed and placed into the page buffer only once to retrieve both r5 and r6 at each GSðt1Þ operation. As
shown in Fig. 1c, the clustering hypergraph model correctly captures the cost of GS operations, since the cutsize is equal to 4
due to 4 cut nets, each with a connectivity of 2.

As reported in [15], the clustering hypergraph model achieves significantly better than the clustering graph model in re-
cord-to-page allocations for a wide range of road networks with query sets involving both GaS and GS operations. The reader
is referred to [15] for a detailed theoretical and experimental comparison of the clustering graph and hypergraph models.
Based on these findings, the focus in this paper is to develop clustering hypergraph models for encapsulating the disk access
cost of GUS operations. The basic ideas proposed here for clustering hypergraph models can be easily extended to develop
clustering graph models for GUS operations.
3. Get-Unevaluated-Successors (GUS) operation

For a given query, during the execution of the underlying search algorithm, those junctions, whose records are retrieved
and the computation related with these records are completed, are said to be ‘‘evaluated”. The remaining junctions are said
to be ‘‘unevaluated”. That is, a GUS operation is defined as retrieving the unevaluated successors of a given junction. The se-
quence of GUS operations to be performed for a given query can be efficiently implemented by maintaining a set of either
evaluated or unevaluated junctions in-memory. That is, checking whether a given junction is evaluated or unevaluated can
be simply achieved without retrieving the record of the junction. This way, only the records of the unevaluated successors of
t are retrieved for a GUSðt; Sucðt;UÞÞ operation, where U denotes the set of unevaluated junctions just before the invocation of
the GUS operation for the current query. The set
Sucðti;UÞ ¼ ftj : tj 2 SucðtiÞ ^ tj 2 Ug ð3Þ
denotes the set of unevaluated successors of ti. Note that in this notation SucðtiÞ corresponds to Sucðti; T Þ. Two examples of
GUS operations: Get-unProcessed-Successors (GuPS) and Get-unVisited-Successors (GuVS) are introduced.

The GuPS operation typically arises in Dijkstra’s single source shortest path algorithm [19]. Dijkstra’s algorithm repeat-
edly extracts an unprocessed junction from a priority queue and processes it, where processing a junction means scanning
its successor list to compute an aggregate property. Thus, in the GuPS operation, evaluated junctions correspond to the
processed junctions whose records will not be reevaluated during the execution of the search algorithm for a given query.
Hence there is no need to retrieve the records of such junctions more than once. In order to clarify the usage of this
operation, the pseudocode of the Dijkstra’s single source shortest path algorithm [19] is shown in two parts: Algorithm
1 shows the main body of the algorithm, whereas Algorithm 2 shows an I/O efficient implementation of the GuPS

2748 E. Demir, C. Aykanat / Information Sciences 180 (2010) 2743–2762
operation. In Algorithms 1 and 2, Q represents an in-memory priority queue, which contains unprocessed junctions keyed
with respect to their distance values from the source junction. So, Q effectively corresponds to the set U of unevaluated
junctions as in the definition of GUS.

Recall that, in the algorithms using the same strategy presented in Dijkstra’s algorithm [19], the GuPS operation is
invoked while processing the elements extracted from the priority queue as in line 8 of Algorithm 1. As seen in
Algorithm 2, the for-loop in lines 1–4 computes the set PageSet of pages that contain only unprocessed successor
junctions and finally retrieves the pages in PageSet. In Algorithm 1, the doubly-nested for-loop in lines 9–14 shows
the processing of junction ti. In this for loop, the retrieved pages in PageSet are processed one by one to relax the
distance values of unprocessed successors of junction ti. Note that the pages that already reside in the page buffer
are handled before the other pages in PageSet, and while handling a page, all unprocessed junctions in that page are
processed before retrieving a new page.
Algorithm 1. Dijsktra’s Single Source Shortest Path Algorithm
Require: ðT ;LÞ, source junction s

1: for each junction ti in T do

2: dist½ti� 1

3: previous½ti� null

4: dist½s� 0

5: Q T
6: while Q is not empty

7: ti EXTRACT MINðQÞ1

8: GuPSðti; Sucðti;QÞÞ

9: for each retrieved page Pi 2 PageSet do

10: for each successor tj 2 Pi of ti do

11: if dist½ti� þ lengthðti; tjÞ < dist½tj� then

12: dist½tj� dist½ti� þ lengthðti; tjÞ

13: DECREASE KEYðQ ; tj; dist½tj�Þ2
14: previous½tj� ti
15: return previous½ �

1 EXTRACT_MIN removes and returns the element of the priority queue with the minimum key value.
2 DECREASE_KEY decreases the key value of an element of the priority queue.
Algorithm 2. Get-unProcessed-Successors GuPSðti; Sucðti;QÞÞ

1: for each successor tj of ti do
2: if tj 2 Q
3: PageSet PageSet [page½tj�
4: retrieve PageSet

The GuVS operation typically arises in algorithms using the network expansion framework. Algorithms using
network expansion framework repeatedly extract an unvisited junction from a priority queue and scan its successor list.
Thus, in the GuVS operation, evaluated junctions correspond to the already visited junctions whose records will not be
re-visited during the execution of the search algorithm for a given query. Similar to the GuPS operation, there is no need
to retrieve the records of these junctions more than once. In order to clarify the usage of the GuVS operation, the
pseudocode of the k-nearest neighbor search using the incremental network expansion framework [29] is shown in
two parts: Algorithm 3 shows the main body of the algorithm, whereas Algorithm 4 shows an I/O efficient implemen-
tation of the GuVS operation. Point-of-interests are discovered in such a way that the junctions are explored in the order
of their network distance from the query point. In order to satisfy this property, a priority queue Q, which contains
candidate unprocessed junctions keyed with respect to their network distance values from the query point, is stored
in-memory. The set V contains unvisited junctions and effectively corresponds to the set U of unevaluated junctions
as in the definition of GUS.

Recall that, in the algorithms using the network expansion framework, GuVS operation is invoked while processing
the elements extracted from the priority queue in the expansion of the network (line 10, Algorithm 3). As seen in Algo-
rithm 4, the for-loop in lines 1–4 computes the set PageSet of pages that contain only unvisited junctions and finally
retrieves the pages in PageSet. In the doubly-nested for-loop in lines 11–18 of Algorithm 3, the retrieved pages in PageSet
are processed one by one to update the nearest neighbor list by expanding the network search through the unvisited
successors of junction ti. Page handling strategy mentioned for the GuPS operation is also valid in this case. That is,

E. Demir, C. Aykanat / Information Sciences 180 (2010) 2743–2762 2749
the pages that already reside in the page buffer are handled before the other pages in PageSet, and while handling a
page, all unvisited junctions in that page are visited before retrieving a new page.

Algorithm 3. k-Nearest Neighbor Search Using Incremental Network Expansion Framework

Require ðT ;LÞ, query point q, Q is a min-heap keyed on dNðq; tÞ
1: V T

2: titj find segmentðqÞ
3: Scover find entitiesðtitjÞ
4: fp1; . . . ; pkg ¼ k nearest entities in Scover sorted in ascending order of their network distance
5: dNmax dNðq; pkÞ // if pk ¼ ;; dNmax ¼ 1
6: INSERTðQ ; hðti; dNðq; tiÞÞ; ðtj; dNðq; tjÞÞiÞ1

7: ti EXTRACT MINðQÞ
8: V V � ftig
9: while ðdNðq; tiÞ < dNmaxÞ
10: GuVSðti; Sucðti;VÞÞ
11: for each retrieved page Pi 2 PageSet
12: for each successor tj 2 Pi of ti do
13: V V � ftjg
14: Scover find entitiesðtitjÞ
15: update fp1; . . . ; pkg from fp1; . . . ; pkg [Scover

16: dNmax dNðq; pkÞ
17: INSERTðQ ; ðtj; dNðq; tjÞÞÞ
18: ti EXTRACT MINðQÞ
19: return fp1; . . . ; pkg

1 INSERT inserts a new element to the priority queue.
Algorithm 4. Get-unVisited-Successors GuVSðti; Sucðti;VÞÞ

1: for each successor tj of ti do
2: if tj 2 V then
3: PageSet PageSet [page½tj�
4: retrieve PageSet
4. Clustering hypergraph model for GUS operations

In this section, our clustering hypergraph model, which correctly captures the cost of GUS operations for the junction-
based storage scheme, is presented.

