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We consider a convex and nondifferentiable optimization problem for deterministic flow shop systems in
which the arrival times of the jobs are known and jobs are processed in the order they arrive. The decision
variables are the service times that are to be set only once before processing the first job, and cannot be
altered between processes. The cost objective is the sum of regular costs on job completion times and
service costs inversely proportional to the controllable service times. A finite set of subproblems, which
can be solved by trust-region methods, are defined and their solutions are related to the optimal solution
of the optimization problem under consideration. Exploiting these relationships, we introduce a two-
phase search method which converges in a finite number of iterations. A numerical study is held to dem-
onstrate the solution performance of the search method compared to a subgradient method proposed in
earlier work.
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1. Introduction

We consider flow shop systems consisting of traditional human
operated (non-CNC) machines that are processing identical jobs.
During mass production, a company cannot afford human inter-
ventions to modify the service times because the setup times for
these modifications are idle times for these machines. Moreover,
these manual modifications are prone to errors. Therefore, we
assume that the service times at these traditional machines are
initially controllable, i.e., they are set at the start-up time, and
are applied to all jobs processed at these machines.

The cost to be minimized is assumed to consist of service costs
on machines, which are dependent on service times, and regular
completion time costs for jobs, e.g., inventory holding costs.
Motivated by the extended Taylor’s tool-wear equation (see in
Kalpakjian and Schmid (2006)), we assume that faster services
increase wear and tear on the machine tools due to increased tem-
peratures and may raise the need for extra supervision, increasing
service costs. The degradation of the product quality due to faster
services are also lumped into these service costs. Slower services,
on the other hand, build up inventory and postpone the completion
times increasing the regular completion time costs. Our objective
in this study is to determine the cost minimizing service times.

The scheduling problems of flow shops are known to be
NP-hard even for fixed service times (see in Pinedo (2002)). In
these problems, the objective is to find the best sequence of jobs
ll rights reserved.
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to be processed at machines. Except for two-machine systems with
the objective of minimizing makespan, the scheduling literature is
limited to heuristics and approximate solution methods. Introduc-
tion of controllable service times at machines further complicates
the problem. Following the pioneering work in Vickson (1980),
controllable service times have received great attention over the
last three decades. Nowicki and Zdrzalka (1988) studied a two-ma-
chine flow shop system with the objective of minimizing a cost
formed of makespan and decreasing linear service costs. Through
reducing the knapsack problem to it, the problem was proven to
be NP-hard even in the case where the service times are controlla-
ble only at the first machine. The heuristic algorithm proposed in
this work was later extended to flow shops with more than two
machines in Nowicki (1993). In Cheng and Shakhlevich (1999),
an algorithm for a similar cost structure was presented for propor-
tionate permutation flow shops where each job is associated with a
single service time for all machines. Karabati and Kouvelis (1997)
addressed the problem of minimizing a cost formed of decreasing
linear service and regular cycle time costs, and introduced an iter-
ative solution procedure where the task of selecting the optimal
service times for a given sequence was formulated as a linear pro-
gramming problem solved by a row generation scheme. Further-
more, a genetic algorithm for large problems was presented
whose effectiveness was demonstrated through numerical studies.
A survey of results on the controllable service times can be found
in Nowicki and Zdrzalka (1990), Hoogeveen (2005) and Shabtay
and Steiner (2007).

The studies above assumed the service costs to be decreasing
linear functions of service times. This linearity assumption,
however, fails to reflect the law of diminishing marginal returns:
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productivity increases at a decreasing rate with the amount of
resource employed. Therefore, in this study, we adapt the service
cost function hjð�Þ on machine j defined as

hjðsjÞ ¼
bj

sa
j

; ð1Þ

where bj is a positive parameter, sj is the service time at machine j,
and a is a positive constant. This cost structure was shown to cor-
respond to many industrial operations in Monma et al. (1990). Such
nonlinear and convex service costs were also considered in Gurel
and Akturk (2007).

