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Abstract We consider the problem of dualizing a Boolean function f represented by
a DNF. In its most general form, this problem is commonly believed not to be solvable
by a quasi-polynomial total time algorithm. We show that if the input DNF is quadratic or is
a special degree-k DNF, then dualization turns out to be equivalent to hypergraph dualization
in hypergraphs of bounded degree and hence it can be achieved in incremental polynomial
time.

Keywords Boolean function · Dualization · Quadratic function · Degree-k function ·
Hypergraph transversal · Polynomial total time algorithm

1 Introduction

Duality plays a fundamental role in many applications including reliability theory, hyper-
graph theory, game theory, and artificial intelligence. For an extensive list of applications,
the reader is referred to Crama and Hammer (2009). However, it is well known that unless
P=NP, there is no polynomial total time algorithm for the dualization problem of general
Boolean functions. To this end, research on duality has been directed to special classes of
Boolean functions.

The dualization problem, especially for positive DNFs (equivalently hypergraph dualiza-
tion problem), has been widely investigated. (For a thorough survey see Bioch and Ibaraki
(1995) and Eiter and Gottlob (1995)). In their seminal paper Fredman and Khachiyan
(1996) give a dualization algorithm for positive DNFs which runs in incremental quasi-
polynomial time. Up to date, it is not known whether a dualization algorithm, whose run-
ning time is output polynomial, exists for positive Boolean functions. For a recent survey
of the computational aspects on the dualization of positive DNFs, the interested reader is

In memory of Peter L. Hammer.

O.E. Karaşan (�)
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referred to Eiter et al. (2008). For degree-k positive functions, dualization can be solved
in incremental polynomial time (Boros et al. 1998; Eiter and Gottlob 1995). In the spe-
cial case when k = 2, even more efficient algorithms are possible (Johnson et al. 1988;
Lawler et al. 1980; Makino and Uno 2004). Other efficiently solved special cases include
2-monotonic, threshold, regular, acyclic, and O(log n)-term functions (Boros et al. 1997;
Crama 1987; Makino 2003; Makino and Ibaraki 1998; Peled and Simeone 1985, 1994).
(For an extensive list of references, the reader is referred to Crama and Hammer (2009) and
the survey Eiter et al. (2003)).

The literature of dualization results on general Boolean functions is far less extensive
when compared with positive functions. Most of the research revolves around subclasses
of Horn functions. In particular, dualization can be achieved in polynomial time for double
Horn functions (Eiter et al. 1998), incremental polynomial time for submodular functions
(Ekin 1997; Ekin et al. 1997), and in quasi-polynomial total time for disguised bidual Horn
functions (Eiter et al. 2002) and Horn functions represented by Horn DNFs (Khardon 1995).
The purpose of this paper is to extend the list of efficiently dualized classes to quadratic
functions and a subclass of degree-k functions.

Given a Boolean function f represented by a quadratic DNF �(x1, . . . , xn), we present in
this paper a dualization algorithm which lists the dual prime implicants of f in incremental
polynomial time. The algorithm associates to f a graph which can be constructed in time
polynomial in n and the size of �, and which has the property that its minimal vertex covers
are in one-to-one correspondence with the prime implicants of f d . We then make use of one
of the several algorithms existing in the literature (Johnson et al. 1988; Lawler et al. 1980)
which generate all the maximal independent sets of a graph in incremental polynomial time.
Furthermore, a similar construction is carried out for a subclass of degree-k functions in
which every prime implicant of cubic or higher degree conflicts with another in at most one
variable. Associating a degree bounded hypergraph to such a function, we show that the
prime implicants of the dual function are in one to one correspondence with the minimal
transversals of this hypergraph and hence can be listed in output polynomial time due to
algorithms in Boros et al. (1998) and in Eiter and Gottlob (1995).

The rest of the paper is organized as follows. In Sect. 2 we review the pertinent Boolean
concepts and introduce the notation. In Sect. 3 we remind the reader of the earlier results
on dualization of submodular Boolean functions and present our incremental polynomial
dualization algorithm for quadratic functions. Section 4 extends the incremental polynomial
time dualization algorithm to a subclass of degree-k functions.

2 Preliminaries on Boolean functions

We assume that the reader is familiar with the basic concepts of Boolean algebra, and we
only introduce here the notions and results that we explicitly use in this paper. We refer the
interested reader to Crama and Hammer (2009).