4.1. Clustering hypergraph representation

A clustering hypergraph HGUS ¼ ðV;N GUSÞ is created to model the network ðT ;LÞ. The vertices of HGUS represent the re-
cords storing the data associated with the junctions as in HGS. That is, there exists a vertex v i 2 V for each junction ti 2 T . The
size of a record ri is assigned as the weight wðv iÞ of vertex v i. The set N GUS is composed of nets that represent the record
access patterns of GUS operations. That is, each distinct GUS operation incurs a net in N GUS. The set GUSðti; Sucðti;UÞÞ of
GUS operations invoked on junction ti with the same set Sucðti;UÞ of unevaluated successors incur a net nSucðti ;UÞ with a
cost
cðnSucðti ;UÞÞ ¼ f ðti; Sucðti;UÞÞ: ð4Þ
Here, f ðti; Sucðti;UÞÞ denotes the frequency of the GUSðti; Sucðti;UÞÞ operations obtained from the query log. The net nSucðti ;UÞ
captures the record access pattern of such GUS operations by connecting vertex v i and the vertices corresponding to
Sucðti;UÞ. That is,
PinsðnSucðti ;UÞÞ ¼ fv ig [fv j : tj 2 Sucðti;UÞg: ð5Þ

Fig. 2. The clustering hypergraph construction: GUSðt1; ft3; t5gÞ incurs a net with pins fv1;v3; v5g.

2750 E. Demir, C. Aykanat / Information Sciences 180 (2010) 2743–2762
Note that the size of net nSucðti ;UÞ can be between 2 and doutðtiÞ þ 1 since jSucðti;UÞj 6 doutðtiÞ. Single pin nets are discarded
since GUSðti; Sucðti;UÞÞ operations with Sucðti;UÞ ¼ ; do not incur any record access. Fig. 2 displays the net construction
for a GUSðt1; Sucðt1;UÞÞ operation invoked on junction t1 with Sucðt1Þ ¼ ft2; t3; t4; t5g but Sucðt1;UÞ ¼ ft3; t5g.

The size of hypergraph HGUS depends on both the topological properties of the network and the record access patterns in
the query log. Each junction ti with doutðtiÞ > 1 may incur as many as 2doutðtiÞ � 1 nets in HGUS. Recall that GSðtiÞ operations
invoked on junction ti incur a single net of size doutðtiÞ þ 1 in HGS for representing the record access pattern of GS operations.
However, our experiments on realistic road networks with synthetic query sets show that the average number of nets gen-
erated per junction in HGUS remains below 3.6. Furthermore, the possibility of identical nets (those which have the same pin
set) incurred by neighbor junctions can be exploited to decrease the number of nets by using the identical net detection and
elimination algorithms in [3]. In identical net elimination process, a set of identical nets is collapsed into a single net whose
cost is set to be equal to the sum of the costs of its constituent identical nets.

Although generation of HGS using the query log is a rather trivial task, generation of HGUS may need special attention. As in
the GS case, it is assumed that a query log contains a sequence of junctions processed for each query, where the order of the
sequence is determined by the order of retrieval of junction records. Let qi ¼ hti1 ; ti2 ; . . . ; tik ; � � �i denote the sequence of junc-
tions accessed during processing a query qi of the log. Then, kth junction tik in qi corresponds to the GUSðtik ; Sucðtik ;UikÞÞ oper-
ation, where Uik represents the set of unevaluated junctions just before the invocation of GUSðtik ; Sucðtik ;UikÞÞ in query qi.

For the GuPSðtik ; Sucðtik ;UikÞÞ operations performed on junction tik ,

Uik ¼ T � qik; ð6Þ
whereas for the GuVSðtik ; Sucðtik ;UikÞÞ operations
Uik ¼ T � qik �
[

tj2qik

SucðtjÞ: ð7Þ
Here, qik ¼ hti1 ; ti2 ; . . . ; tik i denotes the kth prefix subsequence of qi. Note that the junction subsequence qik is also used as a
junction subset in (6) and (7). Algorithms 5 and 6 show the pseudocodes for computing the frequencies of the GuPS and GuVS
operations, respectively, from a given query log.

Efficient implementation of Algorithms 5 and 6 require efficient maintenance of the hoperation, frequencyi pairs. For this
purpose, a list of GUS operations together with their frequencies for each junction is maintained. Each operation
GUSðti; Sucðti;UÞÞ in the list of a junction ti is encoded as a bit sequence stored in a byte assuming a junction has at most
8 successors. In this encoding, the positions of 1 bits in a byte determine the junctions in Sucðti;UÞ. In this way, locating
a GUSðti; �Þ operation for incrementing its frequency count requires mi byte comparisons in the list for ti, where mi denotes
the number of GUSðti; �Þ operations encountered so far in the query log.

Algorithm 5. Frequency computation for net cost determination in HGuPS

Require Query log Q log ¼ hq1; q2; . . . ; qni, where qi ¼ hti1 ; ti2
; . . . ; tim i

1: for each query qi in Q log do
2: U T . U denotes the set of unprocessed junctions
3: for k ¼ 1 to jqij do
4: U U � ftikg
5: for each successor tj 2 Sucðtik Þ
6: if tj 2 U then
7: f ðtj; Sucðtik ;UÞÞ f ðtj; Sucðtik ;UÞÞ þ 1

E. Demir, C. Aykanat / Information Sciences 180 (2010) 2743–2762 2751
Algorithm 6. Frequency computation for net cost determination in HGuVS

Require Query log Q log ¼ hq1; q2; . . . ; qni, where qi ¼ hti1 ; ti2 ; . . . ; tim i
1: for each query qi in Q log do
2: U T . U denotes the set of unvisited junctions
3: for k ¼ 1 to jqij do
4: U U � ftikg
5: for each successor tj 2 Sucðtik Þ do
6: if tj 2 U then
7: f ðtj;UÞ f ðtj;UÞ þ 1
8: U U � ftjg
4.2. Clustering hypergraph model

In the proposed clustering hypergraph model, the constructed hypergraph HGUS ¼ ðV;N GUSÞ is partitioned into parts
P ¼ fV1; . . . ;Vk; . . .g to obtain a record-to-page allocation, where each vertex part Vk 2 P corresponds to the subset of re-
cords to be allocated to disk page Pk 2 P. That is, if v i 2 Vk then record ri is allocated to page Pk. Hence, the vertex parts
of P correspond to the disk pages of the resulting allocation. The recursive bipartitioning (RB) paradigm is used to obtain
P, where the maximum allowed part weight is set to the disk page size (i.e., Wmax ¼ P). That is, the partitioning constraint
enforces that the disk page size is not exceeded in record-to-page allocation. In each bipartitioning step of the RB scheme,
one of the parts is enforced to be nearly a multiple of page size with the intention of generating fully loaded parts (pages) at
the end of the partitioning. After obtaining P, there may be lightly loaded pages (i.e., pages less than half full) in the resulting
allocation. These lightly loaded pages can be further packed by formulating the packing problem as an instance of the bin-
packing problem, where the parts corresponds to items, pages corresponds to bins, and the disk page size corresponds to bin
capacity [15]. In the packing algorithm, parts are assigned to pages in decreasing size order using the best-fit criterion, which
corresponds to assigning a part to a page with the minimum space utilization. Alternatives such as adapting the best-fit heu-
ristic to minimize the number of disk accesses due to Find and successor retrieval operations are also experimented but the
percentage gain in the disk access cost is found to be very small. Thus, the best-fit packing heuristic, which is a fast approx-
imation of the optimal packing algorithm, is used to decrease the total number of pages. The computational cost of packing
lightly loaded parts is negligible but the decrease in the total number of parts is 24.8%, on the overall average.