The optimal control literature assumed that jobs are served in a
given sequence, and concentrated on determining the optimal con-
trol inputs which in turn determine the optimal service times. Pep-
yne and Cassandras (1998) formulated a nonconvex and
nondifferentiable optimal control problem for a single machine sys-
tem with the objective of completing jobs as fast as possible with
the least amount of control effort. The results were extended in Pep-
yne and Cassandras (2000) for jobs with completion due dates and a
cost structure penalizing both earliness and tardiness. In Cassan-
dras et al. (2001), the task of solving these problems was simplified
by exploiting structural properties of the optimal sample path. Fur-
ther exploiting the structural properties of the optimal sample path,
‘‘backward in time” and ‘‘forward in time” algorithms based on the
decomposition of the original nonconvex and nondifferentiable
optimization problem into a set of smaller convex optimization
problems with linear constraints were presented in Wardi et al.
(2001) and Cho et al. (2001), respectively. The ‘‘forward in time”
algorithm presented in Cho et al. (2001) was then improved in
Zhang and Cassandras (2002). Mao et al. (2004) removed the com-
pletion time costs and introduced due date constraints. Some opti-
mal solution properties of the resulting problem were identified
leading to a highly efficient solution algorithm.

The work on two-machine systems started out with Cassandras
et al. (1999), which derived some necessary conditions for optimal-
ity and introduced a solution technique using the Bezier approxi-
mation method. Extending the work in Mao et al. (2004), Mao
and Cassandras (2006) considered a two-machine flow shop sys-
tem with service costs that are decreasing on service times, and de-
rived some optimality properties that led to an iterative algorithm,
which was shown to converge. Gokbayrak and Selvi (2006) studied
a two-machine flow shop system with a regular cost on completion
times and decreasing costs on service times, and identified some
optimal sample path characteristics to simplify the problem. In
particular, no waiting was observed between machines on the
optimal sample path leading to the transformation of the noncon-
vex discrete-event optimal control problem into a simple convex
programming problem. Gokbayrak and Selvi (2007) extended the
no-wait property to multimachine flow shop systems. Using this
property, simpler equivalent convex programming formulations
were presented and ‘‘forward in time” solution algorithms were
developed under strict convexity assumptions on service and com-
pletion time costs. Gokbayrak and Selvi (2010) generalized the
results to multimachine mixed line flow shop systems with Com-
puter Numerical Control (CNC) and traditional machines. The no-
wait property was shown to exist for the downstream of the first
controllable (CNC) machine of the system. Employing this result,
a simplified convex optimization problem along with a ‘‘forward
in time” decomposition algorithm were introduced enabling for
solving large systems in short times and with low memory
requirements.

Employing the cost structure in Gokbayrak and Selvi (2007), Gok-
bayrak and Selvi (2008) and Gokbayrak and Selvi (2009) considered
a deterministic flow shop system where the service times at ma-
chines are set only once, and cannot be altered between processes.
Gokbayrak and Selvi (2008) derived a set of waiting characteristics
in such systems and presented an equivalent simple convex optimi-
zation problem employing these characteristics. In order to elimi-
nate the need for convex programming solvers, Gokbayrak and
Selvi (2009) derived additional waiting characteristics and intro-
duced a minmax problem, which is almost everywhere differentia-
ble, of a finite set of convex functions along with its subgradient
descent solution algorithm. In this study, we propose an alternative
solution method for the minmax problem in Gokbayrak and Selvi
(2009). The relationships between the minimizers of the convex
functions in the minmax problem and the optimal solution are de-
rived. These relationships suggest a two-phase search algorithm
that determines the optimal solution in a finite number of iterations.
In each iteration a convex optimization problem needs to be solved.
For the special case where the service cost structure is as in (1)
allowing us to sort the service times of the machines, these convex
optimization problems are solved by trust-region methods.

The rest of the paper is organized as follows: In Section 2, we
describe the problem and present the minmax formulation given
in Gokbayrak and Selvi (2009). In Section 3, we derive the relation-
ships between the optimal solution and the minimizers of the con-
vex functions in the minmax formulation. Consequently, the two-
phase search algorithm is presented in this section. Implementa-
tion details of this search algorithm are given in Section 4 for the
service cost structure in (1). Section 5 demonstrates the solution
performance of the proposed methodology by a numerical study.
Finally, Section 6 concludes the paper.

2. Problem formulations

Let us consider an M-machine flow shop system with unlimited
buffer spaces between machines. A sequence of N identical jobs,
denoted by fCigN

i¼1, arrive at this system at known times
0 6 a1 6 a2 6 � � � 6 aN . Machines process one job at a time on a
first-come first-served non-preemptive basis, i.e., a job in service
can not be interrupted until its service is completed. The service
time at each machine j, denoted by sj, is the same for all jobs and
is the jth entry of the service time vector s ¼ ðs1; . . . ; sMÞ.

