
European Journal of Operational Research 205 (2010) 273–279

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Bilkent University Institutional Repository
Contents lists available at ScienceDirect

European Journal of Operational Research

journal homepage: www.elsevier .com/locate /e jor
Discrete Optimization

Cutting plane algorithms for 0-1 programming based on cardinality cuts

Osman Oguz *

Department of Industrial Engineering, Bilkent University, Ankara, Turkey

a r t i c l e i n f o a b s t r a c t
Article history:
Received 6 November 2008
Accepted 2 January 2010
Available online 25 January 2010

Keywords:
0-1 Integer programming
Valid inequalities
Cutting planes
0377-2217/$ - see front matter � 2010 Elsevier B.V. A
doi:10.1016/j.ejor.2010.01.006

* Tel.: +90 312 290 1544; fax: +90 312 266 4054.
E-mail address: ooguz@bilkent.edu.tr
We present new valid inequalities for 0-1 programming problems that work in similar ways to well
known cover inequalities. Discussion and analysis of these cuts is followed by their revision and use in
integer programming as a new generation of cuts that excludes not only portions of polyhedra containing
noninteger points, also parts with some integer points that have been explored in search of an optimal
solution. Our computational experimentations demonstrate that this new approach has significant
potential for solving large scale integer programming problems.

� 2010 Elsevier B.V. All rights reserved.
1. Introduction

Branch-and-cut was introduced in [2] demonstrating the
important role of the use of Gomory cutting planes [4] and cover
inequalities in the branch-and-bound process for solving integer
programming problems. Relatively recent works like [5,6] provide
extensive discussions of available strategic choices for using cover
inequalities in the branch-and-cut process for 0-1 programming.
One may see [7,10] for basic expositions of the subject and related
issues.

We work on the 0-1 integer programming problem given below
to introduce new valid inequalities similar to cover and lifted cover
inequalities. We have chosen this problem to introduce our ap-
proach, because most of the work on cover inequalities are based
on this problem. As a good example, we can mention [3] that de-
scribes an implementation of cover cuts on the multiple knapsack
version of the problem.

IP Maximize z ¼
Xn

j¼1

cjxj ð1Þ

subject to
Xn

j¼1

aijxj 6 bi for i ¼ 1; . . . ;m; ð2Þ

xj 2 f0;1g for j ¼ 1; . . . ; n; ð3Þ

m and n are the number of constraints and decision variables,
respectively.

We do not assume any restrictions the integrality or noninteg-
rality of the parameters cj; aij and bi.
ll rights reserved.
The next section consists of the description and the generation
method of the inequalities together with the proof of validity. Sec-
tion 3 is devoted to redefining and improving the performance of
the proposed cuts. The preliminary numerical experiments are dis-
cussed in Section 4. Conclusions and comments follow in Section 5.

2. The new cut

Consider the problem IP and let XLP ¼ ðx1; . . . ; xnÞ denote a solu-
tion to the linear programming (LP) relaxation of this problem.
Also let Sp ¼ fjjxj > 0 in XLPg and solve the following problem:

z0 ¼max
Xn

j¼1

xj :
Xn

j¼1

aijxj 6 bi for i ¼ 1; . . . ;m and xj

2 ½0;1� for j ¼ 1; . . . ; n: ð4Þ

The following inequality is obviously valid:
X

j2Sp

xj 6 z0: ð5Þ

Also, this inequality is valid for all possible values xj in any solu-
tion of the LP relaxation for any objective function. Moreover, the
inequality is valid in the form,
X

j2Sp

xj 6 bz0c ð6Þ

for any integer solution of the problem for any objective function. In
fact, this last inequality may be an effective cut to make some non-
integer solutions infeasible. However, its use can be limited to very
few instances and it becomes ineffective very soon in a cutting
plane framework. It may even be useless if z0 is integer valued orP

j2Sp
xj 6 bz0c is not violated by the relaxed solution. Nonetheless,

it is the starting point of our proposal for a new type of cuts.

https://core.ac.uk/display/52922719?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1016/j.ejor.2010.01.006
mailto:ooguz@bilkent.edu.tr
http://www.sciencedirect.com/science/journal/03772217
http://www.elsevier.com/locate/ejor

274 O. Oguz / European Journal of Operational Research 205 (2010) 273–279
Starting with the solution to the LP relaxation of the problem IP,
we partition N, the index set of variables of IP into two subsets:
S1 ¼ fjxj ¼ 1 in XLPg and S2 ¼ N n S1. Then, naming the LP relaxa-
tion of the original integer program IP as P, we define the following
linear program named as P1:

P1 z1 ¼maximize
X

j2S2

xj ð7Þ

subject to
Xn

j¼1

aijxj 6 bi for i ¼ 1; . . . ;m; ð8Þ
X

j2S1

xj ¼ jS1j; ð9Þ

0 6 xj 6 1 for j ¼ 1; . . . ;n: ð10Þ

Then the following is true.

Proposition 1. The inequality
X

j2S1

rxj þ
X

j2S2

xj 6 rjS1j þ bz1c ð11Þ

is valid for the solution set of the problem IP for r ¼ jS2j.