A Boolean function f (x1, . . . , xn) is a mapping from Bn into B , where B = {0,1}. Bn

is commonly referred to as the Boolean hypercube. If f (x) = 0, the vector x is said to be
a root of f . For every variable xi , x̄i denotes its complement, where 0̄ = 1 and 1̄ = 0. Let
{x1, . . . , xn} be the set of variables, or positive literals and {x̄1, . . . , x̄n} be the set of Boolean
complements of the variables, or negative literals. We shall sometimes denote xi by x1

i or i1

for short and x̄i by x0
i or i0 for short.
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Let P and N be subsets of {1,2, . . . , n} satisfying P ∩ N = ∅. A conjunction of literals
of the form

∧

i∈P

xi

∧

j∈N

x̄j (1)

is called a term, or an elementary conjunction. We usually use multiplicative notation to
denote conjunctions ∧. By convention, if P = N = ∅, the term is considered to be the
constant 1. The degree of a term is given by |P ∪N |. The term T is called positive if N = ∅,
negative if P = ∅, Horn if |N | ≤ 1, linear if |P ∪ N | = 1 and quadratic if |P ∪ N | = 2.

The dual of a Boolean function f (x) is defined as

f d(x) = f̄ (x̄),

where x̄ = (x̄1, x̄2, . . . , x̄n) is the complement of x, and f̄ is the complement of f , i.e.,
f̄ (y) = 1 if and only if f (y) = 0.

For two Boolean functions f and g we write f ≤ g if for every 0-1 vector x,
f (x1, . . . , xn) = 1 implies g(x1, . . . , xn) = 1. An implicant of a Boolean function f is a term
T such that T ≤ f . We shall say that a term T absorbs another term T ′, if T ∨ T ′ = T , i.e.,
if T ≥ T ′ (e.g. the term xȳ absorbs the term xȳz). An implicant T of a function is called
prime if there is no other implicant of f absorbing T .

A disjunctive normal form (DNF) is a Boolean formula of the form

�(x1, . . . , xn) =
m∨

k=1

(
∧

i∈Pk

xi

∧

j∈Nk

x̄j

)
, (2)

where P1, . . . ,Pm,N1, . . . ,Nm are subsets of the set {1, . . . , n} such that Pk ∩Nk = ∅ for k =
1, . . . ,m. It is well known that every Boolean function f can be represented by a DNF, e.g.,∨

f (c1,...,cn)=1 x
c1
1 x

c2
2 . . . xcn

n and that this representation is not unique. A DNF representing
a function f is called prime if each term of the DNF is a prime implicant of the function.
It is called minimum if there is no DNF representation of f using fewer terms. It is called
complete if it is the disjunction of all the prime implicants of f .

The focus of this paper is on the following dualization problem.

DUALIZATION:
Instance: A complete DNF representation of a Boolean function f .
Output: The complete DNF of f d .

Note that in the special case of quadratic Boolean function dualization, one might equiv-
alently assume that the given instance is a quadratic DNF since starting from any quadratic
DNF representation of f one can reach the complete DNF representation in polynomial time
(Crama and Hammer 2009).

A Boolean function f is called degenerate if there is an index i and a fixed value c ∈
B such that xi = c for every root (x1, . . . , xn) of f ; otherwise it is called nondegenerate.
Obviously, a nonconstant Boolean function is degenerate if and only if it has a linear prime
implicant.

Given a DNF �, we denote by |�| and length(�) the number of terms and the number of
literals in �, respectively. The degree of � is the maximum degree of its terms. A Boolean
function f is called a degree-k function if the degree of the complete DNF of f is k.

Two terms are said to be orthogonal or to conflict in the variable xi if xi is a literal in one
of them and x̄i is a literal in the other. If the two terms conflict in exactly one variable, i.e.,
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they have the form xiP and x̄iQ and the elementary conjunctions P and Q have no conflict,
their consensus is defined to be the term PQ. The consensus method applied to an arbitrary
DNF � representation of a Boolean function f performs the following operations as many
times as possible:

Consensus: If there exist two terms of � having a consensus T then replace the DNF � by
the DNF � ∨ T .

Absorption: If a term T ′ of � absorbs a term T ′′ of �, delete T ′′.

It is easy to notice that all the DNFs produced at every step of the consensus method
represent the same function as the original DNF. The following result plays a central role in
the theory and applications of Boolean functions (Blake 1937; Quine 1952):

Proposition 2.1 (Blake 1937; Quine 1952) The consensus method applied to an arbitrary
DNF of a Boolean function f results in the complete DNF of this function.