We consider the discrete-event optimal control problem P,
which has the following form:

P : min JðsÞ ¼
XM

j¼1

hjðsjÞ þ
XN

i¼1

/iðxi;MÞ
( )

ð2Þ

subject to

xi;j ¼maxðxi;j�1; xi�1;jÞ þ sj ð3Þ
xi;0 ¼ ai; x0;j ¼ �1 ð4Þ
sj P 0 ð5Þ

for i ¼ 1; . . . ;N and j ¼ 1; . . . ;M, where xi;j denotes the departure
time of job Ci from machine j.

In this formulation, hj denotes the service cost at machine j and
/i denotes the completion time cost for job Ci. The following
assumptions are necessary to make the problem somewhat more
tractable while preserving the originality of the problem.

Assumption 1. hjð�Þ, for j ¼ 1; . . . ;M, is continuously differentiable,
monotonically decreasing and strictly convex.
Assumption 2. /ið�Þ, for i ¼ 1; . . . ;N, is continuously differentiable,
monotonically increasing and convex.

Note that for the costs satisfying these assumptions, longer ser-
vices will decrease the service costs, while increasing the comple-
tion times, hence the completion time costs. This trade-off is what
makes our problem interesting.
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By the nature of the event-driven dynamics given by (3), the
problem is inherently nonconvex and nondifferentiable. In the fol-
lowing subsection, the equivalent convex optimization formula-
tion presented in Gokbayrak and Selvi (2009) is revisited.

2.1. Minmax problem

For each job Ci, let us define

ri ¼
1 i ¼ 1;

min
n¼1;...;i�1

ai�an
i�n

� �
i > 1;

(
ð6Þ

and form the set

W ¼ f0g [ fri : i ¼ 1; . . . ;Ng:

Let us sort and re-index the elements of W with cardinality N þ 1 so
that

rð0Þ < rð1Þ < rð2Þ < � � � < rðNÞ;

where rð0Þ and rðNÞ are defined to be zero and infinity, respectively.
For some distinct jobs Ck and Cl, we may have rk ¼ rl, so the cardi-
nality of W is at most N þ 1, i.e., N 6 N.

Next, we define riðkÞ values as

riðkÞ ¼
maxfj : rj P rðkÞ; j 6 ig k < N

1 k ¼ N

(
ð7Þ

for all i ¼ 1; . . . ;N. Employing these riðkÞ values, we define yk
i ðsÞ as

yk
i ðsÞ ¼ ariðkÞ þ ði� riðkÞÞsmax þ stotal; ð8Þ

where

smax ¼ max
j¼1;...;M

sj;

and

stotal ¼
XM

j¼1

sj:

Having defined yk
i ðsÞ, we formulate the equivalent minmax problem

of at most N functions:

R : min
sjP0

j¼1;...;M

JRðsÞ ¼ max
k¼1;...;N

fJkðsÞg
( )

; ð9Þ

where JkðsÞ functions can be written as

JkðsÞ ¼
XM

j¼1

hjðsjÞ þ
XN

i¼1

/i yk
i ðsÞ

� �
: ð10Þ

Employing Assumptions 1 and 2, we can show that fJkg
N
k¼1 and JRðsÞ

functions are continuous and strictly convex. Borrowed from
Gokbayrak and Selvi (2009), the following lemma states that JkðsÞ
exceeds all other cost functions fJtðsÞg

N
t¼1 when smax is in the kth

interval ½rðk�1Þ;rðkÞ�.

Lemma 1. JkðsÞP JtðsÞ for all t 2 f1; . . . ;Ng and for all s satisfying
smax 2 ½rðk�1Þ;rðkÞ�.

It follows from (9) and Lemma 1 that JRðsÞ ¼ JkðsÞ when
smax 2 ½rðk�1Þ;rðkÞ�.

Unfortunately, JkðsÞ cost functions are nondifferentiable func-
tions: For any service vector s ¼ ðs1; . . . ; sMÞ, the sensitivities of
the cost function Jk are given as

@Jk

@sj
¼

h0jðsjÞ þ
PN
i¼1

/0i yk
i ðsÞ

� �
sj < smax

h0jðsjÞ þ
PN
i¼1

/0i yk
i ðsÞ

� �
ð1þ i� riðkÞÞ

� �
sj > max

i–j
si

8>>><>>>: ð11Þ
for j ¼ 1; . . . ;M. Due to the smax term in (8), when there are multiple
machines with the maximum service time smax, i.e., when sj ¼
maxi–jsi, nondifferentiability is observed. Consequently, a subgradi-
ent algorithm was proposed in Gokbayrak and Selvi (2009).

