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Abstract A Location-Routing Problem (LRP) combines two difficult prob-
lems, facility location and vehicle routing, and as such it is inherently hard
to solve. In this paper, we propose a different formulation approach than
the common arc-based product-flow (Arc-BPF) approach in the literature.
We associate product amounts to the nodes of the network resulting in a
node-based product-flow (Node-BPF) formulation. Our main objective is to
develop LRP models with fewer constraints and variables, which can be
solved more efficiently. To introduce the proposed approach, we reformulate a
complex four-index Arc-BPF LRP model from the literature as a three-index
Node-BPF model, which computationally outperforms the former. We then
introduce a heuristic method.

Keywords Location-routing problem · Mixed integer linear programming ·
Logistics · Network design

1 Introduction

Organizations in today’s complex environments, whether civilian organiza-
tions in competitive markets or military organizations in hostile war arenas,
need to operate at their full potential to survive. In order to achieve this
potential, they must make proper strategic decisions that affect the long-
term direction of the entire organization, tactical decisions that focus on
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intermediate-term issues, and operational decisions that concentrate on day-
to-day activities within the organization.

In the special case of transportation organizations, Crainic and Laporte
(1997) identify these decision levels, review the literature, and provide the
common mathematical models from an operations research perspective. Ac-
cording to them, strategic decisions include the design of the physical network
and the location of main facilities. They refer to these issues as Logistics System
Design which, consists of location, network design, and regional multimodal
planning models. Tactical decisions concern mainly the route choice, service
type, etc. They categorize these issues into two groups of which the first is
long distance (less-than-truckload or rail) and the second is short distance
(several pick up and deliveries mainly by truck) transportation. They refer to
the former as Service Network Design and to the latter as Vehicle Routing
Problems (VRP). In daily planning, operational decisions are taken in a
dynamic environment, where time is an important factor (e.g. vehicle or crew
schedules, time windows), and involve uncertain factors, such as demand.
Therefore, they investigate these issues under two headings, dynamic and
stochastic models (mainly VRP models).

Strategic, tactical and operational problems can be collectively identified as
Distribution Network Design Problems (DNDP). Within the context of DNDP
the Location-Routing Problem (LRP) merges facility location and vehicle
routing into a single problem where strategic location and tactical/operational
routing decisions are taken simultaneously. Salhi and Rand (1989) evaluate the
effect of ignoring routing when locating facilities and clearly show that sepa-
rating facility location from vehicle routing may lead to suboptimal decisions.
This interdependence between the location of facilities and vehicle routing
necessitates the combination of such decisions (the number and location of the
facilities and the routes emanating from the facilities to serve multiple demand
points), which in turn leads to LRPs.

The LRP has been studied since the early 1970s and there are several
surveys on it (see, e.g., Berman et al. 1995; Laporte 1988; List et al. 1991;
Min et al. 1998; Ahipasaoglu et al. (2004, unpublished); Nagy and Salhi 2007).
According to the recent classification of Toyoglu et al. (2011) the majority
of the LRP literature considers delivery or pickup of a single product, uses
deterministic and hypothetical data, includes two layers and locates uncapac-
itated multiple facilities at one layer with a discrete solution space, utilizes a
capacitated homogeneous vehicle fleet, considers a single planning period with
no time restrictions, has a single objective function, allows a customer to be
supplied by only a single vehicle, incorporates no inventory and uses heuristic
methods for solution.

The LRP accepts many different formulations, of which the most widely
used are vehicle-flow and commodity-flow formulations (see, e.g., Laporte
1988), where the latter explicitly considers the quantity of commodities trav-
eling in the system whereas the former only considers the vehicle circulation.
Complex LRP models (see, e.g., Hansen et al. 1994; Yi and Ozdamar 2007) in
the literature generally use commodity-flow formulation, since it enables the
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inclusion of more details and facilitates modeling of real world applications.
For example, one of the most realistic LRP models is due to Ambrosino and
Scutellà (2005) where they model a four-layer (plants, central depots, regional
depots, and customers) LRP with inventory considerations and introduce
dynamic version of the model.

In general, the LRP is NP-hard (see, e.g., Laporte 1988; Min et al. 1998;
Nagy and Salhi 2007). Although there exist several exact solution method-
ologies for LRPs (see, e.g., Laporte and Nobert 1981; Laporte et al. 1986,
1988; Laporte and Dejax 1989; Belenguer et al. 2011; Baldacci et al. 2011;
Karaoglan et al. 2011), almost all reviews or surveys urge the use of heuristics
and a significant amount of studies resort to heuristics due to the complexity
of LRPs.

Recently, Nagy and Salhi (2007) classify LRP heuristics into four groups,
namely; sequential, clustering-based, iterative, and hierarchical methods. In
general, all methods decompose an LRP into its major components, which is
location, allocation, and routing. They then solve these parts either repeatedly,
iteratively, or simultaneously. In particular, sequential methods (see, e.g., Or
and Pierskalla 1979; Nambiar et al. 1989; Srivastava and Benton 1990) usually
first solve a location problem to decide which depots to open and how to
allocate customers to open depots. Then, given the locations of the open
depots a vehicle routing problem is solved. Clustering-based methods (see, e.g.,
Billionnet et al. 2005; Schwardt and Dethloff 2005; Barreto et al. 2007) first
group the customers into clusters such that each cluster contains one potential
depot or vehicle. Then, for each cluster a VRP is solved either after or before
locating a depot. Iterative methods (see, e.g., Perl and Daskin 1985; Salhi and
Fraser 1996; Wu et al. 2002; Prins et al. 2007; Duhamel et al. 2010; Tavakkoli-
Moghaddam et al. 2010) usually construct two or more subproblems each one
including one or two of the major components. Then, these subproblems are
solved repeatedly such that a subproblem provides some input to the next
subproblem in an iterative manner. Hierarchical methods (see, e.g., Nagy and
Salhi 1996; Albareda-Sambola et al. 2005; Melechovsky et al. 2005; Bozkaya
et al. 2010) treat the location subproblem as the main problem and the routing
subproblem as the subordinate problem that is embedded into the main
problem. A hierarchical method then solves the location problem while in each
step of the location problem it solves a routing problem which in turn provides
information to the location problem.

