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a b s t r a c t

Projects are often subject to various sources of uncertainties that have a negative impact on activity dura-
tions and costs. Therefore, it is crucial to develop effective approaches to generate robust project sched-
ules that are less vulnerable to disruptions caused by uncontrollable factors. In this paper, we investigate
the robust discrete time/cost trade-off problem, which is a multi-mode project scheduling problem with
important practical relevance. We introduce surrogate measures that aim at providing an accurate esti-
mate of the schedule robustness. The pertinence of each proposed measure is assessed through compu-
tational experiments. Using the insights revealed by the computational study, we propose a two-stage
robust scheduling algorithm. Finally, we provide evidence that the proposed approach can be extended
to solve a complex robust problem with tardiness penalties and earliness revenues.

� 2010 Elsevier B.V. All rights reserved.
1. Introduction

In project management, it is often possible to expedite the duration of some activities and therefore reduce the project duration with
additional costs. This time/cost trade-off has been widely studied in the literature focusing on linear and continuous time/cost relation-
ships. In this paper, we address the discrete version, namely the discrete time/cost trade-off problem (DTCTP), which is a multi-mode pro-
ject scheduling problem having practical relevance. Project managers often allocate more resources to accelerate the activities and each
resource allocation defines an execution mode. Thus, multiple alternatives usually exist to execute an activity. DTCTP utilizes only one sin-
gle nonrenewable resource (money) and does not explicitly consider renewable resources (e.g. machines, equipment and staff), which are
available at constant amounts in every instance of the planning period.

Formally, the DTCTP is defined as follows. Given a project with a set of n activities along with a corresponding precedence graph
G = (N,A), where N is the set of nodes that refer to the activities of the project, and A � N � N is the set of immediate precedence constraints
on the activities. It is noteworthy that G also includes two dummy ‘‘start” and ‘‘end” nodes indexed by 0 and n + 1, respectively. Each activ-
ity j (j = 1, . . .,n) can be performed at one of the modes chosen from the set Mj. Each mode m 2Mj, is characterized by a processing time pjm

and a cost cjm.
Two basic versions of the DTCTP have been defined in the literature so far: the deadline problem (DTCTP-D) and the budget problem

(DTCTP-B). In the deadline problem, given a project deadline d, one of the possible modes is assigned to each activity so that the makespan
does not exceed d and the total cost is minimized. The budget problem, on the contrary, minimizes the makespan while not exceeding a
maximum preset budget B. Despite its practical relevance, the research on DTCTP is rather sparse due to its inherent computational com-
plexity (it has been shown to be strongly NP-hard for general activity networks (De et al., 1997)). In their comprehensive review papers, De
et al. (1995) and Weglarz et al. (2010) discuss the problem characteristics as well as exact and approximate solution strategies. We refer the
readers to the papers of Demeulemeester et al. (1996, 1998) for exact algorithms and to Skutella (1998), Akkan et al. (2005), Vanhoucke and
Debels (2007) and Hafızoğlu and Azizoğlu (2010) for approximate algorithms. Furthermore, Erengüç et al. (1993) apply Benders decompo-
sition to solve the time/cost trade-off problem with discounted cash flows, which combines the DTCTP and the payment-scheduling
problem.
ll rights reserved.
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The existing studies on DTCTP generally assume complete information and deterministic environment. However, in practice, projects
are often subject to various sources of uncertainty that may arise from the work content, resource availabilities, project network, etc. A
schedule that is optimal with respect to project duration or cost may largely be affected by these disruptions. Therefore, it is crucial to
develop effective approaches to generate project schedules, which are less vulnerable to disruptions caused by these uncontrollable factors.
To the best our knowledge, the only paper which addresses uncertainty on DTCTP is by Klerides and Hadjiconstantinou (2010); they used
stochastic programming to model uncertain activity durations.

The contribution of our paper is threefold. First, we introduce a new version of the DTCTP under uncertainty with tardiness penalties
and earliness revenues. Second, we propose some surrogate measures to evaluate schedule robustness. The quality of the proposed sched-
ules is assessed through several performance measures. Finally, we develop a two-phase approach for generating robust schedules. The
solution approach integrates an analytical tool to support the decision makers in budget allocation decisions and a robust scheduling algo-
rithm. The developed scheduling algorithm addresses the crucial need to construct robust project schedules that are less vulnerable to dis-
ruptions caused by uncontrollable factors. Furthermore, it serves as a basis to develop decision support systems (DSS) to help project
managers in planning under uncertain environments.

2. Discrete time/cost trade-off problem under uncertainty

Stochastic programming and robust optimization are two fundamental optimization approaches under uncertainty. Stochastic program-
ming uses probabilistic models to describe uncertain data in terms of probability distributions. Typically, the average performance of the
system is examined and expectation over the assumed probability distribution is taken. Robust optimization is a modeling approach to gen-
erate a plan that is insensitive to data uncertainty. Generally, the worst-case performance of the system is optimized and plans that per-
form well under worst-case scenarios are sought. Since it is worst-case oriented, it is a conservative methodology. When accurate
distributional information is available, stochastic programming has the advantage of incorporating this available distributional informa-
tion; however, stochastic programming models are usually computationally more demanding. If the decision-maker either does not have
or cannot access this information, robust optimization is more appropriate.