In this paper, we derive relationships between the minimizers
of Jk and JR functions and propose a search algorithm as an alterna-
tive solution method.

3. Two-phase search algorithm

Since fJkg
N
k¼1 and JR are strictly convex, they have unique

minimizers. Let us denote these minimizers by fskgN
k¼1 and s�,

respectively. In the next theorem, we present some relationships
between these minimizers.

Theorem 2. For any k 2 f1; . . . ;Ng, the minimizer of Jk carries the
following information about the minimizer of JR:
(i) If sk
max 2 ½rðk�1Þ;rðkÞ�, then s� ¼ sk,
(ii) if sk
max > rðkÞ, then s�max P rðkÞ,

(iii) if sk
max < rðk�1Þ, then s�max 6 rðk�1Þ.
k k k
Proof. (i) If smax 2 ½rðk�1Þ;rðkÞ�, then from Lemma 1, Jkðs Þ ¼ JRðs Þ.
Since sk minimizes Jk, we have

JRðskÞ ¼ JkðskÞ 6 JkðsÞ 6 max
t¼1;...;N

JtðsÞ ¼ JRðsÞ

for all s, i.e., sk is the optimal solution of R.
(ii) For a contradiction, let us assume that sk

max > rðkÞ and
s�max < rðkÞ. Hence, we can define a nonempty set I1 as

I1 ¼ i : sk
i > rðkÞ

� �
:

Let us define an alternate solution �s as

�s ¼ s� þ c1ðsk � s�Þ;

where c1 is defined as

c1 ¼min
j2I1

rðkÞ � s�j
sk

j � s�j

( )
so that �smax ¼ rðkÞ. Then, from Lemma 1 and strict convexity of Jk, we
have

JkðskÞ < Jkð�sÞ ¼ JRð�sÞ < Jkðs�Þ 6 max
t¼1;...;N

Jtðs�Þ ¼ JRðs�Þ;

which contradicts the optimality of s� for JR. Hence, the optimal
solution for R satisfies s�max P rðkÞ.

(iii) For a contradiction, let us assume that sk
max < rðk�1Þ and

s�max > rðk�1Þ. Hence, we can define a nonempty set I2 as

I2 ¼ i : s�i > rðk�1Þ
� �

:

Let us define an alternate solution ŝ as

ŝ ¼ sk þ c2ðs� � skÞ

where c2 is defined as

c2 ¼min
j2I2

rðk�1Þ � sk
j

s�j � sk
j

( )
so that ŝmax ¼ rðk�1Þ. Then, from Lemma 1 and strict convexity of Jk,
we have

JkðskÞ < JkðŝÞ ¼ JRðŝÞ < Jkðs�Þ 6 max
t¼1;...;N

Jtðs�Þ ¼ JRðs�Þ;

which contradicts the optimality of s� for JR. Hence, the optimal
solution for R satisfies s�max 6 rðk�1Þ. h

The direct corollary of Theorem 2 is the following:
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Corollary 3. The minimizer of Jk yields the following information:

(i) If sk
max > rðkÞ, then sl

max R ½rðl�1Þ;rðlÞ� for all l 6 k,
(ii) if sk

max < rðk�1Þ, then sl
max R ½rðl�1Þ;rðlÞ� for all l P k.
Proof. (i) If sl
max 2 ½rðl�1Þ;rðlÞ� for some l < k satisfying rðlÞ < rðkÞ,

then s� ¼ sl, i.e., s�max 6 rðlÞ < rðkÞ. However, if sk
max > rðkÞ, then we

should have s�max P rðkÞ, which yields a contradiction. Having
sk

max 2 ½rðk�1Þ;rðkÞ� and sk
max > rðkÞ at the same time is also a

contradiction.
(ii) If sl

max 2 ½rðl�1Þ;rðlÞ� for some l > k satisfying rðl�1Þ > rðk�1Þ,
then s� ¼ sl, i.e., s�max P rðl�1Þ > rðk�1Þ. However, if sk