Our main objective in this study is to provide a modeling approach different
from the common ones existing in the literature. To the authors’ knowledge,
this is the first reported study in the operational research literature to pro-
vide such a mathematical formulation for modeling LRPs. To introduce our
modeling approach, we consider the variant of the state of the art LRP model
defined by Toyoglu et al. (2011). Their LRP model, in contrast with the
majority of the LRP literature, utilizes a capacitated heterogeneous vehicle
fleet, considers capacitated facilities, has three layers, includes two-sided time
windows, locates facilities at two different layers, distributes multiple products
and allows multiple sourcing.
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The main difference between the study of Toyoglu et al. (2011) and this
study is the attempt to reduce the number of constraints and variables in the
mathematical model by applying a new node-based formulation approach. The
foremost idea is to reduce the solution time purely by modeling, and therefore
the contribution of this paper lies in its mathematical formulation.

The remainder of this study is structured as follows. We define the problem
in Section 2. We introduce our modeling approach and develop a mathematical
model in Section 3. We compare the computational performance of our model
with previous results in the literature in Section 4. We introduce a heuristic
solution methodology in Section 5 and test it in Section 6. We conclude with
Section 7.

2 Problem definition

Toyoglu et al. (2011) propose a replenishment system which is called Mobile
Ammunition Distribution System (Mobile-ADS) where ammunition (ammo)
flows from depots to combat units via transfer points. Ammo that is produced
or procured is first received by main depots from where it is moved forward
with rail network by trains to Fixed Transfer Points (Fixed-TPs). The flow from
the main depots to Fixed-TPs is not included in the Mobile-ADS model. It is
assumed that in case of war there will be enough ammo at the main depots
and current rail network structure and equipment are sufficient to carry the
demand to the Fixed-TPs on time.

From Fixed-TPs ammo is moved to Mobile Transfer Points (Mobile-TPs)
by commercial trucks on road networks. Then Mobile-TPs issue ammo to their
attached combat units with special ammo trucks which have the capability to

Fig. 1 Mobile Ammo
Distribution System on the
battlefield
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move on terrain. A Mobile-ADS on the battlefield is presented in Fig. 1. In
this figure FTP, MTP and CU stands for Fixed-TP, Mobile-TP, and combat
unit respectively.

In other words, ammo is transferred from trains to commercial trucks and
then to ammo trucks at Fixed-TPs and Mobile-TPs. Assuming the locations
of the main depots and combat units are known in advance, the remaining
decisions that must be made are; (1) the locations of Fixed-TPs and Mobile-
TPs and (2) the routes and schedules of commercial and ammo trucks to
distribute ammo among Fixed-TPs, Mobile-TPs, and combat units. Mobile-
ADS design problem is an LRP since it contains both location and routing
problems.

3 Mathematical formulation

Customarily, LRP models involve a decision variable such as fijv which denotes
the quantity of product traveled on arc (i, j) with vehicle v. Multi-product
models add another index to differentiate between commodities. Henceforth,
we refer to this approach as arc-based product-flow (Arc-BPF).

In this study we investigate a different product-flow approach to develop an
LRP model with fewer number of constraints and variables. Briefly, we replace
fijv with two new decision variables, where f _outiv denotes the quantity of
product that is sent from node i and f _in jv denotes the quantity of product that
is dropped to node j with vehicle v. Henceforth, we refer to this approach as
node-based product-flow (Node-BPF). To the authors’ knowledge, no model
that incorporates Node-BPF approach has previously been reported in the
LRP literature.

We consider the Mobile-ADS in Fig. 1 to be a directed and connected
network G = (N, A) that is defined by a set N of nodes and a set A of arcs.
Three types of nodes (Fixed-TPs, Mobile-TPs and combat units), and two types
of vehicles (commercial and ammo trucks) exist. The model specifications are
given in Table 1.

3.1 Product flow balance constraints

The product flow decision variables can be seen in Fig. 2. Note that in
f tp_outivp and mtp_inivp, v is a commercial truck, whereas in mtp_outivp and
cu_inivp, v is an ammo truck.

∑

v∈VM

cu_inivp = Qip ∀i ∈ NC, p ∈ P (1)
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Table 1 Model specifications

Sets
N : Set of all nodes such that N = NF

⋃
NM

⋃
NC and NF , NM, NC are mutually

exclusive
NF : Set of potential Fixed-TP nodes such that NF ⊂ N
NM : Set of potential Mobile-TP nodes such that NM ⊂ N
NC : Set of combat unit nodes such that NC ⊂ N

Note that NF M = NF
⋃

NM and NMC = NM
⋃

NC
V : Set of all vehicles such that V = VF

⋃
VM and VF , VM are mutually exclusive

VF : Set of commercial trucks (all stationed at Fixed-TPs) such that VF ⊂ V
VM : Set of ammo trucks (all stationed at Mobile-TPs) such that VM ⊂ V
P : Set of ammo types

Parameters
Qip : Demand of combat unit i for ammo type p
CDip : Nonnegative capacity of transfer point i for ammo type p
CVvp : Nonnegative capacity of vehicle v for ammo type p
CTv : Nonnegative total capacity of vehicle v

T Iij : Travel time between nodes i and j, which includes the service time at node i
T Eip : Earliest time that combat unit i can receive supplies of ammo type p
T Lip : Latest time that combat unit i can receive supplies of ammo type p
T Mp : Maximum latest arrival time of ammo type p among units, that is

T Mp = maxi∈NC {T Lip}
T M : Maximum of the latest arrival times of all ammo types, that is

T M = maxp∈P{T Mp}
TCvp : Cost of transporting one unit of ammo type p on vehicle v per hour
VCv : Cost of acquiring vehicle v

DCv : Cost of driving vehicle v per hour
FCi : Fixed cost of opening transfer point i

Decision variables
f tp_outivp : Amount of ammo type p that is sent from Fixed-TP i with commercial truck v

mtp_inivp : Amount of ammo type p that is dropped to Mobile-TP i with commercial truck v

mtp_outivp : Amount of ammo type p that is sent from Mobile-TP i with ammo truck v

cu_inivp : Amount of ammo type p that is dropped to combat unit i with ammo truck v

xijv : 1 if vehicle v travels from node i to node j and 0 otherwise
yi : 1 if transfer point i is established and 0 otherwise
kivp : Indicator of whether ammo type p is brought to (sent from) node i with truck

v or not
tpip : Arrival time of ammo type p at node i
tviv : Arrival time of vehicle v at node i

Constraints (1) ensure that demand of a combat unit for each ammo type must
be satisfied by ammo trucks.