First, we formulate a stochastic programming model for a new version of DTCTP to determine mode assignments such that the expected
net profit is maximized. A penalty cost is incurred if the project finishes later than the specified due date. In case of early completion, we
assume that the enterprise can make an additional profit by elongating the operating period. We denote the revenue rate and the tardiness
penalty rate per unit time by a, and b, respectively. The activity durations are modeled as random variables. We introduce the random vec-
tor P and denote a particular realization with vector p. The corresponding stochastic programming problem involves the completion times
as random variables. A mixed integer-programming model of the stochastic DTCTP is as follows:
Max E a max 0; d� Cnþ1ðPÞf g � b maxf0;Cnþ1ðPÞ � dg½ � ð1:0Þ
Subject to

X
m2Mj

xjm ¼ 1 8j 2 N; ð1:1Þ

CjðPÞ � CiðPÞ �
X

m2Mj

Pjm xjm P 0 8ði; jÞ 2 A; ð1:2Þ

X
j2N

X
m2Mj

cjmxjm 6 B; ð1:3Þ

CjðPÞP 0 8j 2 N [ f0g; ð1:4Þ
xjm 2 f0;1g 8m 2 Mj; 8j 2 N: ð1:5Þ
The continuous random variable Cj(P) denotes the completion time of activity j. The binary decision variable xjm assigns modes to the
activities and is equal to 1 if mode m is chosen for activity j, and 0 otherwise (1.5). While maximizing the total expected profit (1.0), a un-
ique mode should be assigned to each activity (1.1), and the precedence constraints should not be violated (1.2). Furthermore, the given
budget, B, should be met (1.3). Defining the budget is a critical issue for project managers and we will address this issue in Section 4.2.

When an activity mode is selected, the activity durations and costs are defined. As the activity durations depend on the activity modes,
considering the precedence relations (1.2), the entire duration distribution function is dependent on the chosen mode. It is noteworthy that
the completion times of the activities and hence the project makespan are random variables.

The proposed problem is widely encountered in scheduling Build–Operate–Transfer (BOT) projects. BOT model describes the situation
in which a public service or an infrastructure investment is made and operated for a specific period by a private enterprise, and then trans-
ferred to a public institution. One application area is the private toll roads. A private enterprise first constructs the road and operates it for
some time, such as 10–20 years, and then transfers the right to operate these roads to the public. The enterprise can elongate the operating
period by completing construction earlier and increase the profit.

Projects are temporary and unique; they have a finite duration and distinguishing characteristics. In many real-life projects, managers
either do not have or cannot access on probability information. Therefore, in this research, we use robust optimization to generate robust
project schedules that are minimally affected from disruptions in activity durations. Herroelen and Leus (2005) divide schedule robustness
into two groups: solution robustness (stability) and quality robustness. They define solution robustness as the insensitivity of the activity
start times to variations in the input data, and quality robustness as the insensitivity of schedule performance (such as project makespan or
cost) with respect to disruptions. Quality robust scheduling aims to construct schedules in such a way that the value of the performance
measure is affected as little as possible from disruptions.

The most popular approach of project management aiming quality robustness is the critical chain project scheduling (CCPS) that has
been introduced by Goldratt (1997) who applied the theory of constraints (TOC) to project management. CCPS suggests inserting buffers,
which are protection mechanisms against uncertainty in the duration of activities, into the schedule. Safety factors are eliminated from
individual activities and aggregated at the end as a project buffer. Aggressive time estimates, usually lower than the nominal durations,
are used in building the baseline schedule, and in this way the project personnel is forced to increase productivity. Nominal values are
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the most likely duration values assigned to each activity by the project manager. Aggressive estimates may lead to quality problems, since
these buffers aim to prevent the project from exceeding the deadline.

We refer the reader to Herroelen and Leus (2001), for an experimental evaluation of CCPS, and to Tukel et al. (2006) for analysis of sev-
eral buffer sizing methods. Van de Vonder et al. (2005, 2006) examined the trade-off between the quality robustness and solution robust-
ness. In a more recent study, Van de Vonder et al. (2008) developed robust scheduling heuristics and compared their performance. In these
papers, the schedule robustness is usually evaluated using simulation and usually measured with the probability that the project is com-
pleted on time.

3. Measuring robustness

Developing quantitative metrics that provide a good estimate of schedule robustness is essential for building robust scheduling algo-
rithms. The baseline schedules are execution plans prepared prior to the project execution. The schedules that are created by using these
robustness measures could absorb unanticipated disruptions. Existing robust scheduling studies generally employ either direct measures,
which are derived from realized performances, or heuristic approaches, which utilize simple surrogate measures. We refer the readers to
Gören and Sabuncuoğlu (2008) for a more detailed discussion of the robustness measures in machine scheduling.

There are some difficulties of using the optimization problem (1.0)–(1.5) directly. In order to calculate the expected profit, we need to define
the possible disruption scenarios with their probability information. First, disruption scenarios cannot be easily defined or determined a priori,
estimating the probability distributions accurately is usually difficult, and furthermore there may be too many disruption scenarios to be con-
sidered. Second, computational burden of optimizing a direct measure in a real-life project environment can be quite high due to the fact that
analytical determination of the effect of a disruption on other activities and project completion, especially in multi-disruption case, is difficult
to model in complex networks as project networks consist of multiple paths that typically intersect. Hence, a reasonable approach to increase
the computational efficiency is to use good surrogate measures and determine an algorithm optimizing the surrogate measure.