Theorem 4.1. Let HGUS ¼ ðV;N GUSÞ denote the clustering hypergraph of a given network ðT ;LÞ for a given query log Q log. In
partitioning of HGUS, the partitioning objective of minimizing the cutsize according to (2) corresponds to minimizing the total
number of disk accesses incurred by the GUS operations under the single-page buffer assumption.
Proof. Consider an internal net ni of part Vk in partition P. As seen in (2), ni does not incur any cost to the cutsize. Since ni is
internal to part Vk, record ri and all records of the unevaluated successor junctions of ti reside in page Pk. Hence,
GUSðti; Sucðti;UÞÞ operations do not incur any disk access as page Pk is already in the page buffer. In P, consider a cut net
ni with connectivity set KðniÞ. As seen in (2), ni incurs a cost of cðniÞðkðniÞ � 1Þ to the cutsize. The connectivity set KðniÞ of
ni means that record ri and the records of the unevaluated successors of ti are distributed across the pages corresponding
to the vertex parts that belong to KðniÞ. Without loss of generality, assume that ri resides in page Pk, where Vk is in KðniÞ.
In this case, each GUSðti; Sucðti;UÞÞ operation incurs kðniÞ � 1 page accesses in order to retrieve the records of the unevaluated
successors of ti by fetching the pages corresponding to the vertex parts in KðniÞ � fVkg since page Pk is already in the page
buffer when the GUSðti; Sucðti;UÞÞ operation is invoked. h
Fig. 3. A sample road network with a query set.

a b c

Fig. 4. Clustering hypergraphs (a) HGS, (b) HGuPS, and (c) HGuVS for the sample road network in Fig. 3 and 3-way vertex partitions of these hypergraphs.

2752 E. Demir, C. Aykanat / Information Sciences 180 (2010) 2743–2762
Fig. 3 shows a sample road network with 8 junctions and 17 links. In the figure, squares represent junctions, directed
edges represent links, and the values on the links represent the length of these links. Fig. 3 also illustrates a sample query
set composed of 4 queries, where each query is shown as a hsource, destinationi junction pair together with the sequence of
processed junctions (query log). For the sake of presentation, in each query, it is assumed that the sequence of processed
junctions are the same in the three clustering hypergraph models.

In Fig. 4, the clustering hypergraphs HGS; HGuPS, and HGuVS are illustrated for the sample road network given in Fig. 3.
Fig. 4 also shows sample 3-way vertex partitions of these hypergraphs, where each part can store at most 3 vertices. Each
net is named with the id of the junction on which GS or GUS operations are invoked and net costs are shown in parentheses. If
multiple nets are generated for a junction ti due to GUSðti; Sucðti;UÞÞ operations with different Sucðti;UÞ, they are marked
with apostrophes (e.g., n4;n04;n

00
4).

Consider the 3-way partition P ¼ fV1 ¼ fv1;v4;v5g; V2 ¼ fv2;v3;v6g; V3 ¼ fv7;v8gg of HGS shown in Fig. 4a. The cut net
n4 with Pins ðn4Þ ¼ fv4;v5;v6g and Kðn4Þ ¼ fV1;V2g incurs the cost cðn4Þðkðn4Þ � 1Þ ¼ 4ð2� 1Þ ¼ 4 to the cutsize. Each of the
four GSðt4Þ operations represented by net n4 incurs one disk access under the single-page buffer assumption. Since v4 is in
part V1; P1 must be the page in the single-page buffer when GSðt4Þ operations are invoked. The records r5 and r6 correspond-
ing to the successors t5 and t6 of t4 will be accessed in the following order. Since v5 is also in part V1, firstly the record r5 in P1

will be accessed. Then, since v6 is in part V2, page P2 will be retrieved to replace P1 in the buffer in order to access record r6

in P2. The disk access cost of GS operations due to the set fn1;n2;n3; n4; n6; n7g of cut nets is
ð1þ 2þ 2þ 4þ 2þ 1Þð2� 1Þ ¼ 12 since each of these nets has a connectivity of 2.

Consider HGuPS shown in Fig. 4b. As seen in Fig. 4b, GuPS operations invoked on junction t4 incur two nets n4 and n04. The
net n4 is generated with Pins¼ fv4;v5;v6g and a cost of 2 since Sucðt4;UÞ ¼ ft5; t6g in queries ht2; t8i and ht4; t3i. The net n04 is
generated with Pins ¼ fv4;v6g and a cost of 2 since Sucðt4;UÞ ¼ ft6g in queries ht5; t6i and ht7; t6i.

Consider the 3-way partition P ¼ fV1 ¼ fv1;v2;v5g; V2 ¼ fv3;v4;v6g; V3 ¼ fv7;v8gg of HGuPS shown in Fig. 4b. In this
partition, n4 is a cut net with kðn4Þ ¼ 2 thus incurring the cost of 2ð2� 1Þ ¼ 2 to the cutsize, whereas net n04 is an internal
net of V2 and hence does not incur any cost to the cutsize. It is clear that GuPSðt4; ft6gÞ operations represented by net n04
do not incur any disk access. Each of the two GuPSðt4; ft5; t6gÞ operations represented by net n4 incurs one disk access under
the single-page buffer assumption. Since v4 is in part V2; P2 must be the page in the single-page buffer when
GuPSðt4; ft5; t6gÞ operations are invoked. The records r5 and r6 corresponding to the successors t5 and t6 of t4 will be accessed
in the following order. Since v6 is also in part V2, firstly the record r6 in P2 will be accessed. Then, since v5 is in part V1, page
P1 will be retrieved to replace P2 in the buffer in order to access record r5 in P1. In this way, the proposed clustering hyper-
graph model correctly encapsulates the disk access cost of the GuPS operations invoked on junction t4. Note that if the re-
cord-to-page allocation induced by the partition in Fig. 4a is used instead of the one induced by the partition in Fig. 4b, GuPS
operations invoked on junction t4 will incur two more disk accesses due to the disposition of records r2 and r4 in different
pages. The disk access cost of GuPS operations due to the set fn1;n2;n4;n6;n06;n7g of cut nets is ð1þ 2þ 2þ > 1þ 1Þð2� 1Þþ
1ð3� 1Þ ¼ 9.

Consider HGuVS shown in Fig. 4c. Note that some of the GuVS operations do not incur a net since all successors of the
respective junctions are already visited during processing a query. For example, in query ht5; t6i, GuVS operations invoked
on junctions t2 and t3 do not incur any net. As seen in Fig. 4c, GuVS operations invoked on junction t4 incur three nets
n4; n04, and n004. The net n4 is generated with Pins¼ fv4;v5; v6g and a cost of 1 since Sucðt4;UÞ ¼ ft5; t6g in query ht4; t3i.
The net n04 is generated with Pins ¼ fv4;v6g and a cost of 2 since Sucðt4;UÞ ¼ ft6g in queries ht5; t6i and ht7; t6i. The net n004
is generated with Pins ¼ fv4;v5g and a cost of 1 since Sucðt4;UÞ ¼ ft5g in query ht2; t8i.

Consider the 3-way partition P ¼ fV1 ¼ fv1;v2;v5g; V2 ¼ fv3;v4;v6g; V3 ¼ fv7;v8gg of HGuVS shown in Fig. 4(c). In this
partition, n4 and n004 are cut nets with kðn4Þ ¼ kðn004Þ ¼ 2 thus both incurring the cost of 1ð2� 1Þ ¼ 1 to the cutsize, whereas net

E. Demir, C. Aykanat / Information Sciences 180 (2010) 2743–2762 2753
n04 is an internal net of V1 and does not incur any cost to the cutsize. It is clear that the two GuVSðt4; ft6gÞ operations repre-
sented by net n04 do not incur any disk access. Each GuVSðt4; ft5; t6gÞ operation represented by net n4 incurs one disk access
under the single-page buffer assumption as discussed for the GuPSðt4; ft5; t6gÞ operation since the record-to-page allocation
is the same in Fig. 4b and c. Each GuVSðt4; ft5gÞ operation represented by net n004 incurs one disk access under the single-page
buffer assumption. Since v4 is in part V2; P2 must be the page in the single-page buffer when GuVSðt4; ft5gÞ operations are
invoked. Since v5 is in part V1, page P1 will be retrieved to replace P2 in the buffer in order to access record r5 in P1. In this
way, the proposed clustering hypergraph model correctly encapsulates the disk access cost of the GuVS operations invoked
on junction t4. The disk access cost of GuVS operations due to the set fn1;n2;n4;n004;n6;n06;n7g of cut nets is
ð1þ 1þ 1þ 1þ 1þ 1Þð2� 1Þ þ 1ð3� 1Þ ¼ 8. Note that the total number of disk accesses is smaller both in HGuPS and
HGuVS models when compared with HGS model since the number of records to be accessed are pruned by the GuPS and GuVS
operations according to the properties of queries.