∑

i∈NF

f tp_outivp =
∑

i∈NM

mtp_inivp ∀v ∈ VF, p ∈ P (2a)

∑

i∈NM

mtp_outivp =
∑

i∈NC

cu_inivp ∀v ∈ VM, p ∈ P (2b)

Fig. 2 Node-based
product-flow decision
variables
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∑

v∈VF

mtp_inivp =
∑

v∈VM

mtp_outivp ∀i ∈ NM, p ∈ P (3)

Constraints (2) guarantee that each commercial (ammo) truck drops its entire
load, which it loads from a Fixed-TP (Mobile-TP), to Mobile-TPs (combat
units). Constraints (3) ensure that total inflow of an ammo type to a Mobile-
TP that is dropped by commercial trucks is equal to the total outflow of that
ammo type from that Mobile-TP that is sent by ammo trucks.

3.2 Vehicle flow balance constraints

∑

i∈NF

∑

j∈NM

xijv ≤ 1 ∀v ∈ VF (4a)

∑

i∈NM

∑

j∈NC

xijv ≤ 1 ∀v ∈ VM (4b)

Constraints (4) indicate that a vehicle can be dispatched from a transfer point
at most once.

∑

j∈NM

x jiv =
∑

j∈NM

xijv ∀i ∈ NF, v ∈ VF (5a)

∑

j∈NC

x jiv =
∑

j∈NC

xijv ∀i ∈ NM, v ∈ VM (5b)

∑

j∈NF M
j�=i

x jiv =
∑

j∈NF M
j�=i

xijv ∀i ∈ NM, v ∈ VF (6a)

∑

j∈NMC
j�=i

x jiv =
∑

j∈NMC
j�=i

xijv ∀i ∈ NC, v ∈ VM (6b)

Constraints (5) force each vehicle to turn back to its home transfer point where
it is allocated. Constraints (6) require that each vehicle leaves the node that it
enters.

3.3 Capacity constraints

∑

v∈VF

f tp_outivp ≤ CDip · yi ∀i ∈ NF, p ∈ P (7a)

∑

v∈VM

mtp_outivp ≤ CDip · yi ∀i ∈ NM, p ∈ P (7b)
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Constraints (7) ensure that the amount of ammo type p that is transferred from
a transfer point cannot exceed the appropriate capacity. They also guarantee
that there is no flow from/through any closed transfer point.

∑

i∈NM

mtp_inivp ≤ CVvp ·
∑

i∈NF

∑

j∈NM

xijv ∀v ∈ VF, p ∈ P (8a)

∑

i∈NC

cu_inivp ≤ CVvp ·
∑

i∈NM

∑

j∈NC

xijv ∀v ∈ VM, p ∈ P (8b)

∑

p∈P

∑

i∈NF

f tp_outivp ≤ CTv ·
∑

i∈NF

∑

j∈NM

xijv ∀v ∈ VF (9a)

∑

p∈P

∑

i∈NM

mtp_outivp ≤ CTv ·
∑

i∈NM

∑

j∈NC

xijv ∀v ∈ VM (9b)

Constraints (8) ensure that vehicle capacities are not exceeded and forbid un-
used vehicles to carry any flow. All vehicles also have total capacity restrictions
respected by constraints (9).

f tp_outivp ≤ CVvp ·
∑

j∈NM

xijv ∀i ∈ NF, v ∈ VF, p ∈ P (10a)

mtp_inivp ≤ CVvp ·
∑

j∈NF M
j�=i

x jiv ∀i ∈ NM, v ∈ VF, p ∈ P (10b)

mtp_outivp ≤ CVvp ·
∑

j∈NC

xijv ∀i ∈ NM, v ∈ VM, p ∈ P (10c)

cu_inivp ≤ CVvp ·
∑

j∈NMC
j�=i

x jiv ∀i ∈ NC, v ∈ VM, p ∈ P (10d)

Constraints (10) state that if there is an outflow (inflow) of an ammo type
from (to) a node by a vehicle then that vehicle must be dispatched from (enter
to) that node. Conversely, they maintain that if no vehicle is dispatched from
(enters to) a node then no outflow (inflow) of any ammo type can exit from
(enter to) that node.

3.4 Relation constraints

We use the binary decision variable kivp as an indicator of (1) whether ammo
type p is brought to Mobile-TP (combat unit) i with commercial (ammo)
truck v or not and (2) whether ammo type p is sent from Mobile-TP i with
ammo truck v or not. Mathematically, (1) kivp = 1 if mtp_inivp > 0 for all
i ∈ NM, v ∈ VF, p ∈ P or kivp = 0 otherwise, (2) kivp = 1 if mtp_outivp > 0 for
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all i ∈ NM, v ∈ VM, p ∈ P or kivp = 0 otherwise, (3) kivp = 1 if cu_inivp > 0 for
all i ∈ NC, v ∈ VM, p ∈ P or kivp = 0 otherwise.

kivp ≤ mtp_inivp ∀i ∈ NM, v ∈ VF, p ∈ P (11a)

kivp ≤ mtp_outivp ∀i ∈ NM, v ∈ VM, p ∈ P (11b)

kivp ≤ cu_inivp ∀i ∈ NC, v ∈ VM, p ∈ P (11c)

mtp_inivp ≤ CVvp · kivp ∀i ∈ NM, v ∈ VF, p ∈ P (12a)

mtp_outivp ≤ CVvp · kivp ∀i ∈ NM, v ∈ VM, p ∈ P (12b)

cu_inivp ≤ CVvp · kivp ∀i ∈ NC, v ∈ VM, p ∈ P (12c)

Constraints (11) and (12) set the correct logical relationships between the
decision variables k and mtp_in, mtp_out, cu_in. They maintain that if a vehicle
drops (carries) an ammo type to (from) a node then there must exit some
inflow (outflow) of that ammo type to (from) that node with that vehicle.
Conversely, they also ensure that if a vehicle does not drop (carry) an ammo
type to (from) a node then there cannot exit any inflow (outflow) of that ammo
type to (from) that node with that vehicle.