In this paper, we concentrate on slack-based measures to assess schedule robustness. We use the nominal activity durations to find out
the activity slacks. They are the most likely values assigned to each activity by the project manager. Two types of slacks are widely used in
project management literature: total slack and free slack. Total slack (TS) is the amount of time by which the completion time of an activity
can exceed its earliest completion time without delaying the project completion time. Free slack (FS) is the amount of time by which the
completion time of an activity could be delayed without affecting the earliest start time of its immediate successors in the project. The total
slack concept is closely related to quality robustness, whereas the free slack is related to stability of a schedule. Since our primary goal is to
generate quality robust DTCTP schedules, we restrict our attention to total slack-based surrogate measures.

In the literature, there are only a few studies that propose measures to assess the robustness of project schedules. Commonly, they sug-
gest the use of surrogate measures for the resource constrained project scheduling problem. Al-Fawzan and Haouari (2005) use the sum of
free slacks as a surrogate metric for measuring the robustness of a schedule. Kobylański and Kuchta (2007) discuss a limitation of this mea-
sure and propose using the minimum of all free slacks or the minimum of free slack/duration ratios. However, focusing on the minimum
values has the weakness that two schedules with the same minimum values could have different slack patterns and the measures proposed
by Kobylański and Kuchta (2007) fail to differentiate between these schedules. On the other hand, Lambrechts et al. (2008) introduce a free
slack utility function and use this function in their tabu search algorithm to generate robust schedules. Recently, Chtourou and Haouari
(2008) propose twelve predictive indicators for resource constrained networks.

3.1. Proposed measures

We consider a profit-based objective function in Model (1.0)–(1.5) that leads to early project completion. The schedules with less critical
or potentially critical paths or activities have tendency to absorb interruptions and avoid delaying the project completion. We also notice
that the criticality of an activity is defined by its slack. Therefore, one could reasonably expect that more profits could be gained and tar-
diness penalties might be mitigated through minimizing the delays in makespan by integrating larger slacks in the schedule. However, not
only the magnitude but the placement of slacks in the schedule and the relationship with activity durations is also important. In the sequel,
we make a thorough analysis of activity slacks considering these factors and introduce slack-based measures and compare them against
each other through simulation.

3.1.1. Average slack (RM1)
The average slack, or equivalently, the sum of the slacks has been commonly used to assess schedule robustness in scheduling literature.

Experimental studies of Leon et al. (1994) and Mehta and Uzsoy (1998) on job shop scheduling reveal that there is a high correlation be-
tween robustness and the average slack value.

3.1.2. Weighted slack
Minimizing the average of slacks assumes that the contribution of slacks to robustness is the same for each activity. However, some of

the activities are more likely to delay the project completion; hence, larger slacks should be allocated to these activities. Chtourou and
Haouari (2008) propose to use the number of immediate successors as the weights since the activities having larger number of successors
are more likely to affect the project makespan. We adapt this measure using total slacks:
RM2 ¼
Xn

i¼1

NISi � TSi: ð2Þ
In this formulation, NISi refers to the number of immediate successors of activity i. Moreover, we suggest to use the total number of all suc-
cessors, NSi (i = 1, . . .,n):
RM3 ¼
Xn

i¼1

NSi � TSi: ð3Þ
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3.1.3. Slack utility function
The average or weighted slack approach assumes the same return for every unit of slack assigned. This approach might unnecessarily

inflate the slacks for some activities. One alternative approach is to use a function that has diminishing returns per extra unit of slack. For
the resource constrained project networks, Lambrechts et al. (2008) use a free slack-based utility function. We use TS and assume equal
weights for each activity, we propose the following measure:
RM4 ¼
Xn

i¼1

NSi

XTSi

j¼1

e�j: ð4Þ
In practice, it would make more sense to evaluate the activity slacks with respect to the activity’s duration, since the higher the slack/dura-
tion ratio (SDR), the higher is its capacity to prevent a delay. The reason for this is that as the activity durations increase, the probability of
observing longer delays increases. Thus, as an alternative approach, we propose to use SDR to assess robustness as follows:
RM5 ¼
Xn

i¼1

NSi

XdSDRie

j¼1

e�j; where SDRi ¼
TSi

pi
: ð5Þ
Chtourou and Haouari (2008) define a threshold level and assume zero return when the slacks allocated is more than the threshold. We adapt
this measure as follows:
RM6 ¼
Xn

i¼1

MinfTSi; frac � pig: ð6Þ
The parameter frac refers to the expected percentage increase in activity duration. We set this parameter to 20% in our experiments.

3.1.4. Dispersion of slacks
In addition to the magnitude of activity slacks, their dispersion over the activities might be important to evaluate schedule robustness.

Low variability of activity slacks is expected to be beneficial as it evenly distributes the delay risk among activities. As a dispersion measure,
we propose using the coefficient of variation (CV) and formulate as:
RM7 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðSDRÞ

p
SDR

; where SDR ¼
Pn

i¼1SDRi

n
: ð7Þ
Since high slack quantities and small variability among activities are preferred regarding the robustness, the schedules with smaller CV are
deemed to be more robust.