Proof. It is obvious that the above inequality is violated by the cur-
rent XLP if

P
j2S2

xj > bz1c . On the other hand, the inequality is valid
for all integer solutions satisfying the condition

P
j2S2

xj 6 bz1c.
However, when

P
j2S2

xj > bz1c holds for an integer solution, that
solution must have at least one xj with j 2 S1 equal to zero in order
that the solution is feasible, by the definition of z1 in P1. Thus we
conclude that the number of xj’s for j 2 S2 being equal to 1 can be
greater than bz1c, only if at least one variable xj in S1 is equal to 0.
Setting r ¼ jS2jwill allow the inequality to hold even when all vari-
ables in S2 are equal to 1, and only one variable in S1 is equal to
0. h

The valid inequality of Eq. (11) will be called the cardinality cut.
Assigning large values to the parameter r is not desirable since

the quality of the cut will be poor, i.e., the cut will remove a rela-
tively small part of the underlying polyhedron containing no inte-
ger solutions. A more reasonable approach is to choose r more
carefully. Consider a slight variation of P1 given below:

P2 z2 ¼maximize
X

j2S2

xj ð12Þ

subject to
Xn

j¼1

aijxj 6 bi for i ¼ 1; . . . ;m; ð13Þ
X

j2S1

xj ¼ jS1j � 1; ð14Þ

0 6 xj 6 1 for j ¼ 1; . . . ;n: ð15Þ

Assuming z2 > z1, without loss of generality, z2 � bz1c is an upper-
bound on how many more xj’s in S2 can take a value of 1 when
we decrease the cardinality of S1 by 1. Note that when we replace
the right hand side of the equation

P
j2S1

xj ¼ jS1j � 1 by jS1j � 2,
the difference z2 � bz1c will less than double, since z2 parametrized
by jS1j � k, is a concave piecewise linear function for k P 0. Thus,
setting r ¼ z2 � bz1c gives a relaxation sufficiently tight for the pur-
pose of cutting deeper into the underlying polyhedron.

There will, of course, be instances (z1 ¼ bz1c for example), such
that the valid inequality will fail to eliminate XLP . We can try a
few more things before giving up and starting branching. The
most obvious thing to do is to play around the partition of N into
S1 and S2. We have tried two strategies with partial success. First
one is to move few variables from S2 to S1 picking those with val-
ues close to 1. Second strategy is to eliminate some variables in S2

from consideration, i.e., not including them in the valid inequali-
ties, or in the objective function of problem P2. We may end up
with effective cuts as a result of these changes. Second strategy
and its variations seem to be working better in our preliminary
experimentations.

We report results comparing the efficiency of these new cuts
with that of the cover inequalities in a cutting plane framework
on a set of hard multidimensional knapsack problems described
in [8,9]. Note that, the new cuts may be used for the traveling
salesman problem, set packing or covering problems, and other
NP-Hard problems with 0-1 constraint matrices as well, without
any adaptation of the inequality given in Eq. (11). This is an extra
feature of the new cut over the capability of ordinary cover
inequalities.

Although the comparison mentioned above indicates superior
efficiency of the cardinality cuts over the cover inequalities, we
have discovered that their functionality and efficiency may be fur-
ther enhanced by slightly changing their definition and using them
in a novel algorithmic approach. This led to some significant
improvements for the solution of large scale 0-1 integer program-
ming problems. The next section reports these developments.

3. Redefinition, optimization and aggregation of the cardinality
cuts

The inequality given by Eq. (11) is a lifted version of the
inequality of Eq. (6). We take a further step in this direction and
obtain what might be called the overlifted version of Eq. (11), be-
cause lifting is done for the purpose of eliminating a certain set
of feasible integer solutions from the solution space.

Let us consider the following revised version of P1 defined by
Eqs. (7)–(10):

P3 z3 ¼maximize
X

j2S2

cjxj ð16Þ

subject to
Xn

j¼1

aijxj 6 bi for i ¼ 1; . . . ;m; ð17Þ
X

j2S1

xj ¼ jS1j; ð18Þ

xj 2 f0;1g for j ¼ 1; . . . ;n: ð19Þ

The optimal solution of this problem is a feasible solution for IP.
Also, ZINTLB ¼ z3 þ

P
j2S1

cj is a lower bound for the optmal objective
function value of IP. We call the following version of the cardinality
cut ‘‘the optimized cardinality cut”:
X

j2S1

rxj þ
X

j2S2

xj 6 rjS1j ð20Þ

with r ¼ jS2j.
Then, we state and prove the following proposition:

Proposition 2. The optimized cardinality cut represented by the
inequality in Eq. (20), when added to P, makes sure that all solutions
of P3, except for the solution X ¼ fjjxj ¼ 1 for j 2 S1 and
xj ¼ 0 for j 2 S2g, are infeasible while all other integer solutions of

IP remain feasible.

Proof. It is obvious that for any positive value of r, the inequality
will be violated when any variable xj for j 2 S2 takes a positive
value while all xj ¼ 1 for j 2 S1. On the other hand, setting only
one xj ¼ 0 such that j 2 S1 will make room for all xj’s such that
j 2 S2to take positive values if we set r ¼ jS2j. h

Corollary 1. When the inequality of Eq. (20) is added to the con-
straint set of P, the LP relaxation of IP, with r ¼ jS2j, it separates only
the integer and noninteger solutions having all xj ¼ 1 with j 2 S1 as a
proper subset of variables with nonzero values, from the feasible set of
P. All other integer feasible solutions remain in the feasible set.