3.5 Time related constraints

T Eip ≤ tpip ≤ T Lip ∀i ∈ NC, p ∈ P (13)

tviv + T Iij · xijv − T M · (1 − xijv) ≤ tv jv ∀i ∈ NF, j ∈ NM, v ∈ VF

∀i, j ∈ NM, i �= j, v ∈ VF

∀i ∈ NM, j ∈ NC, v ∈ VM

∀i, j ∈ NC, i �= j, v ∈ VM (14)

Constraints (13) impose the time window requirements of combat units on
the model for all ammo types. Constraints (14) are the classical subtour
elimination constraints of Miller et al. (1960).

tpip − T Mp · (1 − kivp) ≤ tviv ∀i ∈ NM, v ∈ VM, p ∈ P (15)

tviv − T Mp · (1 − kivp) ≤ tpip ∀i ∈ NM, v ∈ VF, p ∈ P

∀i ∈ NC, v ∈ VM, p ∈ P (16)

Constraints (15) and (16) set the correct relationships between the arrival
times of vehicles and products to a node. They force that the arrival time of
an ammo type at a Mobile-TP (combat unit) is exactly the arrival time of each
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commercial (ammo) truck carrying that product to that transfer point (combat
unit).

Note that time window constraints refer to the latest ammo arrival and
ensure that the latest delivery is within the allowed time windows. In other
words, arrival time of ammo type p at a node is in fact the time of the arrival
of the latest vehicle carrying that ammo type to that node.

3.6 Objective function

In this study, we consider the costs of transfer point establishment and vehicle
acquisition plus the cost of truck driving jointly in the objective function.

min z =
∑

i∈NF M

FCi · yi (17)

+
∑

i∈NF

∑

j∈NM

∑

v∈VF

VCv · xijv +
∑

i∈NM

∑

j∈NC

∑

v∈VM

VCv · xijv (18)

+
∑

i∈N

∑

j∈N

∑

v∈V

DCv · T Iij · xijv. (19)

Equation (17) is the total fixed cost of opening transfer points, Eq. (18) is the
total acquisition cost of used trucks, and finally Eq. (19) is the total driving cost
of the trucks.

3.7 Valid inequalities

In order to improve the behavior of the model just presented, we included the
following valid inequalities (20) in the formulation.

∑

j∈NM

xijv ≤
∑

p∈P

f tp_outivp ∀i ∈ NF, v ∈ VF (20a)

∑

j∈NC

xijv ≤
∑

p∈P

mtp_outivp ∀i ∈ NM, v ∈ VM (20b)

∑

j∈NF M
j�=i

x jiv ≤
∑

p∈P

mtp_inivp ∀i ∈ NM, v ∈ VF (20c)

∑

j∈NMC
j�=i

x jiv ≤
∑

p∈P

cu_inivp ∀i ∈ NC, v ∈ VM (20d)

Constraints (20) maintain that if there is no outflow (inflow) with a vehicle
from (to) a node then that vehicle must not be dispatched from (enter to) that
node. Conversely, they guarantee that if a vehicle is dispatched from (enters
to) a node then some outflow (inflow) of an ammo type with that vehicle must
exist from (to) that node.
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Table 2 Details of the nine test problem instances with |N| = 31

PI A PI B PI C PI D PI E PI F PI G PI H PI I

|P| 3 3 3 4 4 4 5 5 5
|V| 24 36 36 24 36 36 24 36 36
Truck usage 75% 50% 83% 75% 50% 83% 75% 50% 83%

4 Computational experiments with the Node-BPF model

In this section, we use the same nine test problems described in Toyoglu et al.
(2011) to compare the performances of the proposed models. All computations
are conducted on a computer with 2.4 GHz CPU, 4 GB RAM and Windows
XP operating system. We use CPLEX 9.1 as the solver and GAMS 22.0 as the
modeling language.

In the test problems, 3 potential Fixed-TPs, 8 potential Mobile-TPs and 20
combat units are considered. 3 different ammo collections (|P| = 3, 4, 5) and 3
different levels of truck usage percentages (75%, 50%, 83%) are considered.
At the 75% level, there are 8 commercial and 16 ammo trucks, of which at
least 6 commercial and 12 ammo trucks must be used. At the 50% level, there
are 12 commercial and 24 ammo trucks, of which at least 6 commercial and
12 ammo trucks must be used. At the 83% level, there are 12 commercial and
24 ammo trucks, of which at least 10 commercial and 20 ammo trucks must
be used. The minimum number of trucks are imposed on the model simply by
adjusting the capacity of the vehicles in the input data. For example, at the
50% level capacity of a commercial (ammo) truck is 20 (10) tons, whereas it is
13 (7) tons at the 83% level.

Details of the problem instances can be seen in Table 2, where |N|, |P| and
|V| are the numbers of nodes, ammo types, and vehicles, respectively.