max < rðk�1Þ,
then we should have s�max 6 rðk�1Þ, which yields a contradiction.
Having sk

max 2 ½rðk�1Þ;rðkÞ� and sk
max < rðk�1Þ at the same time is also

a contradiction. h

Motivated by Theorem 2 and Corollary 3, we develop a search
algorithm that operates in two phases: In Phase 1, we search for
a Jk whose minimizer satisfies sk

max 2 ½rðk�1Þ;rðkÞ�. Corollary 3 sug-
gests a bisection search for this phase. This phase can yield two dif-
ferent results: If the search is successful to find an sl

max 2 ½rðl�1Þ;rðlÞ�
for some l ¼ 1; . . . :;N, then it will terminate with the optimal solu-
tion s�. If, on the other hand, sl

max R ½rðl�1Þ;rðlÞ� for all l ¼ 1; . . . :;N,
then this phase will yield a k 2 f1; . . . ;N � 1g satisfying

sk
max > rðkÞ > skþ1

max:

In this case, from Theorem 2, we conclude that s�max ¼ rðkÞ. Since
JRðsÞ ¼ JkðsÞwhen smax ¼ rðkÞ, we proceed to Phase 2, which searches
for the solution that minimizes Jk under the constraint that
smax ¼ rðkÞ.

The search algorithm we describe above requires us to deter-
mine the minimizers of fJkg

N
k¼1 with or without the additional

smax ¼ rðkÞ constraint. Efficient methods are available if we limit
the service cost structure to (1).

4. Determining the minimizers of Jk functions

As discussed before, Jk functions are nondifferentiable at points
where multiple machines have the maximum service time. If we
limit the service cost structure to (1), we can determine the
machines that should be assigned the maximum service time
beforehand to introduce differentiable cost functions. The next
lemma states that there exists an ordering among the optimal
service times sk

j determined by the bj values of the service cost
structure given in (1).

Lemma 4. For any two machines u and v, if bu P bv then sk
u P sk

v .

Proof. For a contradiction, let us assume that while bu P bv , the
optimal service times satisfy

sk
u < sk

v ; ð12Þ

and define the perturbed service times �sj for j ¼ 1; . . . ;M as

�sj ¼
sk

u þ D j ¼ u
sk
v � D j ¼ v

sk
j otherwise

8><>: ð13Þ

with 0 < D <
sk
v�sk

u
2 . Note that, from (12) and (13), we have

sk
u < �su < �sv < sk

v , therefore we can write

sk
max P �smax; ð14Þ

and

sk
total ¼ �stotal: ð15Þ
Then, from (8), (14) and (15), we have

yk
i ð�sÞ 6 yk

i ðskÞ ð16Þ

for all i ¼ 1; . . . ;N.
Moreover, since bu P bv and sk

u < sk
v , the inequality

h0u sk
u

� �
6 h0v sk

v
� �

ð17Þ

is satisfied.
If we denote the cost of the perturbed solution as Jk and the cost

of the unique minimizer sk as J�k, by Assumptions 1 and 2, and from
(12), (13), (16) and (17), we have

Jk � J�k ¼ hu sk
u þ D

� �
� hu sk

u

� �
� hv sk

v
� �

þ hv sk
v � D

� �
þ
XN

i¼1

/i yk
i ð�sÞ

� �
� /i yk

i ðskÞ
� �� �

< 0;

which contradicts the optimality assumption and concludes the
proof. h

Employing Lemma 4, we conclude that there exists a bk 2 fbjg
M
j¼1

threshold value such that if bj P bk then sk
j ¼ sk

max. In the following
subsection, we propose a method to determine bk so that we can
form a differentiable cost function and apply calculus of variations
techniques to determine sk.

4.1. Locating minimizers in Phase 1

We define a cost function Jbk as

JbkðsÞ ¼
X
j2Ib

hjðsmÞ þ
X
jRIb

hjðsjÞ þ
XN

i¼1

/i yk
i ðs;bÞ

� �
; ð18Þ

where Ib is the set fj : bj P bg with cardinality Kb; sm is the service
time of the most upstream machine m with bm ¼maxjbj, and
yk

i ðs;bÞ is defined as

yk
i ðs;bÞ ¼ ariðkÞ þ ðKb þ i� riðkÞÞsm þ

X
jRIb

sj: ð19Þ

Employing these differentiable cost functions, we define a family of
problems Qb

k as

Qb
k : min

s
JbkðsÞ

subject to

sj ¼ sm for j 2 Ib n fmg
sj P 0 for j 2 f1; . . . ;Mg:

A specific member of this family, Qbk

k will be of interest to us, as its
optimal solution will be sk.