The performance of the clustering models depends on the assumption that a set of queries in the log can be used to pre-
dict the access patterns of upcoming queries. Disk pages can be periodically reorganized to capture the disk access cost of
queries using logs from different time windows because of the possible changes in the query patterns for long period of time.
Incremental clustering and adaptive reorganization of disk pages according to the new coming queries can be integrated into
our model. However, the changes in the query patterns for a short period of time may degrade the overall performance due
to the reorganization costs. The scale of the time window in the selection of the queries has a major effect on the perfor-
mance of the system. Similar to clustered indexes used in the database management systems to improve the performance
of the search queries, database tuning via reorganization for better performance is a selective choice in our model. Since a
hypergraph for a given query set can be constructed and partitioned in a reasonable time to propose a new allocation, the
difference between the expected I/O cost of operations in the current and the new allocations can be computed efficiently. If
this performance difference is more than the reorganization cost, then the reorganization is realized.
5. Experimental results

In order to confirm the validity of the proposed successor retrieval operations and associated clustering models, the per-
formance of the proposed GuPS operations modeled by HGuPS ðGuPS;HGuPSÞ and GuVS operations modeled by
HGuVSðGuVS;HGuVSÞ are compared against GS operations modeled by HGSðGS;HGSÞ. The experimental setup is described in Sec-
tion 5.1. Section 5.2 evaluates the partitioning quality in terms of cutsize, which corresponds to the total number of disk
accesses incurred by the successor retrieval operations under the single-page buffer assumption. In Section 5.3, the total
number of disk accesses is estimated in query processing through simulations.
5.1. Experimental setup

A wide range of experiments are conducted on four real-life road network datasets. These datasets are collected from US
Tiger/Line [33] (Minnesota7 including 7 counties Anoka, Carver, Dakota, Hennepin, Ramsey, Scott, Washington; Sanfrancis-
co), US Department of Transportation [38] (California Highway Planning Network), and Brinkhoff’s data files [7] (SanJo-
aquin). The self-loops and multi-links in the datasets are eliminated through a preprocessing step. The properties of the
preprocessed datasets are given in Table 1. Note that datasets are listed in the order of increasing network size (number
of junctions and links).

In the experiments, 8, 16, and 32 bytes are reserved for the coordinates of a junction, junction attributes, and link attri-
butes, respectively. The storage sizes assigned for these parameters are selected in accordance with the earlier proposals and
characteristics of the datasets. Note that, as all links in each dataset are bidirectional, the storage saving mentioned in Sec-
tion 2.1 is utilized (i.e., only the successor list of each junction is stored). The last column of Table 1 shows the total storage
size of the network data excluding size of the point-of-interests and index structures. In the table, davg refers to average junc-
tion degree which is equal to the number of bidirectional links per junction.

For query generation, a modified version of the network-based node selection option of Brinkhoff’s Network Generator for
Moving Objects [6] is used. For each dataset, three synthetic query sets Q short; Q medium, and Q long are generated depending on
the shortest path length of the queries. In order to attain a high level network coverage, a different path length and a query
count for each dataset and query set ðD;QÞ pair are determined. Here, the network coverage for a given ðD;QÞ pair is defined
as the ratio of the number of processed links to the total number of links in the network. The path length is set to 1/18, 1/6,
Table 1
Properties of road network datasets (storage size includes only network data).

D Road network jT j jLj davg Size (KB)

D1 California HPN 10,141 28,370 2.80 1378
D2 SanJoaquin 17,444 45,974 2.64 2258
D3 Minnesota7 34,222 92,206 2.69 4510
D4 Sanfrancisco 166,558 426,742 2.56 21,067

Table 2
Properties of query sets.

D Path length # of operations # of operations that may incur disk access

Queries GS/GuPS/GuVS GuPS GuVS % Improvement

GuPS GuVS

Q short

D1 8 7096 713,540 649,990 564,474 8.9 22.9
D2 8 11,701 994,296 814,044 745,016 18.1 30.6
D3 26 18,011 14,510,159 11,801,657 10,371,337 18.7 35.1
D4 27 86,167 125,939,189 95,580,202 84,914,536 24.1 42.9

Averages 17.5 32.9

Q medium

D1 25 3909 3,104,899 2,748,033 2,286,093 11.5 29.8
D2 25 5899 4,692,252 3,749,669 3,286,196 20.1 37.5
D3 78 9964 56,685,642 45,116,531 39,096,176 20.4 39.0
D4 81 49,074 581,893,328 433,966,062 381,245,888 25.4 46.2

Averages 19.4 38.1

Q long

D1 75 1153 3,310,447 2,880,172 2,389,886 13.0 32.0
D2 76 1759 9,745,309 7,655,299 6,618,883 21.4 40.8
D3 233 3458 66,055,205 51,384,653 44,490,684 22.2 42.0
D4 242 16,505 976,443,708 723,602,253 635,910,853 25.9 47.1

Averages 20.6 40.5

2754 E. Demir, C. Aykanat / Information Sciences 180 (2010) 2743–2762
and 1/2 of the diameter of each network for Q short; Q medium, and Q long, respectively. The number of queries for each ðD;QÞ pair
is selected as follows: Initially, the number of queries is set to 0.5%, 0.3%, and 0.1% of the number of junctions in the network
for Q short;Q medium, and Q long, respectively. Each of these queries is repeated 100 times on the average (between 50 and 150
times) to simulate a more realistic case with frequent queries. If the network coverage of these queries remains below
90%, then additional queries are added to have a coverage higher than 90%. These query sets are used both in the construc-
tion of the clustering hypergraphs and in the simulations. Table 2 displays the properties of these synthetic query sets.

In Table 2, the number of queries and operations columns refer to the total number of queries and successor retrieval
operations invoked for each ðD;QÞ pair. For a fair comparison among different query processing strategies, the numbers
of GS, GuPS, and GuVS operations are enforced to be the same for each ðD;QÞ pair. As shown in Table 2, for a given query type
(i.e., Q short; Qmedium, or Q long), the total number of operations increases with increasing network size due to the increase in the
path length and the number of queries. Similarly, for a given dataset, the total number of operations increases with increas-
ing path length in Q short; Q medium, and Q long even though the number of queries decreases. This is explained by the properties
of the network traversal algorithm used in the Brinkhoff’s Network Generator for Moving Objects. In Table 2, the 5th and 6th
columns show the number of GuPS and GuVS operations that may incur disk access (es). The remaining GuPS and GuVS oper-
ations do not incur any disk access, because the set of unevaluated successors for these operations is found to be empty in
query processing (i.e., Sucðt;UÞ ¼ ;). Note that each GS operation may incur disk access (es). The last two columns of Table 2
show the percent decrease in the total number of GuPS and GuVS operations that may incur disk access (es) when compared
with the total number of GS operations. Each ‘‘Averages” row shows the percent improvements for the GuPS and GuVS oper-
ations averaged over all datasets for the respective query type.