3.1.5. Percentage of potentially critical activities (RM8)
Traditionally in the literature, the activities with zero total slack are defined to be critical activities. We use the SDR as a criterion to

identify the criticality of activities and define the activities that have slack values less than 100n% of the activity duration as potentially
critical activities (PCA), i.e. PCA = {j: TSj/pj 6 n}. In our implementation, we set the slack duration threshold to 25%, i.e. n = 0.25. Since delays
in PCA are likely to result in delays in the project completion time, schedules with fewer critical activities are preferred with respect to the
robustness. We employ the ratio of the cardinality of PCA to the total number of activities as RM8.

3.1.6. Project buffer size
Project buffers are inserted at the end of projects to provide protection against possible delays. The critical chain project scheduling

(CCPS) emphasizes the importance of buffer management and proposes to insert project buffers. Schedules with larger project buffers
are preferred regarding robustness, but it may also deteriorate the project cost. We use the project buffer size as percentage of project
deadline,
RM9 ¼ 100
d� Cnþ1

d
; ð8Þ
Cn+1 denotes to the earliest project completion time. Project buffer size used in this measure is, in fact, the total slack of activity n + 1, which is
the amount of time by which the completion time of the project can be delayed without exceeding the project deadline.

Each measure has its own characteristic. For instance, RM2 and RM3 integrate project specific information regarding network character-
istics so that the performance of the measure improves. As the number of successors increases, it is more likely that the disruptions in these
activities might create a domino effect and increase the completion times of other activities, and it is more likely to have due date viola-
tions, which are penalized by the objective function in (1.0). Our experimental study also shows that the correlation increases as the num-
ber of successors is integrated (RM2 and RM3). Measures from RM4 to RM8 utilize functions of slacks as alternative measures. For instance,
RM8 considers all the activities that are on paths that are likely to be critical after some possible disruptions.

Unlike the other measures, RM9 results in aggregating the safety factor at the end as a project buffer instead of inserting slacks in be-
tween individual activities. Total variability of activity durations is reduced by risk pooling. Therefore by maximizing this measure, we
anticipate that the expected project completion time is minimized and (1.0) is maximized.

3.2. Experimental analysis

We use Monte Carlo Simulation to generate a random set of realizations of activity durations to test robustness measures. Given a base-
line schedule for a benchmark project and realizations of activity durations, we evaluate the effect of disruptions by using some perfor-
mance measures. These measures are functions of the difference between the given project deadline and the realized completion time.
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Having simulated the projects, the robustness measure that has the highest correlation with some performance measure (PM) is selected as
the best metric to represent robustness. In our implementation, we use two performance measures:

1. PM1: The proportion of replicates in which the project ends before the deadline.
2. PM2: Average delay in the project completion time as percentage of the project deadline (i.e., 100 Cnþ1�d

d for delayed projects).
For each problem instance, we generate 21 schedules using three scheduling policies:
(1) Optimal DTCTP-D: An initial baseline schedule is generated assuming no disruptions and solving the DTCTP-D exactly. We solve

small- and medium-sized DTCTP-D and DTCTP-B instances, which have less than 100 activities, efficiently by using optimization
MIP solver CPLEX 9.1. However, for optimally solving large-scale instances, we recommend to use the tailored Benders decompo-
sition proposed by Hazir et al. (2010). After assigning the modes, corresponding earliest start schedule (ESS) is found by using
CPM calculations.

(2) Project buffer insertion: Buffer insertion policy assumes a smaller deadline, i.e., d0 = d(1 � s), 0 < s < 1. In this way, the solution of the
DTCTP-D with a smaller deadline, d0, inserts a project buffer at the end of the schedule. The project buffer size is proportional to the
project deadline. Modes are assigned to activities by solving the DTCTP-D exactly with d0 and then corresponding ESS is determined.
We use s 2 {0.01,0.02, . . .,0.10} in our experiments.

(3) Safetytime insertion: This policy introduces a safety time proportional to nominal durations, i.e., p0i ¼ pið1þ DÞ; 8i 2 N. Thus, activity
durations are augmented and modes are assigned to the activities by solving the DTCTP-D exactly, assuming the augmented dura-
tions, p0i. However, the so-called roadrunner mentality is used to generate the schedule, i.e., the non-gating tasks (activities with
non-dummy predecessors) are started as soon as possible and safety times are ignored in this schedule. We use
D 2 {0.01,0.02, . . .,0.10} in our experiments.

To model the activity durations in the simulation, we use a lognormal distribution with mean equal to the baseline duration and
CV = 0.5. Several other project scheduling studies also suggest the use of this distribution (see Tavares et al. (1998), Herroelen and Leus
(2001) and Tukel et al. (2006)). We refer the readers to Tavares et al. (1998) for a discussion of the advantages of lognormal distribution.
To determine the number of replications required, we use the sequential procedure proposed by Law and Kelton (2000, Chapter 9). This
procedure inserts new replications one by one and determines the length of the simulation so that 95% confidence level for the mean
of the performance measures is constructed. In this procedure, a relative error of 5%, which specifies a bound on the percentage error of
the point estimate of the sample means, is used. The following algorithm is used to test the robustness measures using simulation.

1. Schedule generation: Given the Scheduling Policy (SP), generate an initial baseline schedule. Then, calculate RMi (i = 1, . . .,9) of each
schedule.

2. Monte Carlo Simulation:
a. Generate the processing time of each activity using the activity time distribution (in other words, the activity durations are perturbed

while executing the schedule in the simulation run).
b. Generate the early start schedule by using the randomly generated durations and classical CPM. Compute and record the project

completion time.
c. Repeat Step 2 Nr times (Nr: number of replications).