By the cost structure in (1) and Assumption 2, the optimal solu-
tion should be finite and nonzero. Hence, applying calculus of vari-
ations techniques to solve Qb

k , we obtain the following set of
equations satisfied by the optimal solution sb:

h0j sb
j

� 	
þ
XN

i¼1

/0i yk
i ðsb;bÞ

� �
¼ 0 j R Ib;

X
j2Ib

h0j sb
m

� �
þ
XN

i¼1

/0i yk
i ðsb;bÞ

� �
ðKb þ i� riðkÞÞ

� �
¼ 0 j ¼ m;

sb
j ¼ sb

m j 2 Ib n fmg:

ð20Þ

For the cost structure in (1), the first equality in (20) suggests that
we can pick an arbitrary machine u R Ib and write

sb
v ¼ cu;vsb

u ð21Þ
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for all machines v R Ib where cu;v ¼ bv
bu

� 	1=ðaþ1Þ
. Employing (21) in

(20), we need to solve the following two nonlinear equations with
two unknowns sb

m and sb
u

h0u sb
u

� �
þ
XN

i¼1

/0i �yk
i sb

m; s
b
u; b

� �� �
¼ 0; ð22Þ
X
j2Ib

h0j sb
m

� �
þ
XN

i¼1

/0i �yk
i sb

m; s
b
u;b

� �� �
ðKb þ i� riðkÞÞ

� �
¼ 0; ð23Þ

where �yk
i sb

m; s
b
u;b

� �
is defined as

�yk
i sb

m; s
b
u;b

� �
¼ ariðkÞ þ ðKb þ i� riðkÞÞsb

m þ
X
jRIb

cu;jsb
u ð24Þ

for all i ¼ 1; . . . ;N.
Note that, independent of M, there are only two unknowns sb

m

and sb
u in the Eqs. (22) and (23). This system can be solved by

well-known solution techniques such as Trust-Region methods
(see in Conn et al. (1987)).

Being able to solve for sb, the bk value can be determined by a
one-directional search, as motivated by the following theorem:

Theorem 5. If b > bk, then the optimal solution sb of Qb
k satisfies

maxjRIb sb
j P sb

m.

Proof. For a contradiction, assume that sb
j < sb

m is satisfied for all
j R Ib so that sb

j ¼ sb
m ¼ sb

max for all j 2 Ib. If b > bk so that Ib � Ibk , then
sk

j ¼ sk
m ¼ sk

max for all j 2 Ib. Hence, from (10) and (18), we have

JkðsbÞ ¼ Jbkðs
bÞ; ð25Þ

JkðskÞ ¼ Jbkðs
kÞ: ð26Þ

If b > bk, then there exists a machine u with b > bu P bk, i.e.,
u 2 Ibk n Ib. By the contradiction assumption, we have
sb

u < sb
m ¼ sb

max while sk
u ¼ sk

m ¼ sk
max, therefore sk–sb. Since sk is the

unique minimizer of Jk, we have

JkðsbÞ > JkðskÞ: ð27Þ

It follows from (25)–(27) that

Jbkðs
bÞ > Jbkðs

kÞ;

which contradicts with the optimality of sb for Jb
k . Hence the result

follows. h

In our search for the bk value, we start with b ¼ bm, and solve for
sb to check the condition in Theorem 5. If the optimal solution sb

satisfies maxjRIb sb
j P sb

m, then we lower the b value to maxjRIb bj,
the largest element of the set fb1; . . . ; bMg smaller than b, and con-
tinue until maxjRIb sb

j < sb
m is satisfied. The search algorithm results

with the bk value along with the minimizer sk of Jk.
As discussed above, in some cases, instead of the optimal solu-

tion s�, the search in Phase 1 may result with the information that
s�max ¼ rðkÞ for some k. Next, we present how to obtain the optimal
solution s� employing this information.