O. Oguz / European Journal of Operational Research 205 (2010) 273–279 275
Note that the cut represented by Eq. (20) is not a conventional
polyhedral cut aimed at defining the convex hull of the integer
solutions of our problem. It cuts into the polyhedron representing
the convex hull, eliminating fathomed integer solutions only.

Obviously, we can use this inequality as a cut in the constraint
set of problem P, as long as we keep the integer solution corre-
sponding to ZINTLB as an incumbent until it is replaced with a bet-
ter one, i.e., a solution that gives a higher lower bound. Again, to
enhance the effectiveness of the cut, we can set r =z2, where z2 is
obtained from Eq. (12) in the solution of P2.

Obviously, the optimized version of the cardinality cut is
more effective than the original version due to the fact that
the original version is ineffective when

P
j2S2

xj 6 bz1c holds, in
which case the related inequality cannot separate the noninteger
solution from the solution set of P, whereas the new version is
always able to do the separation. Of course, there is a cost: we
have to solve the integer programming problem P3, to be able
to use the inequality given in Eq. (20) as a cut. Considering
the cardinality of S2, the number of variables of the integer pro-
gramming in question (P3) may be quite large, and solving P3 to
optimality may be very time consuming. In fact, the use of opti-
mized cardinality cuts may be impossible if the size of P3 is too
large, in which case we can use the cut only in its original form
in Eq. (11).

To reduce the number of variables and the solution time of P3,
we fix the variables with a value equal to 0 in the LP relaxation of P,
just like the variables in S1. Fixing is achieved by revising the con-
straint in Eq. (18) of P3 as follows:

Let S2 ¼ Sf [S0, where Sf ¼ fjj0 < xj < 1; j 2 S2g, and
S0 ¼ fjjxj ¼ 0; j 2 S2g. Then the equality given in Eq. (18) takes the
following form:

X

j2S1

xj �
X

j2S0

xj ¼ jS1j: ð21Þ

After solving P3 with this constraint, the inequality of the optimized
cardinality cut given in Eq. (20) becomes:
X

j2S1

rxj �
X

j2S0

rxj þ
X

j2Sf

xj 6 rjS1j; ð22Þ

where the objective function value z2 in Eq. (12) is redefined as
z2 ¼

P
j2Sf

xj and Eq. (14) is replaced by
X

j2S1

xj �
X

j2S0

xj ¼ jS1j � 1 in P2:

The solution time of P3 is reduced as expected by using Eq. (21),
however there is a drawback: the effectiveness of Eq. (22) as a cut
is much less relative to that of Eq. (20). Thus, when we use it in a
cutting plane framework, the result is a slower improvement (de-
crease) of the upper bound and adding a greater number of cuts
(constraints) leading to an increased number of fractional variables
in the LP relaxation that defeats the purpose of reducing the num-
ber of variables for P3.

This led to a further refinement of the approach and use of an
unconventional way of aggregation of these cuts. Consider two
unidentical cuts; Cut1 and Cut2 represented by the two inequali-
ties given below:

Cut1 :
X

j2S1
1

r1xj �
X

j2S1
0

r1xj þ
X

j2S1
f

xj 6 r1 S1
1

���
���: ð23Þ

Cut2 :
X

j2S2
1

r2xj �
X

j2S2
0

r2xj þ
X

j2S2
f

xj 6 r2 S2
1

���
��� ð24Þ

and Cut3 which is a combination of Cut1 and Cut2 as described
below:
Cut3 :
X

j2S3
1

r3xj �
X

j2S3
0

r3xj þ
X

j2S3
f

xj 6 r3 S3
1

���
���; ð25Þ

where:

S3
1 ¼ S1

1 \ S2
1; S3

0 ¼ S1
0 \ S2

0 and S3
f ¼ N n fS3

1 [S3
0g: ð26Þ

We are now ready to state the following proposition:

Proposition 3. Let zð1&2Þ represent the value of the objective
function of P solved with Cut1 and Cut2 added as constraints, and
zð3Þ the objective function of the same problem solved with Cut3 only.
Then, zð3Þ 6 zð1&2Þ holds.

Proof. Let T1 be the set of feasible solutions of P with
xj ¼ 1 for j 2 S1

1; xj ¼ 0 for j 2 S1
0, and 0 < xj < 1 for j 2 S1

f . T2 and
T3 are similarly defined using the corresponding sets associated
with Cut2 and Cut3. Then we have fT1 [T2g � T3, due to the fact
that S3

1 � S1
1 and S3

1 � S2
1; S

3
0 � S1

0 and S3
0 � S2

0, and also
fS1

f [S2
f g � S3

f are true by definition. Let T represent the set of fea-
sible solutions of P. The following is true:

T n T3 � T n fT1 [T2g because fT1 [T2g � T3 is true, which
implies zð3Þ 6 zð1&2Þ h