3. Correlation computation: Calculate the PMj, (j = 1,2). Find out and report the correlation between RMi and PMj (i = 1, . . .,9; j = 1,2).

3.3. Computational results

We use a subset of the random instances generated by Akkan et al. (2005) to test the proposed measures and algorithms. Mainly three
factors determine the difficulty to solve a particular problem instance: network structure, the number of modes per activity and the tight-
ness of the deadline. Similarly, two parameters define the network structure: complexity index (CI) and the coefficient of network com-
plexity (CNC). CI is a measure developed by Bein et al. (1992) to assess how far the given network is from being series-parallel. It is
defined to be the minimum number of node reductions required to reduce a given two terminal directed acyclic graph into a single-arc
graph, when used together with series and parallel reductions. The second complexity measure, CNC is developed by Pascoe (1966) and
defined to be the ratio of the number of arcs to the number of nodes.

The number of modes per activity is randomly generated with discrete uniform distribution using interval U[2,10]. To compute the
deadline for each instance, the minimum possible project duration, Tmin (length of the critical path with shortest modes), and the maximum
possible project duration, Tmax (length of the critical path with longest modes), are first calculated. Then, the deadline is set as follows:
d ¼ Tmin þ hðTmax � TminÞ with 0 < h < 1: ð9Þ
To generate the cost figures, three cost functions are used: Concave (ccv), convex (cvx), and neither concave nor convex cost functions (hyb).
Table 1 summarizes the parameters of the test beds.

CNC and CI are the determinants of the number of activities in a project. This experimental setting involves projects with 85–136 activ-
ities. In the computational study, for each setting three different instances are solved; hence, each measure is tested with 36 problems.
Since we do not observe a significant effect of CI on computational effort in our experiments, we set CI = 13. This is a result that supports
Akkan et al.’s experimental finding for approximate solutions of DTCTP-D. Furthermore, the hardest problem instances correspond to
h = 0.15; we use this value in our experiments.

To evaluate the relationship between RM and PM, we report the coefficient of determination (R2) and the significance levels. Table 2
illustrates the average of R2 over all problem instances that have the same network complexity figures. Looking at Table 2, we see that
the buffer size (RM9) has the largest R2 value regardless of the network complexity. We also illustrate the high correlation between RM9

and PM1 in Fig. 1. Furthermore, measures RM1, RM2, RM3, RM5, and RM8 also have high correlations with the PM. For all the measures,
the R2 is found to be insensitive to the changes in CNC. Also, the proposed transformation of the slack utility function dramatically increases
the correlations (RM5 vs RM4).



Table 1
Experimental setting.

Parameters Level(s)

CI 13
CNC 5, 6, 7, 8
Number of modes U[2,10]
Deadline parameter (h) 0.15
Cost function (CF) ccv, cvx, hyb

Table 2
Correlation between robustness and performance measures (R2).

CNC = 5 CNC = 6 CNC = 7 CNC = 8

PM1 PM2 PM1 PM2 PM1 PM2 PM1 PM2

RM1 0.9104 0.8717 0.9486 0.9301 0.9611 0.9446 0.9812 0.9579
RM2 0.9468 0.9191 0.9681 0.9503 0.9542 0.9432 0.9778 0.9634
RM3 0.9538 0.9251 0.9701 0.9552 0.9582 0.9460 0.9754 0.9627
RM4 0.2239 0.2541 0.1928 0.2194 0.2318 0.2454 0.2284 0.2537
RM5 0.8529 0.8376 0.9349 0.9239 0.9131 0.8972 0.9402 0.9299
RM6 0.6411 0.6626 0.5867 0.6270 0.5347 0.5378 0.5814 0.5364
RM7 0.3789 0.3803 0.4016 0.3952 0.6597 0.6610 0.6765 0.6711
RM8 0.8524 0.8381 0.8726 0.8608 0.8253 0.8164 0.7500 0.7470
RM9 0.9603 0.9462 0.9703 0.9612 0.9707 0.9588 0.9802 0.9653
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Fig. 1. Scatter plot of PM1 and RM9.
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In addition, we compare the best four robustness measures among each other. In Table 3, we report the significance of the mean dif-
ferences of the R2 values over 36 problem instances; the t-test with 95% confidence interval, and the corresponding p values. For example,
the difference between RM9 and RM1 is found to be significant for both performance measures. This table illustrates that RM9 and RM3 are
good estimates of schedule robustness. They have significant differences in R2 values when compared to the other robustness measures. To
maximize robustness, both measures could be optimized either as a single criterion or multi-criteria.
Table 3
Individual 95% confidence intervals for all pairwise comparisons.

RM3 RM2 RM1

PM1

RM9 (�0.318,1.518) (�0.212,1.946) (0.385,3.626)*
0.193 0.112 0.017

RM3 (�0.063,0.596) (0.106,2.705)*
0.109 0.035

RM2 (0.015,2.263)*
0.047

PM2

RM9 (�0.074,2.052) (0.148,2.624)* (1.455,4.912)*
0.067 0.029 0.001

RM3 (0.059,0.735)* (0.820,3.569)*
0.023 0.003

RM2 (0.650,2.945)*
0.003

* Statistically significant difference.
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4. Robust scheduling of DTCTP

Using the insight obtained by the computational experiments, we generate the baseline schedule by maximizing the project buffer size
(RM9), the robustness measure that has the highest correlation with the performance measures, so that the schedule involves sufficient
safety time to absorb unanticipated disruptions. However, while maximizing robustness, the project cost should also remain within accept-
able limits.