We first compare the Node-BPF and Arc-BPF models based on the total
number of the decision variables and constraints. Table 3 presents some
general statistics on the model sizes that have been obtained from the Model
Statistics section of GAMS 22.0. Note that the Node-BPF model has 70%

Table 3 General statistics of the Node-BPF and Arc-BPF models

Non zero Equations Variables Discrete
elements variables
Arc Node Arc Node Arc Node Arc Node
BPF BPF BPF BPF BPF BPF BPF BPF

PI A 240,513 80,593 27,996 10,704 81,493 26,105 11,623 11,659
PI B-C 358,217 120,797 40,596 15,916 121,257 39,105 16,679 17,483
PI D 306,767 91,263 34,402 13,002 104,464 27,184 12,123 12,171
PI E-F 456,751 136,775 49,754 19,322 155,388 40,708 17,179 18,251
PI G 373,021 101,933 40,808 15,300 127,435 28,263 12,623 12,683
PI H-I 555,285 152,753 58,912 22,728 189,519 42,311 17,679 19,019
Average 381,759 114,019 42,078 16,162 129,926 33,946 14,651 15,201



646 H. Toyoglu et al.

Table 4 Computational results of the Node-BPF and Arc-BPF models

Gaps (%) after
5 m 15 m 1 h 2 h 4 h 11 h 14 h

PI A Arc-BPF – – – – – 9.11 6.71
PI B – – – – – 8.74 8.74
Other PIs – – – – – – –
PI A Node-BPF – 4.58 1.42 1.40 1.37 1.35 1.35
PI B – – 6.95 1.44 1.44 1.43 1.43
PI C – – – – – – –
PI D – – – 7.27 4.32 1.42 1.42
PI E 12.00 11.89 6.88 1.50 1.44 1.42 1.40
PI F – – – – – – –
PI G – – – – – – 15.64
PI H – – – – 15.71 11.22 11.22
PI I – – – – – – –

fewer non zero elements, 62% fewer equations and 73% fewer variables but
only 3% more discrete variables than Arc-BPF model has.

We then compare the models according to the optimality gap, that is
reported by CPLEX (the gap between the best integer objective and the
objective of the best node remaining), reached in a certain time period. Table 4
exhibits the corresponding computational results. We use strong branching for
selecting the branching variable, best-estimate search for selecting the next
node when backtracking and CPLEX’s default settings for the other parame-
ters. Computations for a problem are terminated after 14 h. Abbreviations m
and h stand for minutes and hours, and dashes indicate that no feasible solution
can be found within the associated run-time. It can be seen in the table that
the reduction in the number of the equations and variables of the Node-BPF
model when compared with those of the Arc-BPF model has paid off in terms
of expanding the set of problem instances where a solution can be recovered.
In addition, the Node-BPF model has offered significant improvements to the
optimality gaps of the instances for which Arc-BPF model was able to obtain
solutions in 14 h. Specifically, Node-BPF model improves the optimality gap
of PI A from 6.71 to 1.35% and PI B from 8.74 to 1.43% .

Even as such, the current NP-hard LRP model is still computationally
unattractive due to its solution time when considered as a decision support tool
during the short term tactical decision making process in distributing ammo on
the battlefield. Ultimately, we need to develop a heuristic method, which forms
the subject of the following section.

5 Solution methodology

In this section, we present a “VRP first-LRP second” type heuristic to solve
the Mobile-ADS design problem. Broadly speaking, it can be said that our
method falls under the route first, location-allocation second category of Min
et al. (1998).
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In addition, the solution approach proposed in this study is a clustering-
based heuristic according to the categorization of Nagy and Salhi (2007). In
general terms, we first partition all combat units into some clusters such that
for each cluster there is at least one potential Mobile-TP site. Then, we solve
at least one VRP for each cluster and using the solutions of VRPs we solve an
LRP for the rest of the problem. The details of the heuristic are as follows.

“VRP first-LRP second” heuristic consists of three phases. Phase 1 is the
clustering part that partitions the combat units into clusters. Phase 2 is the VRP
part that finds the routes of ammo trucks distributing ammo from Mobile-
TPs to combat units in each cluster. Phase 3 is the LRP part that decides
on the locations of the transfer points to open and the routes of commercial
trucks distributing ammo from Fixed-TPs to Mobile-TPs. The flowchart of this
method can be seen in Fig. 3.

1. Phase 1. Clustering
In this phase, we group all combat units into clusters such that each cluster
is reachable by a potential Mobile-TP which can serve the total demand of
units within the specified time windows.

(a) Step 1. Form the clusters
Due to the military nature of the Mobile-ADS problem, we need to
consider some military requirements when forming the clusters. In
real life each combat unit (battalion in this case) belongs to a distinct
brigade which readily forms a cluster. Furthermore, because of the
manpower and equipment limitations each brigade (cluster in this
case) opens a single Mobile-TP and the combat units of that cluster
can be served by only that transfer point. Hence, we need to state that
Mobile-ADS problem definition inherently includes clusters such
that each brigade is a cluster with at least one potential Mobile-TP. If
we had not had these clusters, we should have used some clustering
technique (see, e.g., Bruns and Klose 1995; Min 1996; Barreto et al.
2007 for LRPs and Solomon 1986, 1987; Braysy and Gendreau 2005
for VRPs with time windows) to construct them. Now, let K be the
cluster set and proceed to Step 2.

(b) Step 2. Modify ammo truck costs
Each cluster has at least one potential Mobile-TP meaning that it may
have two or more. Note that in the next phase a VRP will be solved
for each potential Mobile-TP within each cluster. While solving VRPs
the ammo truck set should be arranged wisely otherwise it can easily
lead to infeasibility when in fact the problem is feasible. Hence,
we modify the acquisition costs of ammo trucks slightly such that
every truck has a different cost. With the modified costs, each VRP
of a cluster will start to use the ammo trucks starting from the
least expensive one. Hence, Mobile-TPs of the same cluster will use
the same ammo trucks that eventually will prevent the unnecessary
reservation of more than enough trucks. Proceed to Step 3.
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Is NMi empty?

1. Select a Mobile-TP j from NM .i
2. Delete this Mobile-TP from NM .i

Solve VRP.

Update VRP cost.

Solve LRP.

Let NMi be the Mobile-TP set of cluster i.

Is VM i empty?

Update ammo truck set VMi .

1. Select a cluster i from K.
2. Delete this cluster from K.

Is K empty?

Modify ammo truck costs.

1. Cluster the combat units.
2. Let K be the cluster set.

Does a VRP
solution exist?

Infeasible. STOP.

Yes

No

No

No

No

Yes

Yes
Yes

Phase 1

Phase 2

Phase 3

Fig. 3 Flowchart of the heuristic

2. Phase 2. Vehicle routing problem (VRP)
In this phase, we solve a VRP for each potential Mobile-TP.

(a) Step 3. Select a cluster
If set K is empty this means that all clusters have been processed already,
and we are ready to proceed to the next phase, hence go to Step 10.
Otherwise, select a cluster, i, remove it from K, and proceed to Step 4.