Proposition 3 enables us to throw away Cut1 and Cut2, and
solve P with only Cut3 added, and obtain a better upperbound as
a result. Note that the aggregation can be repeated recursively
for any number of times as long as S0 and S1 are not both empty.
This gives us the opportunity to solve P, define Cut1, then add
Cut1 to P and re-solve, define Cut2, aggregate Cut1 and Cut2 to ob-
tain Cut3, then replace Cut1 by Cut3, and re-solve P, define Cut4
and aggregate it with Cut3 to obtain Cut5 which replaces Cut3,
and so on until defining Cut(K), at which point we solve P3 to ob-
tain an integer incumbent solution. Once this is done, Cut(K) be-
comes a permanent constraint of P, we restart the process by
solving P and defining Cut1 again. The basic advantage of this ap-
proach is to keep the number of added cuts low while obtaining
significant reductions of the upperbound and keeping the number
of variables of P under control. This approach seems to have signif-
icant potential value and will be discussed in more detail, including
a formal algorithmic description, in Section 4.
4. Computational experiments

This section is divided into three subsections. In the first one,
the performance of the initial cardinality cut given in Eq. (11) is
compared with that of cover inequalities on well known hard
knapsack problems in the literature in a cutting plane framework.
The second subsection is devoted to an implementation of opti-
mized cardinality cuts in the form given in Eq. (20) on TSP prob-
lems taken from TSPLIB (http://www.iwr.uni-heidelberg.de/
groups/comopt/soft/TSPLIB95/TSPLIB.html). The final subsection
is about using the aggregation of optimized cardinality cuts on
some large scale multidimensional 0-1 knapsack problems.

4.1. Comparison of cardinality cuts with cover inequalities:

We have used a subset of the multidimensional 0-1 knapsack
test problems provided in [8]. These problems are inherently diffi-
cult, much like but not exactly the same with the market share
problems presented in [1] .The table below displays the results
for the set of first 5 problems from each of the first 9 categories gi-
ven in OR-Library, available at (http://people.brunel.ac.uk/~mast-
jjb/jeb/orlib/mknapinfo.html).

The experiments have been carried out on a 2.6 GHz, 2xAMD
Opteron server running Linux with 2 GB RAM. The generation of

http://www.iwr.uni-heidelberg.de/groups/comopt/soft/TSPLIB95/TSPLIB.html
http://www.iwr.uni-heidelberg.de/groups/comopt/soft/TSPLIB95/TSPLIB.html
http://people.brunel.ac.uk/~mastjjb/jeb/orlib/mknapinfo.html
http://people.brunel.ac.uk/~mastjjb/jeb/orlib/mknapinfo.html

276 O. Oguz / European Journal of Operational Research 205 (2010) 273–279
the cardinality cuts has been embedded into the branch-and-cut
framework of CPLEX 8.0.1(Interactive Optimizer 8.1.0, Copyright
(c) ILOG 1997–2002). We report the results associated with the
root node of the branch-and-cut tree only. In the table below, col-
umns under CPLEX give performance data for cover inequalities,
and columns under CC give the data related to cardinality cuts. INI-
TIAL is the objective function value of the LP relaxation, and ‘‘im-
proved” is the same bound after addition of cuts. ‘‘improvement”
is equal to INITIAL – ‘‘improved”. Columns Cover Cuts and Cuts dis-
play the number of cuts generated by the two methods. A lower
bound obtained for each time P1 is solved by computingP

j2S1
cjxj þ

P
j2S2

cj xj
� �

, and LB is the best of these values. GAP is
equal to (improvement)/(INITIAL- LB).

The time and bound improvement performance of CPLEX at the
root node, reflects the results obtained when only cover inequali-
ties are allowed as cutting planes. All other cuts, including Gomory
fractional cuts are disabled.

Note that, in many cases CPLEX is unable to find a cover inequal-
ity, but still reports slight improvements, i.e., positive (INITIAL –
‘‘improved”). Apparently, CPLEX employs some heuristics at the
root node to find an initial lower bound which improves the upper
bound in the process. Being unable to shut off these heuristics, we
present our results with this bias on the side of the performance of
CPLEX. Time(s) means the amount of time spent for separation.

We have devised a simple greedy heuristic to find effective car-
dinality cuts. It stops when it cannot separate the current solution
(LP relaxation) from the solution space of P. The results in the CC
columns in Table 1 were obtained by using this algorithm.

The Heuristic algorithm:

Step 1: Solve P and define S1 and S2 ¼ fSf [S0g. If Sf ¼ /, stop.
The solution is integer optimal. Otherwise let
x1

j for j 2 Sf denote the value of the jth variable in the
LP relaxation.

Step 2: Solve P1. Let x2
j for j 2 Sf denote the value of the jth var-

iable in this solution.
Step 3: Compute f1 ¼

P
j2Sf

x1
j and f2 ¼

P
j2Sf

x2
j If bf2c < f1, add a

new cardinality cut to P with r ¼ z2 � bz1c, and go to Step
1. Otherwise go to Step 4.

Step 4: If Sf ¼ / , stop. Output current upper bound and lower
bound, if any exists. Otherwise, find j* such that

x1
j�

x2
j�

is
smallest for j 2 Sf . Set Sf ¼ Sf n ðj�Þ and go to Step 2.

In the results obtained for the cardinality cuts (CC), CPLEX is
used as a LP solver only.