As seen in Table 2, the percent improvements of the GuPS/GuVS operations over the GS operations vary significantly be-
tween the data and query sets. The query path length and topological properties of road networks such as connectivity and
average junction degree are the main factors, which affect the number of GuPS/GuVS operations that may incur disk access in
query processing. During processing a query, the evaluated junctions are expected to appear more frequently in the succes-
sor lists of junctions to be evaluated for higher network connectivity and longer query path length, thus decreasing the num-
ber of GuPS/GuVS operations that may incur disk accesses. During processing a query in a highly connected network, the
unevaluated successor list of a junction with a smaller degree is more likely to become empty when compared to a junction
with a larger degree. It is relatively easier to assess a trend and validate these factors for a fixed dataset. As seen in Table 2,
the percent improvement increases considerably with increasing query path length for each dataset. For example, for dataset
D1, the percent improvement increases from 8.9% to 11.5% and 13.0% for the query sets Q short; Qmedium, and Q long, respec-
tively. However, it is relatively harder to assess such regular trends between different datasets because of the difficulty in
the comparison of topological properties of different datasets. For example, although the query path lengths are almost equal
for datasets D1 and D2 (due to the very close diameters), the percent improvement in D2 is significantly higher than that in
D1. This difference can be attributed to the smaller junction degree 2.64 of D2 compared to 2.80 of D1. A similar argument
can be stated for the considerable performance difference between datasets D3 and D4.

Table 3
Properties of generated hypergraphs.

D jVj Q short Qmedium Q long

jN GSj jHGSj jnjavg jN GSj jHGSj jnjavg jN GSj jHGSj jnjavg

D1 10,141 10,134 38,495 3.8 10,136 38,500 3.8 10,137 38,502 3.8
D2 17,444 17,366 63,236 3.6 17,351 63,181 3.6 17,279 62,926 3.6
D3 34,222 33,723 125,103 3.7 33,383 124,082 3.7 33,451 124,288 3.7
D4 166,558 166,152 592,183 3.6 166,212 592,327 3.6 165,850 591,150 3.6

jN GuPSj jHGuPS j jnjavg jN GuPSj jHGuPSj jnjavg jN GuPSj jHGuPSj jnjavg

D1 10,141 35,682 103,912 2.9 36,287 102,855 2.8 32,242 89,230 2.8
D2 17,444 51,118 150,450 2.9 50,712 144,007 2.8 43,497 120,550 2.8
D3 34,222 92,806 265,192 2.9 79,731 222,837 2.8 63,047 176,108 2.8
D4 166,558 408,021 1,139,808 2.8 369,094 1,015,144 2.8 332,092 910,504 2.7

jN GuVSj jHGuVSj jnjavg jN GuVSj jHGuVSj jnjavg jN GuVSj jHGSj jnjavg

D1 10,141 35,544 99,437 2.8 34,288 91,279 2.7 28,754 72,789 2.5
D2 17,444 49,697 141,767 2.9 45,695 123,424 2.7 37,155 95,684 2.6
D3 34,222 77,829 207,891 2.7 64,546 165,548 2.6 51,067 128,760 2.5
D4 166,558 365,759 964,027 2.6 319,967 819,010 2.6 287,675 730,615 2.5

E. Demir, C. Aykanat / Information Sciences 180 (2010) 2743–2762 2755
As seen in Table 2, the percent improvement in the number of operations that may incur disk access (es) is significantly
greater for queries utilizing GuVS operations compared to those utilizing GuPS operations. This is due to the fact that, in the
incremental network expansion framework, the size of the visited junction set grows much faster when compared to the size
of the processed junction set in queries utilizing Dijkstra’s single source shortest path algorithm.

Table 3 shows the properties of the generated clustering hypergraphs for GS, GuPS, and GuVS operations. In the table,
jVj; jN j; jHj, and jnjavg denote the number of vertices, nets, pins and the average net degree of hypergraphs, respectively.
Recall that, for a given dataset, the numbers of vertices of the three clustering hypergraphs HGS; HGuPS, and HGuVS are the
same for all three query sets. As mentioned in Section 2.4, in HGS, there exists a single net for each junction on which a
GS operation is invoked. However, in Table 3, for each ðD;QÞ pair, the number of nets is slightly less than the number of junc-
tions since the network coverage of queries can be less than 100% (between 90% and 100%). In HGuPS and HGuVS, there might
be multiple nets for each junction on which a GuPS and a GuVS operation is invoked with distinct set of unevaluated succes-
sors, respectively. For each ðD;QÞ pair, the average number of nets per junction remains below 3.50 and 3.58, and on the
overall average it is 2.40 and 2.68 for HGuPS and HGuVS, respectively. On the overall average, the size (total number of pins)
of HGuPS and HGuVS is 2.06 and 1.74 times that of HGS, respectively. Thus, the additional complexity of the hypergraph due to
the increase in the number of nets is moderate.

The constructed hypergraphs are partitioned using the recursive bipartitioning paradigm discussed in Section 4.2. For this
purpose, the state-of-the-art multi-level hypergraph partitioning tool PaToH [11] is used for bipartitioning the hypergraphs
[15]. Experimental results are conducted on a PC with a 2.66 GHz Intel Xenon processor and 4 GB of RAM. The average in-
memory partitioning times for the largest dataset D4 are 6.3, 10.6, and 8.7 seconds for the HGS; HGuPS, and HGuVS hyper-
graphs, respectively. The small amount of increase in the partitioning times for the HGuPS and HGuVS models compared to that
of HGS model comply with the moderate increase in the size of HGuPS and HGuVS hypergraphs compared to that of the HGS

hypergraph.
The partitioning of a clustering hypergraph representation for a ðD;QÞ pair and a given page size is referred to here as a

record-to-page allocation instance. Experiments are carried out with four page sizes of P ¼ 4;8;16; and 32 KB. So, the total
number of allocation instances using Q short; Q medium and Q long query sets is equal to 3 � 4� 3� 4 = 144. As PaToH use ran-
domized algorithms, the experiment for each data allocation instance is repeated 10 times and the average partitioning qual-
ity results are reported in Section 5.2.

In simulating the query processing, the caching effect is evaluated with a page buffer using the least recently used (LRU)
page replacement algorithm. Simulations are carried out with four buffer sizes of B = 1, 2, 4, and 8 pages where only a small
portion of a dataset resides in-memory. So, the total number of simulation instances is equal to 4 � 144 = 576. As 10 results
are generated for each allocation instance, each simulation instance is also performed 10 times and average results are re-
ported in Section 5.3.
Table 4
Number K of pages (in ranges) for all allocation instances.

P D1 D2 D3 D4

4 [368,370] [607,609] [1212,1216] [5652,5658]
8 [184,186] [303,305] [606,608] [2830,2834]
16 [91,93] [151,153] [303,305] [1414,1418]
32 [46,48] [75,77] [151,153] [705,709]

4 8 16 32
Page Size (KB)

0

0.1

0.2

0.3

0.4

C
ut

si
ze

 (
x1

06)

4 8 16 32
Page Size (KB)

0

0.1

0.2

0.3

0.4

C
ut

si
ze

 (
x1

06)

4 8 16 32
Page Size (KB)

0

2

4

6

C
ut

si
ze

 (
x1

06)

4 8 16 32
Page Size (KB)

0
10
20
30
40
50

C
ut

si
ze

 (
x1

06)

4 8 16 32
Page Size (KB)

0

0.5

1

1.5

2

C
ut

si
ze

 (
x1

06)

4 8 16 32
Page Size (KB)

0

1

2

3

4

C
ut

si
ze

 (
x1

06)

4 8 16 32
Page Size (KB)

0

10

20

30

C
ut

si
ze

 (
x1

06)

4 8 16 32
Page Size (KB)

0

100

200

300

400

C
ut

si
ze

 (
x1

06)

Q
short

Q
short

Q
long

Q
short

Q
short

Q
long

Q
long

Q
long

Dataset D1

Dataset D2

Dataset D3

Dataset D4

GS operationsGuPSHypergraph models for GuVS

Fig. 5. Partitioning quality of clustering hypergraph models for GS, GuPS, and GuVS operations. Cutsize is equal to the total number of disk accesses due to
the respective successor retrieval operation under the single-page buffer assumption.

Table 5
Averages for percent cutsize improvements of (GuPS;HGuPS) and (GuVS;HGuVS) over (GS;HGS).