4.1. A two-phase methodology to generate a robust schedule

4.1.1. Phase 1: Exact solution of the DTCTP-D
The input is a DTCTP-D instance having a preset project deadline d. The objective value of the optimal solution sets a threshold budget

value B0 for the next phase. This is the minimum achievable cost under the assumption that each activity lasts as it is planned and the
deadline constraint is satisfied. However, this generated schedule is not protected against disruptions. In the sequel, we refer to this sche-
dule as the non-protected schedule and we will use it as a benchmark.

4.1.2. Phase 2: Exact solution of the DTCTP-B
Having set the budget to B0, a baseline schedule is generated by optimally solving the budget problem (DTCTP-B). In so doing, the algo-

rithm aims at inserting a maximal-size project buffer while controlling the project cost. The project buffer size is maximal given the budget
constraint because DTCTP-B, which minimizes the makespan while not exceeding a preset budget, is solved exactly. Furthermore, given the
mode assignments, ESS maximizes the sum of total slacks (RM1).

We observe that increases in the budget lead to increases in the project buffer. Hence in order to improve schedule robustness, we set in
Phase 2 an ‘‘inflated” budget B = (1 + g)B0 (with g > 0). However, as this policy inflates the budget, it is crucial to address the trade-off be-
tween project cost and schedule robustness. For this purpose, an analytical model to set g in a most profitable way will be introduced in
Section 4.2.

Interestingly, we observe that a slight increase in the project buffer usually results in a significant improvement in the performance
measures. We test the significance of the difference between the performance measures of the protected schedules with g = 0.02 and
the non-protected schedules (g = 0) as well as the corresponding confidence intervals with simulation. We use for each instance, a coeffi-
cient of variation (CV) of 0.25 and 0.5, respectively, to characterize small and moderate variability in the activity durations. The confidence
intervals for difference of the performance measures (protected vs non-protected) are reported in Table 4. We see from this table that when
the proposed two-phase approach is used, it is possible to increase the probability of completing the project on-time (PM1) significantly
with small budget amplifications.

In Fig. 2, we show the relationship between budget amplification and the RM9. This figure depicts the behavior of the buffer size as a
function of the percentage increase of the budget (i.e. 100g%). The averages over the entire project instances included in the aforemen-
tioned test bed are reported in this figure. It clearly demonstrates the strong correlation between budget increase and buffer size increase.
Table 4
The significance test for the differences (protected–non-protected).

Non-protected (g = 0.00) Protected (g = 0.02)

PM1 PM2

CV = 0.25
PM1 (18.570,24.790)*
PM2 (�0.334,�0.229)*

CV = 0.5
PM1 ( 2.841,4.609)*
PM2 (�0.972,�0.576)*

* Indicates that test statistic is significant at 5% level.
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Fig. 2. Relationship between budget amplification and buffer size increase.
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We carry out a simulation study to assess the effectiveness of the proposed two-phase approach as follows. First, we set the budget
amplification rate g. Then, for each instance of the test bed, we randomly generate perturbed processing times and compute the project
completion time. Finally, we calculate the average values of PM1 and PM2 over all instances. Fig. 3 illustrates the relationship between bud-
get amplification and PM1.

We see that when variability is low, the performance measures could be significantly improved with small budget increases. Indeed,
when CV = 0.25, with a 6% budget increase, PM1 increases from 44% to 89%. When variability in activity durations gets larger, much larger
budget amplification is required to have the projects completed on time. We call the schedules obtained at the end of Phase 2 as protected
schedules. Furthermore, the comparison of Figs. 2 and 3 provides evidence of the correlation between RM9 and PM1.

In addition to the above mentioned PM, we examine the average project completion time deviations from the project deadline as a func-
tion of g. This measure evaluates the project lateness as it considers both tardiness and earliness as well. The results are displayed in Fig. 4;
when CV = 0.25 (0.5), a 3% (16%) budget increase is sufficient to make the expected lateness be zero.

We show that using the two-phase approach, the larger the budget is, the more robust is the derived schedule. However, a crucial issue
is to decide on the budget to allocate and determine the corresponding activity modes so that an optimal trade-off between cost and
robustness is achieved. In the next section, we propose a model, which is closely related to Model (1.0)–(1.4), and present the solution
approach.

4.2. Analytical study of budget allocation

Model (1.0)–(1.5) assumes that the budget is given and activity durations are random. Now, we investigate a more general where the
budget to be allocated (or equivalently, the increase coefficient g) is a decision variable instead of being a parameter
Maximize hðgÞ ¼ E aMax 0; d� Cnþ1ðgÞf g � bMax 0;Cnþ1ðgÞ � df g½ � � B0ð1þ gÞ ð10Þ
Subject to 1.1,1.2,1.4,1.5 and
X
j2N

X
m2Mj

cjmxjm 6 B0ð1þ gÞ; ð1:3 0Þ

g P 0:
In the above model, h(g) and Cn+1(g) refer to the net expected profit and project completion time, respectively. The objective function
maximizes the net profit, which is equal to the difference between the revenue and the sum of the allocated budget (B0(1 + g)) and penalty
cost. The complexity of this latter model stems from the fact that calculating the expected project completion time (Cn+1(g)) exactly is very
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Fig. 3. The relationship between budget amplification and PM1.
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difficult. However, a striking observation on Fig. 4 is that the average lateness (or equivalently, the average completion time) varies almost
linearly with budget amplification. To evaluate this relationship, having checked the assumptions, we use a linear regression model to
approximate the expected completion time. In this sequel, we make the following assumption.