The summary given in Table 2 shows the extent of the gap
improvement the cardinality cuts can provide in less than a second
for the problems in the test set in Table 1:

4.2. Some results with TSP problems

We have also solved a few problems from the library of TSP
problems from the following web page: TSPLIB (http://www.iwr.u-
ni-heidelberg.de/groups/comopt/software/TSPLIB95/) in our
experiments.

The algorithm uses the optimized cardinality cut given in Eq.
(20).

We have implemented the following simple algorithm:

Step 0. Set INC = +1 as the value of the incumbent tour.
Step 1. Solve P (2-matching formulation). If the solution is a tour

or if the value of the objective function of aP is greater
than INC, stop. Otherwise, define S1 and S2.

Step 2. Set r ¼ n� jS1j. Solve P3. If the solution is integer, but
represents subtours, then add a subtour breaking con-
straint to P and go to step 1. If the solution is a tour,
record it as an incumbent and revise INC. If the current
solution is better than the current incumbent, add a tour
breaking constraint to P eliminating the tour and go to
Step 1. When P3 is infeasible (no integer solution exists)
add the cardinality cut given in Eq. (20) to P and go to
Step 1.

The solutions to P and P3 were obtained using CPLEX version
8.0.1 on the same server. The choice of r ¼ n� jS1j is specific to
TSP, because n, the number cities, gives a natural upperbound on
the number of variables that can be equal to 1 in any solution.

Our attempts to solve larger problems were not successful due
to excessive solution times for the subproblem P3. The results re-
ported in the table may seem unimpressive in comparison to com-
putation times reported in Concorde TSP Solver webpage (http://
www.tsp.gatech.edu/concorde/index.html). One should keep in
mind that we have used CPLEX Mip Solver supplemented by sub-
tour breaking constraints and cardinality cuts only. The version
of the cardinality cut (Eq. (20)) is not the most potent cut proposed
(i.e., the aggregated version is the most potent) in this paper. LP
relaxations are solved from scratch each time a cut is added to
the problem. That is, neither the algorithm and nor the computer
program we used are state of the art caliber. Our purpose is to
demonstrate that the proposed cuts works for problems other than
the multidimentional 0-1 knapsack problem, a claim made in Sec-
tion 2 of this paper.

4.3. Experiments with the multidimentional Knapsack problems

The cutting plane algorithm used to solve the multidimentional
knapsack problems in this subsection uses the aggregated cardinal-
ity cut given in Eq. (25). An outline of the algorithm based on agre-
gated cardinality cuts is as follows:

Step 0. Set INC ¼ �1 as the value of the incumbent solution,
k=0, and assign a value to the aggregation frequency
1 6 K 6 1000.

Step 1. Solve P (the LP relaxation). If the solution is integer or if
the value of the objective function of P is smaller than
INC, stop and declare INC as the optimal value. Other-
wise, define S1; S2 and Sf .

Step 2. Solve the problem:

Max r ¼
X

j2Sf

xj st :
Xn

j¼1

aijxj 6 bi 8i ¼ 1; . . . ;m;
X

j2S1

xj �
X

j2S0

xj

¼ jS1j � 1 and 0 6 xj 6 1 8j ¼ 1; . . . ;n;

to determine the value of r for the current partition of N into Sk
1; S

k
2

and Sk
f . If k = 0, define a cardinality cut with the current r and cur-

rent partition. Add this cut to P, set k = k + 1 and go to step 1. If
0 < k < K, go to the next step. Otherwise go to Step 4.

Step 3. Carry out an aggregation procedure as described by Eqs.
(23)–(25) to combine Sk�1

1 ; Sk�1
2

and Sk�1
f with Sk

1; S
k
2 and Sk

f , calling the result the kth partition. Deter-
mine r with the kth partition and replace the last added cut to P by
the new cut obtained using the kth partition and go to Step 1.

Step 4. Carry out an aggregation procedure combining K � 1st
partition with the Kth (the result is still called the Kth
partition), and solve P3. If the solution is better than
the incumbent, record it as the new incumbent. Replace
the K � 1st cut by the Kth in P, set k = 0 and go to Step 1.

http://www.iwr.uni-heidelberg.de/groups/comopt/software/TSPLIB95/
http://www.iwr.uni-heidelberg.de/groups/comopt/software/TSPLIB95/
http://www.tsp.gatech.edu/concorde/index.html
http://www.tsp.gatech.edu/concorde/index.html

Table 1
Results for ORLIB problems with cardinality cuts and cover cuts.