P ðGuPS;HGuPSÞ ðGuVS;HGuVSÞ

Q short Qmedium Q long Q short Qmedium Q long

4 46.1 47.2 48.4 67.3 69.1 70.9
8 45.5 47.0 48.2 67.3 69.1 71.0
16 44.7 46.8 48.4 66.3 68.7 70.9
32 45.0 46.8 48.5 65.5 68.3 70.7

Average 45.3 46.9 48.4 66.6 68.8 70.9

2756 E. Demir, C. Aykanat / Information Sciences 180 (2010) 2743–2762

E. Demir, C. Aykanat / Information Sciences 180 (2010) 2743–2762 2757
In our simulations, for each network query, it is assumed that records are accessed through a sequence of Find and suc-
cessor retrieval operation pairs, i.e., Find;GS=GUS; . . . ; Find;GS=GUS; Here, the Find operations are selectively performed
only if the record is not found in the current page buffer. A B+ tree with Z-ordering is used for efficient support of Find oper-
ations as discussed in [32]. The lookup cost of this index for Find operations is included in our simulation results showing the
total number of disk accesses for query processing.
4 8 16 32 4 8 16 32 4 8 16 32 4 8 16 32
Page Size (KB)

0

0.3

0.6

0.9

of

 d
is

k
ac

ce
ss

es
 (

x1
06) Dataset D1

4 8 16 32 4 8 16 32 4 8 16 32 4 8 16 32
Page Size (KB)

0

0.3

0.6

0.9

1.2

of

 d
is

k
ac

ce
ss

es
 (

x1
06) Dataset D2

4 8 16 32 4 8 16 32 4 8 16 32 4 8 16 32
Page Size (KB)

0

5

10

15

20

of

 d
is

k
ac

ce
ss

es
 (

x1
06) Dataset D3

4 8 16 32 4 8 16 32 4 8 16 32 4 8 16 32
Page Size (KB)

0

50

100

150

200

of

 d
is

k
ac

ce
ss

es
 (

x1
06) Dataset D4

B=1 B=2 B=4 B=8

B=1

B=1

B=1

B=2

B=2

B=2

B=4

B=4

B=4

B=8

B=8

B=8

(GS, H
GS

) (GuPS, H
GuPS

) (GuVS, H
GuVS

)

Fig. 6. Total disk access cost of ðGS;HGSÞ; ðGuPS;HGuPSÞ, and ðGuVS;HGuVSÞmodels in query simulations using different page size P in KB and buffer size B in
number of pages for Q short query set.

2758 E. Demir, C. Aykanat / Information Sciences 180 (2010) 2743–2762
5.2. Partitioning quality

For a given dataset and a page size, the number K of disk pages allocated either changes very slightly or does not change at
all for different query sets and successor retrieval operations. In Table 4, K value ranges are reported for each dataset and
page size pairs. As seen in Table 4, for each dataset, the number of allocated pages decreases linearly with increasing page
size as expected.
4 8 16 32 4 8 16 32 4 8 16 32 4 8 16 32
Page Size (KB)

0
1
2
3
4
5

of

 d
is

k
ac

ce
ss

es
 (x

 1
06) Dataset D1

4 8 16 32 4 8 16 32 4 8 16 32 4 8 16 32
Page Size (KB)

0

5

10

15

of

 d
is

k
ac

ce
ss

es
 (x

 1
06) Dataset D2

4 8 16 32 4 8 16 32 4 8 16 32 4 8 16 32
Page Size (KB)

0
20
40
60
80

100

of

 d
is

k
ac

ce
ss

es
 (x

 1
06) Dataset D3

4 8 16 32 4 8 16 32 4 8 16 32 4 8 16 32
Page Size (KB)

0

500

1000

1500

of

 d
is

k
ac

ce
ss

es
 (x

 1
06) Dataset D4

B=1 B=2 B=4 B=8

B=1

B=1

B=1

B=2

B=2

B=2

B=4

B=4

B=4

B=8

B=8

B=8

(GS, HGS) (GuPS, HGuPS) (GuVS, HGuVS)

Fig. 7. Total disk access cost of ðGS;HGSÞ; ðGuPS;HGuPSÞ, and (GuVS;HGuVS) models in query simulations using different page size P in KB and buffer size B in
number of pages for Q long query set.

E. Demir, C. Aykanat / Information Sciences 180 (2010) 2743–2762 2759
Fig. 5 displays the partitioning quality of clustering hypergraph models for GS, GuPS, and GuVS operations in terms of cut-
size for the Q short and Q long query sets and for different page sizes. In all allocation instances, both ðGuPS;HGuPSÞ and
ðGuVS;HGuVSÞ achieve significantly smaller cutsize values than (GS;HGS). As seen in Fig. 5, the cutsize values decrease with
increasing page size since the number of records that can be packed in a page increases.

Table 5 shows the average cutsize improvement of ðGuPS;HGuPSÞ and ðGuVS;HGuVSÞ over ðGS;HGSÞ for the Q short; Q medium,
and Q long query sets. As seen in the table, for a fixed query set, the performance gaps between ðGS;HGSÞ and the other two
models do not vary considerably with increasing page size. On the other hand, for a fixed page size, the performance gaps
slightly increase in favor of ðGuPS;HGuPSÞ and ðGuVS;HGuVSÞ as the query set changes from Q short to Q long. This can be explained
by the expected increase in the number of evaluated junctions in the successor lists of the junctions to be evaluated with
increasing query length as discussed in Section 5.1.

Recall that the cutsizes obtained by the clustering hypergraph models ðGS;HGSÞ; ðGuPS;HGuPSÞ and ðGuVS;HGuVSÞ corre-
spond to the total number of disk accesses incurred by the respective successor retrieval operations under the single-page
buffer assumption. As seen in Table 5, ðGuPS;HGuPSÞ and ðGuVS;HGuVSÞ achieve 46.9% and 68.8% cutsize improvement over
ðGS;HGSÞ, on the overall average. A part of these improvements relates to the 19.1% and 37.2% decrease in the number of GuPS
and GuVS operations that may incur disk accesses as shown in Table 2. So, the significant part of these improvements comes
from the correct modeling of the GuPS and GuVS operations by the HGuPS and HGuVS models, respectively. Significantly smaller
cutsizes obtained by the HGuPS and HGuVS over those obtained by HGS can be explained as follows: multiple nets of size smal-
ler than the junction degree used by the HGuPS and HGuVS models for each junction, in contrast to a single net of size equal to
the junction degree used by the HGS model, provide a flexibility to the hypergraph partitioning tool in removing more nets
from the cut in the HGuPS and HGuVS models compared to the HGS model.
5.3. Disk access simulations

Figs. 6 and 7 compare the performance of ðGuPS;HGuPSÞ and ðGuVS;HGuVSÞ over ðGS;HGSÞ in terms of total number of disk
accesses for the Q short and Q long query sets, respectively. The values displayed in Figs. 6 and 7 show the number of disk acces-
ses incurred by the successor retrieval operations as well as those incurred by the Find operations in query processing. Table 6
shows the average percent performance improvement of ðGuPS;HGuPSÞ and ðGuVS;HGuVSÞ over ðGS;HGSÞ over all datasets.

As seen in Figs. 6 and 7, ðGuPS;HGuPSÞ performs considerably better than ðGS;HGSÞ in all simulation instances, whereas
(GuVS;HGuVS) performs better than ðGS;HGSÞ in all but 10 out of 128 simulation instances. This is because of the fact that
the disk access cost due to the Find operations constitutes a much larger portion of the total disk access cost in the
ðGuVS;HGuVSÞ scheme when compared to the other two schemes since the number of disk accesses incurred by the GuVS
operations are much less than those incurred by the GS and GuPS operations. Recall that although the clustering hypergraph
models HGS;HGuPS, and HGuVS capture the exact cost of disk accesses to be incurred by the respective successor retrieval oper-
ations under the single-page buffer assumption, they do not capture the cost of disk accesses to be incurred by the Find oper-
ations. The percent performance averages in Table 6 also confirm this finding. As seen in Table 6, ðGuVS;HGuVSÞ performs
better than ðGS;HGSÞ in all but 4 out of 48 cases where these performance changes only occur for the large page and buffer
size values. Furthermore, comparison of Tables 5 and 6 shows that average percent performance improvements in simula-
tion results are considerably less than average cutsize improvements. In order to further clarify this issue, Table 7 is intro-
duced to display the average percent performance improvements in terms of disk accesses only due to the successor retrieval
Table 6
Averages for percent performance improvements of ðGuPS;HGuPSÞ and ðGuVS;HGuVSÞ over ðGS;HGSÞ in terms of total number of disk accesses.