4.2. Locating the optimal solution in Phase 2

Since JR ¼ Jk when smax ¼ rðkÞ, in Phase 2, we consider a family of
problems bQ b

k defined asbQ b
k : min

s
JbkðsÞ

subject to

sj ¼ rðkÞ for j 2 Ib
sj P 0 for j 2 f1; . . . ;Mg:

A specific member of this family, bQ b�

k will be of interest to us as its
optimal solution will be s�.
By the cost structure in (1) and Assumption 2, the optimal solu-
tion should be finite and nonzero. Hence, applying calculus of vari-
ations techniques to solve bQ b

k , we obtain the following set of
equations satisfied by the optimal solution ŝb:

h0j ŝb
j

� 	
þ
XN

i¼1

/0i yk
i ðŝb;bÞ

� �
¼ 0 j R Ib;

ŝj ¼ rðkÞ j 2 Ib:

ð28Þ

For the cost structure in (1), the first equality in (28) suggests that
we can pick an arbitrary machine u R Ib and write

ŝb
v ¼ cu;v ŝb

u ð29Þ

for all machines v R Ib where cu;v ¼ bv
bu

� 	1=ðaþ1Þ
. Employing (29) in

(28), we end up with the following nonlinear equation with only
one unknown ŝb

u

h0u ŝb
u

� �
þ
XN

i¼1

/0i �yk
i ŝb

u;b;rðkÞ
� �� �

¼ 0; ð30Þ

where �yk
i ŝb

u;b;rðkÞ
� �

is defined as

�yk
i ŝb

u;b;rðkÞ
� �

¼ ariðkÞ þ ðKb þ i� riðkÞÞrðkÞ þ
X
jRIb

cu;jŝb
u ð31Þ

for all i ¼ 1; . . . ;N.
Note that, independent of M, there is only one unknown in the

Eq. (30) that can be solved by Trust-Region methods.
Having the ŝb solution available, we can determine the relation-

ship between b and b�, the value corresponding to s�, by the follow-
ing theorem whose proof is skipped as it is very similar to the proof
of Theorem 5:

Theorem 6. If b > b�, then the optimal solution ŝb of bQ b
k satisfies

maxjRIb ŝb
j P rðkÞ.

The b� value required to determine the optimal solution s� is ob-
tained by the same search method as in Phase 1: Employing Theo-
rem 6, we start with b ¼ bm and solve bQ b

k . If the optimal solution ŝb

satisfies maxjRIb ŝb
j P rðkÞ, then we lower the b value to maxjRIb bj, the

largest element of the set fb1; . . . ; bMg smaller than b, and continue
until maxjRIb ŝb

j < rðkÞ is satisfied. The search algorithm results with
the b� value along with the optimal solution s� of JR.

4.3. Resulting search algorithm

Under the light of the previous discussions, we develop a two-
phase search algorithm as depicted in Fig. 1.

In the Initialization step, we first determine the most upstream
machine m with the largest b value bm. Then, we determine ri val-
ues for i ¼ 1; . . . ;N by employing (6), form the W set, and deter-
mine rðkÞ values for k ¼ 0; . . . ;N. Finally, in order to search by
bisectioning, we set the function index to k ¼ dðN þ 1Þ=2e. The vari-
ables lb and ub are employed to keep track of the lower and upper
bounds of the index search space.

In Phase 1, we search for a cost function Jk whose minimizer sat-
isfies sk

max 2 ½rðk�1Þ;rðkÞ�. In order to obtain the service times mini-
mizing the nondifferentiable cost function Jk, we need to solve a

series of differentiable problems Qb
k

n ob¼bm

b¼bk
: Employing Theorem 5,

we start with b ¼ bm and solve Qb
k . If the optimal solution sb satisfies

maxjRIb sb
j P sb

m, then we lower the b value to maxjRIb bj, the largest
element of the set fb1; . . . ; bMg smaller than b, and continue until
maxjRIb sb

j < sb
m is satisfied. The search algorithm results with the bk

value along with the optimal solution sk of Jk. If we obtain a solution
sk

max 2 ½rðk�1Þ;rðkÞ� for some k ¼ 1; . . . ;N, by Theorem 2, we conclude
that it is the optimal solution of JR, and stop. Otherwise, we con-
clude that s�max ¼ rðkÞ for some k and proceed with Phase 2.



PHASE 1

PHASE 2

Initialization

(ub-lb)>1?