INITIAL CPLEX CC Improvement GAP % closed

Improved Time (s) Cover cuts Improved Time (s) Card. cuts LB CPLEX CC CPLEX CC

mk1_1 24585.90 24583.33 0.00 2 24577.90 0.02 19 20810.00 2.57 8.00 0.0681 0.2119
mk1_2 24538.21 24537.25 0.00 1 24512.20 0.12 75 19799.00 0.96 26.01 0.0203 0.5488
mk1_3 23895.83 23894.83 0.00 0 23887.11 0.02 28 21254.00 1 8.72 0.0379 0.3301
mk1_4 23724.14 23718.54 0.00 1 23717.16 0.02 29 19984.00 5.6 6.98 0.1497 0.1866
mk1_5 24223.03 24208.54 0.00 3 24223.03 0.00 0 21859.00 14.49 0.00 0.6129 0.0000
mk2_1 59442.47 59439.95 0.01 2 59438.76 0.01 4 55919.00 2.52 3.71 0.0715 0.1053
mk2_2 61629.34 61627.71 0.00 2 61627.45 0.01 3 58131.00 1.63 1.89 0.0466 0.0540
mk2_3 62259.54 62254.77 0.01 3 62256.51 0.03 33 58801.00 4.77 3.03 0.1379 0.0876
mk2_4 59578.23 59574.75 0.00 2 59575.64 0.04 33 56328.00 3.48 2.59 0.1071 0.0797
mk2_5 59078.37 59077.73 0.01 2 59075.18 0.04 36 54437.00 0.64 3.19 0.0138 0.0687
mk3_1 120234.92 120233.59 0.03 2 120231.82 0.07 25 116251.00 1.33 3.10 0.0334 0.0778
mk3_2 117955.16 117954.19 0.03 1 117952.31 0.07 36 113953.00 0.97 2.85 0.0242 0.0712
mk3_3 121213.33 121211.51 0.03 1 121211.65 0.01 4 118497.00 1.82 1.68 0.0670 0.0618
mk3_4 120888.52 120887.53 0.03 1 120885.15 0.02 9 117692.00 0.99 3.37 0.0310 0.1054
mk3_5 122426.49 122425.49 0.03 0 122423.55 0.05 21 119430.00 1 2.94 0.0334 0.0981
mk4_1 23480.64 23479.75 0.01 1 23475.36 0.02 15 19067.00 0.89 5.28 0.0202 0.1196
mk4_2 23220.69 23218.94 0.00 1 23189.08 0.06 37 15735.00 1.75 31.61 0.0234 0.4223
mk4_3 22493.74 22493.42 0.01 0 22462.74 0.03 37 16800.00 0.32 31.00 0.0056 0.5445
mk4_4 23087.47 23086.91 0.00 0 23085.14 0.01 3 18701.00 0.56 2.33 0.0128 0.0531
mk4_5 23073.88 23067.04 0.01 0 23073.88 0.00 0 19765.00 6.84 0.00 0.2067 0.0000
mk5_1 59489.34 59487.98 0.01 0 59489.34 0.01 0 56566.00 1.36 0.00 0.0465 0.0000
mk5_2 59024.30 59019.15 0.01 0 59018.56 0.09 55 53594.00 5.15 5.74 0.0948 0.1057
mk5_3 58413.15 58408.88 0.01 0 58410.50 0.00 1 53918.00 4.27 2.65 0.0950 0.0590
mk5_4 61263.00 61262.64 0.01 0 61259.40 0.03 15 55742.00 0.36 3.60 0.0065 0.0652
mk5_5 58363.34 58363.27 0.01 0 58360.96 0.04 28 53457.00 0.07 2.38 0.0014 0.0485
mk6_1 118019.48 118019.36 0.03 0 118018.63 0.03 14 112120.00 0.12 0.85 0.0020 0.0144
mk6_2 119437.29 119435.40 0.03 0 119434.31 0.14 53 114659.00 1.89 2.98 0.0396 0.0624
mk6_3 119405.70 119405.22 0.03 0 119404.16 0.04 16 113140.00 0.48 1.54 0.0077 0.0246
mk6_4 119066.09 119065.33 0.03 0 119065.77 0.02 2 115583.00 0.76 0.32 0.0218 0.0092
mk6_5 116697.95 116696.90 0.02 0 116695.34 0.72 118 108457.00 1.05 2.61 0.0127 0.0317
mk7_1 22579.07 22577.01 0.01 0 22569.71 0.03 4 13406.00 2.06 9.36 0.0225 0.1020
mk7_2 22367.84 22366.69 0.01 0 22340.29 0.12 37 12226.00 1.15 27.55 0.0113 0.2716
mk7_3 21270.50 21270.18 0.01 0 21270.50 0.01 0 15097.00 0.32 0.00 0.0052 0.0000
mk7_4 22049.63 22048.72 0.01 0 22041.90 0.09 43 13416.00 0.91 7.73 0.0105 0.0895
mk7_5 22529.25 22528.11 0.01 0 22524.12 0.05 21 13512.00 1.14 5.13 0.0002 0.0006
mk8_1 57430.15 57424.93 0.05 0 57418.76 0.15 25 45782.00 5.22 11.39 0.0448 0.0978
mk8_2 59080.03 59079.42 0.04 0 59072.10 0.07 8 47886.00 0.61 7.93 0.0054 0.0708
mk8_3 57176.74 57173.74 0.04 0 57174.91 0.08 10 49387.00 3 1.83 0.0385 0.0235
mk8_4 57568.92 57568.16 0.04 0 57568.92 0.01 0 49671.00 0.76 0.00 0.0096 0.0000
mk8_5 57277.70 57276.06 0.04 0 57273.85 0.03 1 47251.00 1.64 3.85 0.0164 0.0384
mk9_1 116619.01 116618.56 0.09 0 116615.91 0.24 22 100956.00 0.45 3.10 0.0029 0.0198
mk9_2 115370.13 115368.78 0.08 0 115365.20 0.14 9 105705.00 1.35 4.93 0.0140 0.0510
mk9_3 117342.45 117341.16 0.10 0 117339.31 0.13 7 105799.00 1.29 3.14 0.0112 0.0272
mk9_4 115946.40 115944.56 0.09 0 115943.20 0.24 20 103239.00 1.84 3.20 0.0145 0.0252
mk9_5 117079.29 117079.01 0.08 0 117077.99 0.68 54 104622.00 0.28 1.30 0.0022 0.0104

Table 2
Summary results in terms of relative improvements.