B P ðGuPS;HGuPSÞ ðGuVS;HGuVSÞ

Q small Qmedium Q long Q small Qmedium Q long

1 4 14.5 13.6 13.4 19.4 19.2 18.9
8 10.4 9.8 9.5 13.0 13.4 13.0
16 6.9 6.9 6.5 7.7 8.7 8.4
32 3.6 4.7 4.5 1.8 5.5 5.0

2 4 14.8 14.0 13.8 18.5 18.8 18.5
8 10.8 10.3 10.0 12.2 12.9 12.6
16 7.1 7.3 7.1 6.6 8.0 7.7
32 5.5 4.8 5.0 �0.5 4.5 3.9

4 4 16.0 14.7 14.5 16.6 18.2 18.0
8 12.1 11.2 10.9 8.7 11.8 11.7
16 8.2 8.3 8.3 2.0 6.2 6.2
32 5.5 5.4 6.5 0.7 1.8 1.6

8 4 17.7 16.4 16.1 12.5 16.6 16.6
8 12.4 13.0 12.9 4.8 8.6 9.1
16 8.3 10.1 10.9 2.6 1.1 1.4
32 7.7 7.9 9.7 �0.2 �3.6 �7.7

Table 7
Averages for percent performance improvements of ðGuPS;HGuPSÞ and ðGuVS;HGuVSÞ over ðGS;HGSÞ in terms of the number of disk accesses incurred only by the
successor retrieval operations.

B P ðGuPS;HGuPSÞ ðGuVS;HGuVSÞ

Q small Qmedium Q long Q small Qmedium Q long

1 4 46.8 47.3 48.4 68.2 69.2 70.9
8 46.4 47.0 48.2 68.3 69.2 71.0
16 45.8 46.9 48.4 67.5 68.8 70.9
32 46.4 46.9 48.5 66.9 68.5 70.8

2 4 44.4 46.7 48.1 65.5 68.3 70.3
8 42.9 46.1 47.7 64.3 68.0 70.3
16 40.9 45.4 47.8 61.6 67.0 70.0
32 39.9 44.4 47.5 58.1 65.8 69.5

4 4 40.7 45.6 47.5 59.7 66.6 69.1
8 37.7 44.5 46.8 55.9 65.5 68.8
16 33.4 42.7 46.7 48.8 63.0 68.0
32 30.8 39.8 45.9 41.8 59.4 66.4

8 4 34.5 43.4 46.2 48.2 62.4 66.5
8 28.8 40.6 44.9 40.0 58.7 64.9
16 24.0 36.1 43.7 31.7 51.7 61.9
32 22.4 29.5 39.7 27.3 42.3 54.9

2760 E. Demir, C. Aykanat / Information Sciences 180 (2010) 2743–2762
operations in simulations. Comparison of Tables 5 and 7 shows that percent performance improvements for all simulations
are almost the same as in the cutsize improvements for the single-page buffer case, and very close for the larger buffer sizes.
These experimental findings confirm the validity of the proposed clustering hypergraph models HGuPS and HGuVS for the GuPS
and GuVS successor retrieval operations.

According to Figs. 6 and 7, as expected, the number of disk accesses decreases with increasing page size and increasing
buffer size in all simulation instances. Comparison of Figs. 6 and 7 show that the decrease in the number of disk accesses is
more prominent with the Q short query set compared with the Q long query set. As seen in Table 7, for fixed page and buffer
sizes, the performance improvement of both ðGuPS;HGuPSÞ and ðGuVS;HGuVSÞ over ðGS;HGSÞ, in terms of the disk access cost
due to the successor retrieval operations, slightly increase with increasing query length. However, as seen in Table 6, it is
hard to find any such trend for the total disk access cost because of the additional disk accesses incurred by the Find
operations.

The simulation results show that, during aggregate query processing, GUS is a crucial kernel successor retrieval operation
in order to decrease the number of disk accesses. In queries utilizing the Dijkstra’s single shortest path algorithm, GuPS oper-
ations still constitute a considerable portion of the total disk accesses. Hence, with the utilization of the clustering hyper-
graph HGuPS model, a significant improvement in the total number of disk accesses can be achieved using the resulting
record-to-page allocation. However, in queries utilizing the incremental network expansion framework, the percent of disk
accesses due to the GuVS operations is considerably less than that due to the Find operations because of the significant reduc-
tion in the number of disk accesses due to the GuVS operations. Thus, even though the clustering hypergraph HGuVS model
results in significantly better record-to-page allocations for successor retrieval operations, the effectiveness of this model
may degrade with the usage of larger page and buffer sizes because the percent improvement in disk accesses due to the
Find operations becomes prominent due to the buffering effect, where HGS model seems to give better clustering for Find
operations. Further research is needed for encapsulating the disk access cost of Find operations especially for algorithms
using the incremental network expansion framework.
6. Concluding remarks

We introduced a new successor retrieval operation, Get-Unevaluated-Successors (GUS), for spatial network databases and
focused on the problem of record-to-page data allocation in road networks in order to minimize the disk access cost of GUS
operations in query processing.

The GUS operation is an efficient implementation of the Get-Successors (GS) operation, where the candidate successors to
be retrieved are pruned according to the properties and state of the search algorithm used in the target application. Two
examples of GUS operation are introduced in network query processing, namely the Get-unProcessed-Successors (GuPS) oper-
ation as used in the Dijsktra’s single source shortest path algorithm [19] and the Get-unVisited-Successors (GuVS) operation as
used in the algorithms utilizing the incremental network expansion framework [29].

We proposed a clustering hypergraph model to allocate network data to disk pages, where data would be periodically
reorganized using query logs. Our model exactly captures the disk access cost of GUS operations in network queries under
the single-page buffer assumption. Extensive experiments are conducted to show the effects of dataset, query set, page size,
and buffer size through simulations. Experimental results show that both GuPS and GuVS operations lead to a significant

E. Demir, C. Aykanat / Information Sciences 180 (2010) 2743–2762 2761
improvement in query processing and the corresponding clustering hypergraph models achieve better results than earlier
solutions for the record-to-page allocation problem in road networks.

In spatial network database management systems, the GUS operation can be implemented as a kernel successor retrieval
operation. Data clustering is already studied in the database literature and most of the enterprise database management sys-
tems utilize clustered indexes to improve the I/O performance of the system during query processing. Hence, the proposed
clustering hypergraph models can easily be deployed into these database management systems so that aggregate query pro-
cessing can be performed efficiently in any GIS system using these data sources.

Acknowledgements

Some experiments were carried out on TR-Grid e-Infrastructure. This work is partially supported by the Scientific and
Technological Research Council of Turkey under Grant EEEAG-109E019.

References

[1] V.T. Almeida, R.H. Güting, Using Dijkstra’s algorithm to incrementally find the K-nearest neighbors in spatial network databases, in: Proceedings of the
ACM International Symposium on Applied Computing, 2006, pp. 23–27.