A1: The expected project completion time is a convex piecewise linear function of the budget augmentation factor with k intervals. That
is:
Cnþ1ðgÞ ¼ a0 þ
Xi�1

j¼1

bj�1ðgj � gj�1Þ þ bi�1ðg� gi�1Þ if gi�1 6 g 6 gi < gk; i ¼ 1; . . . ; k� 1; ð11Þ
where g0 = 0, ai and bi represent the intercepts and slopes of linear segments.
In practice, two to four segments would be sufficient to have a reasonable approximation of this time/cost relationship. Clearly, more linear
segments could be used to yield more accurate approximation, however, it requires more computational effort as defining a segment re-
quires simulating the project. The second assumption (A2) expresses that the budget amplifications have diminishing rate of return. Hence,
as the budget increases, the marginal reduction in the project completion decreases.

A2: The slopes are assumed to be negative and increasing with respect to budget increases, i.e. bi < bi+1 < 0, i = 1, . . .,k.

The following proposition defines the structure of the optimal solution.
Proposition 1. Under assumptions A1 and A2, the optimal budget amplification policy is either one of the breakpoints of the piecewise linear
function or the critical point where the expected completion time is zero.

Proof. See Appendix A. h

As an immediate result of Proposition 1, we propose the following algorithm to allocate the budget.

Algorithm

1. Initialization:
(a) Define the minimum and maximum budgets, B0, and Bmax. These are the costs so that activities are performed in the least and the

most costly modes, respectively.
Define k intervals [gi�1,gi] (i = 1, . . .,k), where gk ¼ ðBmax � B0Þ=B0; gi ¼ i

k gk ði ¼ 1; . . . ; kÞ and g0 = 0.
(b) Given B = B0, generate a schedule by solving the DTCTP-B exactly.
(c) Invoke Monte Carlo Simulation (the activity durations are perturbed while executing the schedule in the simulation run), and find

out the expected completion time, set a0 = Cn+1(0).
2. For i = 1, . . .,k

(a) Set the budget, B = (1 + gi)B0.
(b) Given B, generate the schedule by solving the DTCTP-B exactly.
(c) Invoke Monte Carlo Simulation and find the expected completion time, Cn+1(gi) Then, set bi�1 ¼ Cnþ1ðgiÞ�Cnþ1ðgi�1Þ

gi�gi�1
, and

ai = ai�1 + bi�1(gi � gi�1).
3. Having defined the parameters a, b, B0, ai, bi, i = 0, . . .,k, use Table 5 in the Appendix to find out the optimal policy.

The major advantage of the analytical model is that the computational effort to find the expected completion time is significantly re-
duced. We show that at most k + 1 budget settings, which are the breakpoints of the piecewise linear function, should be considered.

5. Conclusion

To address the crucial need to build robust project schedules that are less vulnerable to disruptions caused by uncontrollable factors, we
have investigated the robust scheduling of a variant of the multi-mode discrete time/cost trade-off project scheduling problem. In this var-
iant, the problem is to select a mode for each activity so that the project is completed within a preset deadline and the total cost is minimized.
We describe and analyze the pertinence of several robustness measures. We provide empirical evidence that the project buffer size is the
more appropriate robustness measure regardless of the network complexity. Based on this finding, we propose a two-step methodology
for generating robust schedules. In the first phase of the methodology, we determine the minimum required budget. Next, in the second
phase, this budget is slightly inflated by a specified amplification factor and then the buffer size is maximized. We provide strong empirical
evidence that the budget amplification consistently improves the schedule robustness. Therefore, we address the important issue of deter-
mining the best trade-off between project cost and schedule robustness. To that aim, we propose an extended model involving both tardi-
ness penalties and earliness revenues and we describe an appropriate solution strategy that requires a restricted number of simulations.

A promising research focus could be deriving robust schedules for the multi-mode resource constrained project scheduling problem.
This problem might be viewed as a natural combination of the well-known resource constrained project scheduling problem and the
time/cost trade-off problem. We expect that the results presented in this paper could provide a useful base for investigating this challeng-
ing problem.

Appendix 1

Proof of Proposition 1. The proof rests on investigating all the possible parameter settings and finding out the optimal budget allocation
for each setting. Given a budget allocation, the project could be either early or late and each case is considered separately due to the
structure of (11).
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In order to make a distinction between these two cases, we find out the critical budget factor, gc, so that Cn+1(gc) = d. If it is not possible
to complete on time with the maximum budget, i.e. Cnþ1ðgkÞao þ

Pk
j¼1bj�1ðgj � gj�1Þ < d, then we set gc = gk. On the other hand, if the

project is expected to be early without any budget increase i.e. a0 6 d, we set gc = 0.
The project is expected to be late when 0 6 g 6 gc. Hence, in this case
hðgÞ ¼ �B0ð1þ gÞ � b ao þ
Xi�1

j¼1

bj�1ðgj � gj�1Þ þ bi�1ðg� gi�1Þ � d

 !