76.67% Percentage better
29.05% Percentage 5 times better
17.62% Percentage 10 times better
9.05% Percentage 20 times better

Table 3
Solution times for some TSPLIB problems.

Problem name CPU seconds Number of cardinality cuts added

Berlin52.tsp 5.20 0
Eil51.tsp 50.34 65
Eil76.tsp 271.13 8
Eil101.tsp 231.78 189
Gr96.tsp 605.14 65
Bier127.tsp 2369.62 422
Ch130.tsp 1866.62 338
Ch150.tsp 5252.53 413

O. Oguz / European Journal of Operational Research 205 (2010) 273–279 277
Implementation of this algorithm on a subset of problems given
in [8] gave the results listed in Table 4 below.

The numbers in the columns of Cardinality Cuts are the times in
cpu seconds used for solving the corresponding knapsack problems
with the algorithm given above. The column for CPLEX gives the
times for the same problems by using CPLEX alone.We have used
K = 30, 50, 50 for problems with 100, 250 and 500 variables corre-
spondingly. CPLEX tolerance level (mipgap) was set equal to zero
for solution times in both columns.

The version used is CPLEX (Interactive Optimizer 8.1.0 , Copy-
right (c) ILOG 1997–2002).

These problems are specially designed to be difficult to solve by
branch and cut methods. Correlation between the objective func-
tion and the constraints, and the tightness of the constraints are
the basic design parameters. These parameters have different set-
tings to create problems with varying difficulty. For more details,
the web address given above may be seen.

In two cases (mknapcb3_30, mknapcb5_1) CPLEX stopped giving
‘‘out of memory” message without identifying the optimal solution.

The next set of experiments are carried out on relatively larger
problems we have generated using our own pseudo random num-
ber generator. Multidimentional 0-1 knapsack problems were gen-
erated in the range of 1000–20,000 variables and 25–100

Table 4
Solution times in CPU seconds for some ORLIB problems.

Problem name Cardinality cuts Cpu seconds CPLEX Cpu seconds

Mknapcb1_1 0.31 0.32
Mknapcb1_15 3.00 2.38
Mknapcb1_30 0.06 0.05
Mknapcb2_1 19.20 26.62
Mknapcb2_15 707.18 771.15
Mknapcb2_30 92.88 109.81
Mknapcb3_1 11700.26 12590.24
Mknapcb3_15 861.89 949.26
Mknapcb3_30 29067.77 >3626.86
Mknapcb4_1 132.98 104.13
Mknapcb4_15 11.68 10.36
Mknapcb4_30 3.95 4.87
Mknapcb5_1 16298.55 >4684.9
Mknapcb5_15 13149.29 13459.81
Mknapcb5_30 2825.75 3048.88

278 O. Oguz / European Journal of Operational Research 205 (2010) 273–279
constraints. The objective function coefficients are uniformly dis-
tributed integers between 0 and 500, the constraint coefficients
are also uniform random numbers between 0 and 100. Right hand
side constants are obtained by multiplying the sum of the con-
straint coefficients corresponding to the constraint in question
multiplied by a uniform random number between 0.1 and 0.90,
and rounded to the nearest integer. Table 5 below displays the time
performance of the algorithm given at the begining of this subsec-
tion together with time performance of CPLEX on twelve relatively
large problems generated as described above. The first column of
the table shows the dimensions of problems. Second column is
the cpu times for the algorithm that uses aggregated cardinality
cuts, and the third column that of CPLEX. CPLEX stopped without
finding the optimal solution with a ‘‘out of memory” message for
the problems marked with stars in the table. We set K = 100 as de-
fault. This value was increased for three problems to speed up the
coverage of the optimality gap, i.e., the difference between the
incumbent value and the available upperbound. Algorithm using
cardinality cuts were performed worse than CPLEX only in two
cases: problems 25 � 1000 and 25 � 20,000. In both cases the dif-
ference between value of the optimal solution and the objectve
function value of the LP relaxation were very small, less than one
in case of problem 25 � 20,000. The setup time for a single cardi-
nality cut required for solving the LP relaxation K times, probably
took much longer than CPLEX to cover the small optimality gap
for these problems.