Yes

Terminate

Set ub=k Set lb=k

Start

⎡ ⎤2/)( ublbk +=mSet ββ =

β
kQSolve

Yes

?],[ )()1(max kks σσβ
−∈

No
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jmaxSet ββ
βIj∉=
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?)(max ks σβ >

β
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No
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β

≥∉
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Fig. 1. Flowchart of the two-phase search algorithm.
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In Phase 2, we solve a series of differentiable problems Qb
k

n ob¼bm

b¼b�

to obtain the optimal solution s� of JR: Employing Theorem 6, we
start with b ¼ bm and solve bQ b

k . If the optimal solution ŝb satisfies
maxjRIb ŝb

j P rðkÞ, then we lower the b value to maxjRIbbj, the largest
element of the set fb1; . . . ; bMg smaller than b, and continue until
maxjRIb ŝb

j < rðkÞ is satisfied. The search algorithm results with the
b� value along with the optimal solution s� of JR.

In the worst case, the two-phase search algorithm solves
Mdlog2Ne of Qb

k problems involving two nonlinear equations and
two unknowns, and M of bQ b

k problems involving one nonlinear
equation and one unknown. Hence, it determines the optimal solu-
tion in a finite number of steps.

We continue with a numerical study that compares the perfor-
mances of the two-phase search algorithm and the subgradient
descent algorithm in Gokbayrak and Selvi (2009).

5. Numerical example

Let us consider an M-machine flow shop system processing an
identical set of N jobs. The service cost hjðsjÞ at machine j is given as



Table 1
Average CPU times for subgradient descent and two-phase search algorithms.

N M = 20 M = 40 M = 60

SD 2PS SD 2PS SD 2PS

500 0.83 0.32 1.28 0.34 1.70 0.35
1000 1.72 0.33 2.97 0.35 4.22 0.37
1500 3.24 0.35 5.34 0.37 7.71 0.39
2000 6.23 0.37 9.45 0.39 12.60 0.41
2500 9.75 0.39 13.77 0.42 18.53 0.44
3000 13.27 0.41 19.55 0.45 25.83 0.48
4000 20.63 0.50 31.16 0.54 41.30 0.59
000 29.52 0.66 46.75 0.71 63.47 0.77
6000 41.57 0.83 65.82 0.89 89.39 0.96
10,000 106.87 1.72 177.68 1.79 235.99 1.87
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hjðsjÞ ¼
bj

sj
ð32Þ

for some constant bj with a in (1) is set to 1. The completion time
cost for job Ci, on the other hand, is given as

/iðxi;MÞ ¼ 10ðxi;M � aiÞ2; ð33Þ

which satisfies Assumption 2.
In order to compare the solution performances of the search

algorithm and the subgradient descent algorithm, we study prob-
lems with different M and N settings. The bj values are randomly
selected from the set f5i : i ¼ 1; . . . ;20g and the job interarrival
times are realized from an exponential distribution with a mean
of 2 units.

The problems are solved in Matlab running on a machine with a
2.0GHz Intel Core2Duo T7200 processor and 2GB of RAM. The sub-
gradient descent algorithm (SD) employs the precision measure �
with a value of 10�5 and the step sizes gk ¼ 10�5

k . The two-phase
search algorithm (2PS) uses fsolve function employing a variant
of the Powell dogleg method described in Powell (1970) to solve
the Qb

k and bQ b
k problems. Averaged over 10 optimization problems

(obtained by varying arrival sequences faigN
i¼1 and the cost param-

eters fbjg
M
j¼1), the computation times for the alternative methodol-

ogies for different M and N settings are presented in Table 1.
The two-phase search algorithm improved on the solution

times of the subgradient descent algorithm as seen in Table 1.
These improvements get drastic as the problem size increases,
e.g., for 100 machines and 50,000 jobs, the average computation
time over 10 sample problems is 11352.26 seconds for the subgra-
dient descent algorithm, while this value is only 33.06 seconds for
the two-phase search algorithm.

6. Conclusion

We considered a service time optimization problem of flow
shop systems with fixed service times. As an alternative to the sub-
gradient algorithm in Gokbayrak and Selvi (2009), we proposed a
search algorithm that finds the optimal solution in a finite number
of iterations. For a specific service cost structure, which allowed us
to sort the optimal service times, this search algorithm proved to
be extremely efficient. Instead of applying subgradient descent
methods on an M-dimensional solution space, we applied trust-re-
gion methods to solve at most two nonlinear equations with two
unknowns at each iteration. As a result, it improved the solution
times drastically compared to the subgradient descent algorithm
proposed in Gokbayrak and Selvi (2009).
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