[2] C.J. Alpert, A.B. Kahng, Recent directions in netlist partitioning: a survey, VLSI Journal 19 (1–2) (1995) 1–81.
[3] C. Aykanat, B.B. Cambazoglu, B. Ucar, Multi-level direct k-way hypergraph partitioning with multiple constraints and fixed vertices, Journal of Parallel

and Distributed Computing 68 (5) (2008) 609–625.
[4] C. Aykanat, A. Pinar, Ü.V. Çatalyürek, Permuting sparse rectangular matrices into block-diagonal form, SIAM Journal of Scientific Computing 25 (6)

(2004) 1860–1879.
[5] C. Berge, Graphs and Hypergraphs, North-Holland Publishing Company, 1973.
[6] T. Brinkhoff, A framework for generating network-based moving objects, GeoInformatica 6 (2) (2002) 153–180.
[7] T. Brinkhoff, Data files: San Joaquin, 2007, <http://www.fh-oow.de/institute/iapg/personen/brinkhoff/generator/>.
[8] T.N. Bui, C. Jones, A heuristic for reducing fill in sparse matrix factorization, in: Proceedings of the 6th SIAM Conference on Parallel Processing for

Scientific Computing, 1993, pp. 445–452.
[9] B.B. Cambazoglu, C. Aykanat, Hypergraph-partioning-based remapping models for image-space-parallel direct volume rendering of unstructured grids,

IEEE Transactions on Parallel and Distributed Systems 18 (1) (2007) 3–16.
[10] Ü.V. Çatalyürek, C. Aykanat, Hypergraph-partitioning-based decomposition of parallel sparse-matrix vector multiplication, IEEE Transactions on

Parallel Distributed Systems 10 (7) (1999) 673–693.
[11] Ü.V. Çatalyürek, C. Aykanat, PaToH: partitioning tool for hypergraphs, Technical Report BU-CE-9915, Computer Engineering Department, Bilkent

University, 1999 <http://www.cs.bilkent.edu.tr/aykanat/pargrp/patoh/>.
[12] E.P. Chan, H. Lim, Optimization and evaluation of shortest path queries, The VLDB Journal 16 (3) (2007) 343–369.
[13] A. Dasdan, C. Aykanat, Two novel multiway circuit partitioning algorithms using relaxed locking, IEEE Transactions on Computer-Aided Design

Integrated Circuits and Systems 16 (2) (1997) 169–178.
[14] R. Dechter, J. Pearl, Generalized best-first search strategies and the optimality of A*, Journal of ACM 32 (3) (1985) 505–536.
[15] E. Demir, C. Aykanat, B.B. Cambazoglu, Clustering spatial networks for aggregate query processing: a hypergraph approach, Information Systems 33 (1)

(2008) 1–17.
[16] E. Demir, C. Aykanat, B.B. Cambazoglu, A link-based storage scheme for efficient aggregate query processing on clustered road networks, Information

Systems 35 (1) (2010) 75–93.
[17] K. Deng, X. Zhau, H.T. Shen, S. Sadiq, X. Li, Instance optimal query processing in spatial networks, The VLDB Journal (2008). doi:10.1007/s00778-008-

0115-0.
[18] Y. Deng, Exploiting the performance gains of modern disk drives by enhancing data locality, Information Sciences 179 (14) (2009) 2494–2511.
[19] E.W. Dijkstra, A note on two problems in connection with graphs, Numerische Mathematik 1 (1959) 269–271.
[20] Y.-W. Huang, N. Jing, E.A. Rundensteiner, Effective graph clustering for path queries in digital map databases, in: Proceedings of the ACM International

Conference on Information and Knowledge Management, 1996, pp. 215–222.
[21] N. Jing, Y.-W. Huang, E.A. Rundensteiner, Hierarchical encoded path views for path query processing: an optimal model and its performance

evaluation, IEEE Transaction on Knowledge and Data Engineering 10 (3) (1998) 409–432.
[22] S. Jung, S. Pramanik, An efficient path computation model for hierarchically structured topographical road maps, IEEE Transaction on Knowledge and

Data Engineering 14 (5) (2002) 1029–1046.
[23] G. Karypis, R. Aggarwal, V. Kumar, S. Shekhar, Multilevel hypergraph partitioning: applications in VLSI domain, IEEE Transactions on Very Large Scale

Integration (VLSI) Systems 7 (1) (1999) 69–79.
[24] M. Kolahdouzan, C. Shahabi, Voronoi-based K nearest neighbor search for spatial network databases, in: Proceedings of the 30th International

Conference on Very Large Data Bases, 2004, pp. 840–851.
[25] M. Koyuturk, C. Aykanat, Iterative-improvement based declustering heuristics for multi-disk databases, Information Systems 30 (1) (2005) 47–70.
[26] A.J.T. Lee, Y.-A. Chena, W.-C. Ip, Mining frequent trajectory patterns in spatial–temporal databases, Information Sciences 179 (13) (2009) 2218–2231.
[27] T. Lengauer, Combinatorial Algorithms for Integrated Circuit Layout, John Wiley & Sons, Inc., New York, NY, USA, 1990.
[28] M. Ozdal, C. Aykanat, Hypergraph models and algorithms for data-pattern based clustering, Data Mining and Knowledge Discovery 9 (1) (2004) 29–57.
[29] D. Papadias, J. Zhang, N. Mamoulis, Y. Tao, Query processing in spatial network databases, in: Proceedings of the International Conference on Very

Large Data Bases, 2003, pp. 790–801.
[30] J. Sankaranarayanan, H. Alborzi, H. Samet, Efficient query processing on spatial networks, in: Proceedings of the 13th ACM International Workshop on

Geographic Information Systems, 2005, pp. 200–209.
[31] C. Shahabi, M.R. Kolahdouzan, M. Sharifzadeh, A road network embedding technique for k-nearest neighbor search in moving object databases, in:

Proceedings of the 10th ACM International Symposium on Advances in Geographic Information Systems, 2002, pp. 94–100.
[32] S. Shekhar, D.R. Liu, A connectivity-based access method for networks and network computation, IEEE Transaction on Knowledge and Data Engineering

9 (1) (1997) 102–117.
[33] Topologically integrated geographic encoding and referencing system (TIGER), 2002 <http://www.census.gov/geo/www/tiger/>.
[34] B. Ucar, C. Aykanat, Partitioning sparse matrices for parallel preconditioned iterative methods, SIAM Journal on Scientific Computing 29 (4) (2007)

1683–1709.
[35] B. Ucar, C. Aykanat, M. Pınar, T. Malas, Parallel image restoration using surrogate constraint methods, Journal of Parallel and Distributed Computing 67

(2) (2007) 186–204.
[36] B. Uçar, C. Aykanat, Encapsulating multiple communication-cost metrics in partitioning sparse rectangular matrices for parallel matrix–vector

multiplies, SIAM Journal of Scientific Computing 25 (6) (2004) 1837–1859.
[37] B. Uçar, C. Aykanat, Revisiting hypergraph models for sparse matrix partitioning, SIAM Review 49 (4) (2007) 595–603.

http://www.fh-oow.de/institute/iapg/personen/brinkhoff/generator/
http://www.cs.bilkent.edu.tr/aykanat/pargrp/patoh/
http://www.census.gov/geo/www/tiger/

2762 E. Demir, C. Aykanat / Information Sciences 180 (2010) 2743–2762
[38] US department of transportation federal highway administration, the national highway planning network, 2004 <http://www.fhwa.dot.gov/planning/
nhpn/index.html>.

[39] S.-H. Woo, S.-B. Yang, An improved network clustering method for I/O-efficient query processing, in: Proceedings of the ACM Symposium on
Geographic Information Systems, 2000, pp. 62–68.

[40] M.L. Yiu, N. Mamoulis, Clustering objects on a spatial network, in: Proceedings of the ACM SIGMOD International Conference on Management of Data,
2004, pp. 13–18.

[41] M.L. Yiu, N. Mamoulis, D. Papadias, Aggregate nearest neighbor queries in road networks, IEEE Transaction on Knowledge and Data Engineering 17 (6)
(2005) 820–833.

http://www.fhwa.dot.gov/planning/nhpn/index.html
http://www.fhwa.dot.gov/planning/nhpn/index.html

	Efficient successor retrieval operations for aggregate query processing on clustered road networks
	Introduction
	Motivation
	Related work
	Contributions

	Preliminaries
	Junction-based storage scheme
	Data allocation problem in road networks
	Graph and hypergraph partitioning
	Clustering graph and hypergraph models

	Get-Unevaluated-Successors (GUS) operation
	Clustering hypergraph model for GUS operations
	Clustering hypergraph representation
	Clustering hypergraph model

	Experimental results
	Experimental setup
	Partitioning quality
	Disk access simulations

	Concluding remarks
	Acknowledgements
	References