The solution time records in the table speak for themselves. Six
of the twelve problems are probably solvable by the use of cardi-
nality cuts only. The number of cuts used to achieve these results
may also be considered very reasonable.
Table 5
Solution times for randomly generated large problems.

m(Constraints) � n(variables) Cardinality cuts Cpu seconds Number of agg

25 � 1000 1.45 1
50 � 1000 765.96 1
100 � 1000 10076.20 1
25 � 5000 2033.04 1
50 � 5000 87.46 1
100 � 5000 38448.99 14
25 � 10,000 4084.70 2
50 � 10,000 53.19 1
100 � 10,000 21193.43 5 (K = 300)
25 � 20,000 121.05 1
50 � 20,000 32898.56 12 (K = 500)
100 � 20,000 11250.15 4 (K = 200)
5. Conclusions and comments

In this paper, the description and the proofs of validity of cardi-
nality cuts are given in three stages. The first stage introduces the
cut in its most crude form that may be considered as an integer
rounding procedure. The computational experiments presented
in Section 4 provide evidence that these cuts may be more effective
than cover cuts: one of the main forces in ‘‘cut” part of the branch-
and-cut routines.

The second stage is the optimization of cardinality cuts through
integer programming. Solving relatively small subproblems by
integer programming allowed the definition and use of a new gen-
eration of cuts that can cut off parts of the underlying polyhedron
containing integer solutions that are fathomed. These cuts were
used to solve a small set of TSP test problems from the literature.
The results displayed in Table 3 seem promissing to say the least.

The third stage describes the development of the aggregated
cardinality cut that can be used to solve considerably large prob-
lems by means of solving relatively small subproblems a few times
by integer programming and adding an aggregated cut to the main
problem after solving each subproblem. Most of the problems in
Table 5, for example, were solved by solving a 0-1 integer pro-
grams with a couple of hundred variables only and by adding a sin-
gle cut to the original problem. However, this does not mean that
higher numbers are unlikely.

Main feature of the approach is the use of the information ob-
tained from the solution of the subproblem P3. The solution pro-
vides a potential incumbent and a cardinality cut that separates
all solutions of this subproblem from the polyhedron representing
the solution space of the original problem. The speed of reduction
of the upper bound on the value of the optimal solution is remark-
able especially in the case of aggregated version of the cuts. Opti-
mized cardinality cuts are vastly superior to cardinality cuts (Eq.
(11)). None of the TSP problems of Table 3 could be solved using
cardinality cuts only. Similarly, aggregated optimized cardinality
cuts are far more potent than optimized cardinality cuts. None of
the problems in Table 5 could be solved using optimized cardinal-
ity cuts only.

The methods used in this study to solve TSP and multidimen-
tional knapsack problems are quite universal. They can be used
for any problem that can be formulated as a 0-1 linear integer pro-
gramming problem. To name a few: set covering, assignment prob-
lems with side constraints, scheduling and routing problems, graph
coloring, maximum clique are among examples. The approach out-
lined above may be tailored easily to solve these problems.

Although the computational results presented in this study give
strong indication that the methods proposed will expand the limits
on sizes of problems solvable by integer programming, there is still
need for more experiments.Trying different types of problems and
regated cuts added CPLEX Cpu seconds Number of cover cuts added

1.23 75
2074.46 150

** **
15221.62 75

3438.96 150
** **
** **

188.10 150
** **

12.47 4
** **
** **

O. Oguz / European Journal of Operational Research 205 (2010) 273–279 279
the improving the performance of the methods are further research
areas.

References

[1] G. Cornuejols, M. Dawande, A class of hard small 0-1 programs, INFORMS
Journal on Computing 11 (1999) 205–210.

[2] H. Crowder, E.L. Johnson, M.W. Padberg, Solving large scale 0-1 linear
programming problems, Operational Research 31 (1983) 803–834.

[3] G.E. Ferreira, A. Martin, R. Weismantel, Solving multiple knapsack problems by
cutting planes, SIAM Journal of Optimization (1996) 6858–6877.

[4] R.E. Gomory, Outline of an algorithm for integer solutions to linear programs,
Bulletin of the American Mathematical Society 64 (1958) 275–278.
[5] Z. Gu, G.L. Nemhauser, M.W.P. Savelsbergh, Lifted cover inequalities for 0-1
integer programs: complexity, INFORMS Journal on Computing 11 (1999) 117–
123.

[6] E.L. Johnson, G.L. Nemhauser, M.W.P. Savelsbergh, Progress in linear
programming-based algorithms for integer programming: an exposition,
INFORMS Journal on Computing 12 (2000) 2–23.

[7] G.L. Nemhauser, L.A. Wolsey, Integer and Combinatorial Optimization, Wiley,
New York, 1988.

[8] OR-Library. Available at (<http://people.brunel.ac.uk/~mastjjb/jeb/orlib/
mknapinfo.html>).

[9] J.E. Beasley, OR-Library: distributing test problems by electronic mail, Journal
of the Operational Research Society 41 (11) (1990) 1069–1072.

[10] L.A. Wolsey, Integer Programming, Wiley, New York, 1998.

http://people.brunel.ac.uk/~mastjjb/jeb/orlib/mknapinfo.html
http://people.brunel.ac.uk/~mastjjb/jeb/orlib/mknapinfo.html

	Cutting plane algorithms for 0-1 programming based on cardinality cuts
	Introduction
	The new cut
	Redefinition, optimization and aggregation of the cardinality cuts
	Computational experiments
	Comparison of cardinality cuts with cover inequalities:
	Some results with TSP problems
	Experiments with the multidimentional Knapsack problems

	Conclusions and comments
	References