(b) Step 4. Update ammo truck set (VM)
In this step, we try to increase the computational efficiency. To do
so we make an additional (but not unrealistic) assumption that all



A New Formulation Approach for Location-Routing Problems 649

combat units require less than truck loads. Hence, the number of
trucks that are used by any Mobile-TP can be bounded above by the
number of units of its cluster. We employ the following procedure.
Let VMi represent the modified ammo truck set that will be used by
the potential Mobile-TPs of cluster i. We modify the ammo truck set
as follows and proceed to Step 5.
let VMi = ∅
for (v ∈ VM) do

while (|VMi | ≤ |cluster i|) do
if v /∈ ∩k∈K:i �=kVMk

let v ∈ VMi

end while

end for.

(c) Step 5. Check infeasibility
If set VMi is empty this means that there is no unused ammo truck
left for that cluster to dispatch and the problem is infeasible, hence
STOP. Otherwise, proceed to Step 6.

(d) Step 6. Select a potential Mobile-TP
Let NMi be the set of potential Mobile-TPs of cluster i. If set NMi

is empty this means that a VRP for all potential Mobile-TPs of that
cluster is already solved and nothing is remained to be processed,
hence proceed to Step 7. Otherwise, select a Mobile-TP, j∗, delete
it from NMi and go to Step 8.

(e) Step 7. Check infeasibility
If no VRP has a feasible solution this means that the demands of the
units of this cluster cannot be satisfied in the given problem setting
according to the specified constraints. In other words, the problem is
infeasible, hence STOP. Otherwise, if at least one feasible solution
exists for the VRP of a Mobile-TP, then this means that we processed
all potential Mobile-TPs of this cluster. We are then ready to process
a new cluster, hence go to Step 3.

(f) Step 8. Solve VRP
In this step, we solve a VRP including the combat units of cluster i
and Mobile-TP j∗ using the vehicle set VMi . Let NCi be the set of all
combat units of cluster i and N∗

Ci
= NCi

⋃
j∗. The VRP to be solved

in this step is presented below.

min o =
∑

g∈NCi

∑

v∈VMi

VCv · x j∗gv

+
∑

g∈N∗
Ci

∑

h∈N∗
Ci

h�=g

∑

v∈VMi

DCvp · T Igh · xghv

s.t.

(1), (2b), (4b), (5b), (6b), (7b), (8b), (9b), (10c), (10d)

(11b), (11c), (12b), (12c), (13), (14), (15), (16), (20b), (20d)
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tp j∗ p ≥ max
g∈NF

{T Igj∗ } ∀p ∈ P (21)

k j∗vp ≤
∑

g∈NCi

x j∗gv ∀v ∈ VMi , p ∈ P (22)

kgvp ≤
∑

j∈N∗
Ci

j�=g

x jgv ∀g ∈ NCi , v ∈ VMi , p ∈ P (23)

∑

v∈VMi

kgvp ≥ 1 ∀g ∈ NCi , p ∈ P (24)

Note that in this step we solve a VRP for a particular Mobile-TP
j∗ which is considered open. Therefore, decision variable yi and all
operations over the set NM disappear and above constraints, which
are not given explicitly, should be adjusted accordingly.
Note also that at this phase, we still do not know which Fixed-TP
to be opened. To maintain time window restrictions, we introduce
constraints (21) which assure that the arrival time of any ammo at
Mobile-TP j∗ is not less than the maximum of the traveling times
between j∗ and the potential Fixed-TPs. Hence, no matter which
Fixed-TP is opened in Phase 3, the arrival time of any ammo to
any opened Mobile-TP will always be greater than or equal to the
traveling time in between. To further reduce the solution time, we
use valid inequalities (22), (23) and (24) which we test and find useful
through extensive computational experiments. Valid inequalities (22)
and (23) require that if a vehicle drop (take) an ammo type to (from) a
node then that node must be on that vehicle’s route. Valid inequalities
(24) maintain that the demand of each combat unit for each ammo
type must be satisfied by at least one ammo truck.

(g) Step 9. Update VRP cost
A careful examination reveals two differences between the objective
value of the VRP in the heuristic (denoted by o) and that of the
real model (denoted by z). The first difference is the fixed opening
costs of Mobile-TPs. z includes these costs but o does not, since there
is only one transfer point in each VRP of Step 8 and this transfer
point is already considered open. The second difference is the vehicle
acquisition costs, which are modified in Step 2. Therefore, to get
the real total cost and to compare it with the cost of the original
formulation, we need to modify the VRP costs as follows, o = o +
FC j∗ + ∑

g∈NCi

∑
v∈VMi

εv · x j∗gv , where εv represents the difference
between the actual and modified costs of ammo truck v.
Since the VRP phase of Mobile-TP j∗ is completed, go to Step 6.

3. Phase 3. Location routing problem (LRP)
In the first two phases, we determine the routes and schedules of ammo
trucks that distribute ammo from each Mobile-TP to the units of the cluster
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where its home Mobile-TP belongs. In this phase, we will be interested
in the distribution network design and the distribution from Fixed-TPs
to Mobile-TPs using commercial trucks. By distribution network design,
we mean that we are going to decide which Mobile-TPs and Fixed-TPs to
open. Since, both location and routing decisions exist in this phase, we will
solve an LRP model including all Fixed-TPs and Mobile-TPs.

(a) Step 10. Solve LRP
In this step we solve a two layer LRP in which Fixed-TPs lie on the
first and Mobile-TPs lie on the second layer. We need to decide (1)
which Fixed-TP and Mobile-TP (one for each cluster) to open and
(2) routes of the commercial trucks among open transfer points. The
LRP to be solved in this step is shown below.

min s =
∑

i∈NF

FCi · yi +
∑

i∈NF

∑

j∈NM

∑

v∈VF

VCv · xijv

+
∑

i∈NF M

∑

j∈NF M

∑

v∈VF

DCv · T Iij · xijv +
∑

i∈NM

oi · yi

s.t.