¼ bd� b ao þ
Xi�1

j¼1

bj�1ðgj � gj�1Þ � bi�1gi�1

 !
� B0 � ðB0 þ bbi�1Þg: ð12Þ
On the other hand, if 0 < gc < g then project is expected to be early. Thus,
hðgÞ ¼ a d� ao �
Xi�1

j¼1

bj�1ðgj � gj�1Þ � bi�1ðg� gi�1Þ
 !

� B0ð1þ gÞ

¼ ad� a ao þ
Xi�1

j¼1

bj�1ðgj � gj�1Þ � bi�1gi�1

 !
� B0 � ðB0 þ abi�1Þg: ð13Þ
Two additional parameters are required to be defined: d1 = Max{i : gi < gc, i = 0, . . .,k}, d2 = Min{i : gi+1 > gc, i = 0, . . .,k}. Three cases each con-
taining three sub-cases could be identified such that each condition has specific optimality conditions:

Case 1: b 6 �B0
b0

:

In this case, b 6 �B0
bi
8i ¼ 1; . . . ; k� 1, due to A2.
1a. a 6 �B0
bd2

: due to A2, a 6 �B0
bi
8i ¼ d2; . . . ; k� 1.

In this case that no budget augmentation improves the profit. The optimal policy is g* = 0.

1b. �B0
bd2

< a 6 �B0
bk�1

,

Define f ¼Min i : a < �B0
bi
; 8i ¼ d2 þ 1; . . . ; k� 1

n o
. The optimal policy is g* = 0 with profit: h(0) = �b(ao � d) � B0 or g* = gf with

hðgf Þ ¼ a d� ao �
Pf

j¼1bj�1ðgj � gj�1Þ
� �

� B0ð1þ gf Þ.
The profits are compared and the comparison results in:

g� ¼
0 if ðao � dÞðb� aÞ � a

Pf
j¼1

bj�1ðgj � gj�1Þ � B0gf 6 0;

gf o=w:

8><
>:

1c. �B0
bk�1

< a: due to A2, �B0
bi
< a 8i ¼ d2; . . . ; k� 1.

In this case, an optimal policy is either to set g* = 0 with profit h(0) = �b(ao � d) � B0 or g* = gk with profit hðgkÞ ¼ a d� ao�ðPk
j¼1bj�1ðgj � gj�1ÞÞ � B0ð1þ gkÞ. Comparison results in:

g� ¼
0 if ðao � dÞðb� aÞ � a

Pk
j¼1

bj�1ðgj � gj�1Þ � B0gk 6 0;

gk o=w:

8><
>:

Case 2. �B0
b0
< b 6 �B0

bd1

Define e ¼ Min i : b < �B0
bi
; i ¼ 1; . . . ; d1

n o
.

2a. a 6 �B0
bd2

; g� ¼ ge

2b. �B0
bd2

< a 6 �B0
bk�1

:

Compare hðgeÞ ¼ �bðao þ
Pe

j¼1bj�1ðgj � gj�1Þ � dÞ � B0ð1þ geÞ with hðgf Þ ¼ aðd� ao �
Pf

j¼1bj�1ðgj � gj�1ÞÞ � B0ð1þ gf Þ. Comparison
results in

g� ¼
ge if ðao � dÞðb� aÞ � a

Pf
j¼1

bj�1ðgj � gj�1Þ þ b
Pe
j¼1

bj�1ðgj � gj�1Þ � B0ðgf � geÞ 6 0;

gf o=w:

8><
>:

2c. �B0
bk�1

< a
Now compare hðgeÞ ¼ �bðao þ

Pe
j¼1bj�1ðgj � gj�1Þ � dÞ � B0ð1þ geÞwith hðgkÞ ¼ aðd� ao �

Pk
j¼1bj�1ðgj � gj�1ÞÞ � B0ð1þ gkÞ. The opti-

mal policy is:



Table 5
Budget amplification policies.

b a

0;� B0
bd2

h i
� B0

bd2
;� B0

bk�1

� i
� B0

bk�1
;1

� �

0;� B0
b0

h i
g* = 0 g* 2 {0,gf} g* 2 {0,gk}

� B0
b0
;� B0

bd1

� i
g* = ge g* 2 {ge,gf} g* 2 {ge,gf}

� B0
bd1
;1

� �
g* = gc g* = gf g* = gk
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g� ¼
ge if ðao � dÞðb� aÞ � a

Pk
j¼1

bj�1ðgj � gj�1Þ þ b
Pe
j¼1

bj�1ðgj � gj�1Þ � B0ðgk � geÞ 6 0;

gk o=w:

8><
>:

Case 3. �B0
bd1

< b: due to A2, b P �B0
bi
8i ¼ 0; . . . ; d1 � 1.

3a. a 6 �B0
bd2

, the optimal policy is g* = gc.

3b. �B0
bd2

< a 6 �B0
bk�1

, the optimal policy is g* = gf.

3c. a P �B0
bk�1

, the optimal policy is g* = gk.

Table 5 summarizes the different cases and the corresponding optimal budget augmentation policies. Considering all the possibilities
summarized in Table 5, the optimal budget amplification policy is defined with either one of the breakpoints or the critical point which
makes the expected completion time zero. h
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