(2a), (4a), (5a), (6a), (7a), (8a), (9a), (10a), (10b)

(10c), (10d), (11a), (12a), (13), (20a), (20b), (20c)

(14) ∀i ∈ NF, j ∈ NM, v ∈ VF; ∀i, j ∈ NM, i �= j, v ∈ VF

(16) ∀i ∈ NM, v ∈ VF, p ∈ P
∑

v∈VF

mtp_inivp =
∑

j∈NCi

Q jp · yi ∀i ∈ NM, p ∈ P (25)

∑

j∈NMi

y j = 1 ∀i ∈ K (26)

tpip ≤ min
g∈NCi

{T Lgp − T Iig} ∀i ∈ NM, p ∈ P (27)

kivp ≤
∑

j∈NF M
j�=i

x jiv ∀i ∈ NM, v ∈ VF, p ∈ P (28)

∑

i∈NF

yi ≥
⌈ ∑

p∈P

∑
i∈NC

Qip

maxp∈P,i∈NF {CDip}

⌉
(29)

∑

j∈NF M
j�=i

xijv ≤ yi ∀i ∈ NM, v ∈ VF (30)

Let o j represent the o of Mobile-TP j. In detail, o j is the sum of
the fixed cost of opening Mobile-TP j, the acquisition cost of the
ammo trucks that are used by Mobile-TP j and the distribution cost of
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ammo to combat units from Mobile-TP j. By appending o j into above
objective function, we incorporate all previous VRPs into the LRP as
a cost parameter.
Constraints (25) maintain the correct flow of ammo types to Mobile-
TPs. Constraints (26) make sure that there is one open Mobile-TP
per cluster. Constraints (27) set the upper limit for arriving times of
ammo types at Mobile-TPs.
As we do in solving VRPs, we use the following valid inequalities for
solving the LRP to help reduce the solution time. Valid inequalities
(28) require that if a vehicle drop (take) an ammo type to (from) a
node then that node must be on that vehicle’s route. Valid inequal-
ities (29) set the lower bound for the number of transfer points to
be opened. Valid inequalities (30) provide that no vehicle can be
dispatched from or pass through a closed transfer point

6 Computational experiments with the heuristic method

In this section, we evaluate the performance of our heuristic empirically by
applying it to the nine problem instances described in Toyoglu et al. (2011).
We then present a larger scale application and investigate whether the heuristic
can produce feasible solutions within reasonable solution times.

1. The Benchmark Instances
Recall that, with the heuristic we solve a VRP for each Mobile-TP and
using the solutions of these VRPs we solve a single LRP for the rest of
the problem. To calculate the run times of the heuristic we introduce the
following rule.

(a) We solve each VRP by CPLEX 9.1. either to optimality or it is
terminated if it cannot improve the best objective function value for
30 s.

(b) After running all VRPs, we solve the single LRP by using the follow-
ing methodology and by CPLEX 9.1. We separate problem instances
into two groups regarding the results of the Node-BPF model run
results. In detail, PI A, B, D, E, G and H are in the first group since
Node-BPF model finds a feasible solution in 14 h. Nevertheless, it
cannot find a feasible solution to PI C, F and I in the same time limit
and hence these problem instances constitute the second group. For
the LRP runs, we aim for a target value and run the model until it
reaches that target. For the first group, we use the objective function
values that are attained after 14 h as benchmarks. That is, we run the
LRP until it reaches the objective function value that is obtained by
the Node-BPF model in 14 h. For example, in PI A the termination
criteria for the LRP is to reach an objective function value that is
smaller or equal to 925.44. Since no objective function value for the
second group exists, we aim for a target optimality gap for this group.
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Table 5 Run times (seconds) of the heuristic

PI A PI B PI C PI D PI E PI F PI G PI H PI I

VRPs 281 282 325 324 328 437 510 403 527
LRP 18 434 129 25 324 16 13 87 2,297
Total 299 716 454 349 652 453 523 490 2,824

We request the heuristic to obtain an objective value within at most
10% of the optimum. We calculate the optimality gap of the heuristic
by using the best bound obtained with the Node-BPF model after
14 h. For example, since we seek an optimality gap of 10% the
stopping criteria for the LRP in PI C is to reach an objective value
of 1342.29, which is calculated as 0.1 = x−1208.06

x ⇒ x = 1342.29
(c) Total run time of the heuristic is the sum of the run times of all VRPs

and that of the single LRP.

Table 5 demonstrates the run times of the heuristic for each problem
instance. For example, in PI A all eight VRPs take 281 s to run in total.
The single LRP runs for 18 s before it reaches an objective value which is
equal to or smaller than that of the Node-BPF model. Briefly, the run time
of the heuristic is 299 s in PI A. Run times of the heuristic range from 5 to
47 min, averaging to 13 min.
Table 6 compares the performances of the Node-BPF and heuristic model.
To better test the performance of the heuristic, we present the optimality
gap of the heuristic calculated by using the best bound obtained with the
Node-BPF model after 14 h. For example, for PI B 926.23−913.01

926.23 × 100 =
1.43 and 925.98−913.01

925.98 × 100 = 1.40. Dashes indicate that no feasible solution
can be obtained in 14 h. The table reveals that on the average the heuristic
attains a better objective function value in 13 min than that of the Node-
BPF model in 14 h. In addition, the heuristic finds a feasible solution within
10% of the optimum in about 8 to 47 min even in the problem instances PI
C, F and I where Node-BPF model cannot find a feasible solution in 14 h.
It is worth noting that not only the Node-BPF model but also the Arc-BPF
model would also benefit from the proposed clustering-based heuristic.

Table 6 Computational results of the Node-BPF model and the heuristic

Node-BPF model Heuristic
Time Best bound Best integer Gap (%) Time Objective Gap (%)

PI A 14 h 912.93 925.44 1.35 299 s 925.38 1.35
PI B 14 h 913.01 926.23 1.43 716 s 925.98 1.40
PI C 14 h 1208.06 – – 454 s 1340.71 9.89
PI D 14 h 912.55 925.65 1.42 349 s 925.64 1.42
PI E 14 h 912.66 925.65 1.40 652 s 925.42 1.38
PI F 14 h 1207.50 – – 453 s 1338.95 9.82
PI G 14 h 912.82 1082.03 15.64 523 s 1076.84 15.23
PI H 14 h 912.54 1027.86 11.22 490 s 981.36 7.01
PI I 14 h 1207.29 – – 2824 s 1341.04 9.97
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Fig. 4 Layout of the large scenario

2. Large Problem Instances
To better test the performance of our heuristic, we implement it on a
larger scale scenario that describes a distribution design over the cities
of Turkey. In addition, we also want to show that direct extensions of
our formulation could be applied to a wide variety of other distribution
or logistics scenarios other than military. Figure 4 illustrates the layout of
the scenario, where circles represent known locations of the customers,
whereas rectangles and diamonds represent potential locations of Mobile-
TPs and Fixed-TPs.
Details of the problem instances are provided in Table 7. As can be seen
in Fig. 4 there are 40 customers, 16 potential Mobile-TP and 3 potential
Fixed-TP locations that sums up to 59 nodes in total. Problem instances
are created by considering different numbers of products to be distributed
and of trucks available. In all instances at least 75% of the available trucks
should be used to satisfy the demands.
There are two factors that need to be taken into account in running the
heuristic, namely solution quality and time. Mobile-ADS model can be
used as a decision support tool to design the distribution network both
in a daily base and in an ad hoc environment. The two situations differ
from each other in the required time for an answer. Ad hoc situations are
unplanned contingencies that occur during the day where an immediate
solution is required, whereas in regular daily planning relatively long time

Table 7 Details of the larger problem instances with |N| = 59

PI J PI K PI L PI M PI N PI O PI P PI Q PI R

|P| 3 3 3 4 4 4 5 5 5
|V| 24 36 48 24 36 48 24 36 48
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Table 8 Computational
results of the heuristic

Emphasis quality Emphasis time
Time Objective Time Objective

PI J 5770 s 931.59 227 s 934.05
PI K 7485 s 1243.69 1524 s 1256.00
PI L 7477 s 1248.44 1253 s 1252.30
PI M 6418 s 932.93 1056 s 936.08
PI N 7629 s 1247.56 1399 s 1251.88
PI O 8190 s 1251.03 2196 s 1305.08
PI P 5943 s 934.55 1424 s 987.12
PI Q 6925 s 1246.97 3116 s 1252.79
PI R 6134 s 1283.89 2617 s 1307.00

is available. To cater for both conditions we design two different heuristic
run methodologies.

(a) Emphasize quality over time: For daily planning requirements. Run
all VRPs and the LRP until each one reaches to an optimality gap of
1% or terminate if they can not improve the best objective function
value for 3 min.

(b) Emphasize time over quality: For unplanned contingencies. Run all
VRPs and the LRP until each one reaches to an optimality gap of 3%
or terminate if they can not improve the best objective function value
for 1 min.

Fig. 5 Comparison of the heuristic run methodologies
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Fig. 6 Solution of the problem instance J

Table 8 displays the heuristic run results of both run methodologies. When
comparing the run methodologies, we base the comparison on their objec-
tive function values as well as the solution times. The first methodology
finds an answer for each instance in about 2 h, whereas the solution times
of the second methodology range from a minimum of about 4 min to a
maximum of about 52 min, the average being about 27 min.
A comparison of the heuristic results is shown in Fig. 5. Not surprisingly,
the first methodology obtains lower objective function values (higher
quality solutions) since it runs longer. However, computational results
show that with the second run methodology it is possible to get slightly
higher costs with much lower solution times. For example, in PI K the
second methodology reaches a cost only 1% higher than that of the first
methodology with 80% less solution time. Briefly, the second methodology
provides 76% reduction in solution times on the average, at the cost of
approximately 2% increase in objective function values.
We present the solution of PI J by emphasizing quality in Fig. 6 as an
example. Thick lines between the Fixed-TPs and Mobile-TPs represent
commercial truck tours, whereas thin lines between the Mobile-TPs and
combat units represent the tours of the ammo trucks.
Solution quality or solution time, which one receives more attention
depends on the situation. Anyhow it is easy to address such trade offs
between solution time and cost with the proposed heuristic, by adjusting
the stopping criteria of VRPs and of the LRP accordingly.

7 Conclusions

In this study, we present a different commodity-flow LRP formulation where
product-flow is considered on the nodes of the network, and we call this node-
based product-flow (Node-BPF) approach. With this approach the formulation
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keeps track of the quantity of the products at the nodes (entering to and/or
leaving from the nodes), rather than in between the nodes.

In order to demonstrate the proposed approach we reformulate a 4-index
Arc-BPF LRP model from the literature by considering Node-BPF approach.
This approach enables us to develop a 3-index Node-BPF LRP model with
fewer constraints and variables. It is shown that the Node-BPF model out-
performs the Arc-BPF model in terms of both optimality gap and objective
function value in a given time. Hence, the Node-BPF approach we introduce
in this study is a promising attempt to improve the computational efficiency of
the LRP models purely through modeling.

After developing a computationally more efficient model we then develop a
3-phase clustering-based model specific heuristic to shorten the solution time.
The heuristic leads to promising results showing that it can be adopted as a
decision support tool to solve the real life problems in a reasonable amount of
time.

We claim that the proposed Node-BPF formulation approach offers a valid
alternative to the widely used Arc-BPF approach. It can be applied to existing
and future LRP models to potentially improve the solution time.

Although the model studied in this paper may seem to be derived for
the specific military logistics problem, we strongly believe that it can be
applied to a wide variety of distribution systems after some straightforward
modifications. One such possible application area is Humanitarian Relief
Logistics where the main objectives are to predict demands, identify priori-
ties, sort supplies, coordinate supply chain and direct the transportation and
distribution in order to deliver relief to people affected by a disaster.

Since our model contains most of the real world aspects and offers a
relatively better computational efficiency with the proposed formulation ap-
proach, we hope that it will help model complex logistics systems more
realistically.
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