Within the scope of this study, quadratic and Horn functions play special roles. In particu-
lar, a quadratic function is a degree-2 function. Equivalently, a Boolean function is quadratic
if and only if it admits a quadratic DNF representation. On the other hand, a Boolean func-
tion is Horn if it has a DNF representation in which every term is Horn.

A vertex cover of a given graph G = (V ,E) is a subset C ⊆ V such that C meets all edges
in E and a minimal vertex cover is simply a vertex cover which is minimal with respect to
removal of vertices. Similarly, a minimal transversal of a hypergraph H = (V , E ) is a set
S ⊆ V meeting every edge of E and being inclusionwise minimal.

The following notion will characterize the complexity of our dualization algorithms.

Definition 2.1 (Johnson et al. 1988; Lawler et al. 1980) An algorithm to enumerate items
a1, a2, . . . , ap is said to run in incremental polynomial time if

• it iterates the following procedure for i = 1,2, . . . , p: output the ith item ai from the
knowledge of its input and items a1, a2, . . . , ai−1 generated so far, and

• the time required for the ith iteration is polynomial in the input length and the sizes of
a1, a2, . . . , ai−1.

3 Dualization of quadratic Boolean functions

Submodularity plays a prominent role in the study of set functions (pseudo-Boolean func-
tions). The meaning of this property for the special class of Boolean functions has been
thoroughly investigated in Ekin (1997) and in Ekin et al. (1997). Here we summarize the
findings of Ekin et al. (1997) that will be pertinent in the forthcoming dualization results.
In Ekin et al. (1997), a Boolean function is characterized as submodular if and only if
it is both Horn and co-Horn, i.e., f (x̄) is Horn. Equivalently, it has been shown that all
prime implicants of submodular functions are either linear or quadratic and pure-Horn, i.e.,
|N | = 1 in every term of the form (1). Moreover, it has been shown that there is a one-to-one
correspondence between submodular functions and partial preorders. This correspondence
then led to a graph-theoretic characterization of all the prime implicants of the dual of a
submodular function. The current study extends the dualization results on the submodular
Boolean functions of Ekin (1997) and Ekin et al. (1997) to quadratic Boolean functions in
general.
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In contrast to the numerous powerful characteristics of quadratic functions, it turns out
that it is not easy to know whether an arbitrary given DNF represents a quadratic Boolean
function. This is indicated by the following result.

Theorem 3.1 (Ekin et al. 2000) The recognition problem for the quadraticity property of a
Boolean function given by a DNF is coNP-complete.

Hence, in this section, we restrict our attention to quadratic functions represented by
quadratic DNFs. However, it is well known that the dualization of a quadratic Boolean
function f represented by a quadratic DNF (or even the complete DNF) may require expo-
nential time in the size of the given DNF, the reason being the possibly exponential size of
the DNFs of f d . In particular, if f is represented by the DNF

n
2∨

i=1

x2i−1x̄2i ,

where n is even, then a minimum DNF of f d has 2
n
2 terms.

In this section, we shall describe an incremental polynomial time algorithm for dualizing
a nondegenerate quadratic function f on x1, . . . , xn. We remark that the nondegeneracy
assumption is inessential and is made for convenience. Indeed, if f = f0 ∨ f1 where f0 is
linear, then each prime implicant of f d contains f d

0 , i.e. the conjunction of all the literals
in f0.

Let � given as (2), where |Pk ∪ Nk| = 2 for every k = 1, . . . ,m, be the complete DNF
representation of f . If � ≡ 1, then f d = 0. We represent � defined on {x1, . . . , xn} by a
graph Gf = (W ∪ W,E), where W = {1, . . . , n} and W = {1̄, . . . , n̄} unionwise define the
vertex set of Gf . As for the edge set of this graph, we associate to each prime implicant
xα

i x
β

j for some α,β ∈ B , an edge {iα, jβ} ∈ E.
By definition of the dual, the disjunction of all the prime implicants of f d is obtained

from � by exchanging disjunctions and conjunctions, fully using distributivity, deleting
terms involving both x and x̄, and performing absorptions. We thus have,

Lemma 3.1 The prime implicants of f d are in one-to-one correspondence with those min-
imal vertex covers of Gf that do not contain both a vertex i and its complement ī for any
i ∈ W .

Proof Let

f = � =
m∨

k=1

(
∧

i∈Pk

xi

∧

j∈Nk

x̄j

)
.

Then, by definition,

f d =
m∧

k=1

∨

i∈Pk

xi

∨

j∈Nk

x̄j .

We note that a term P = ∏
j∈S x

αj

j where αj ∈ B for all j ∈ S is a prime implicant of f d

if and only if P contains at least one literal from each clause (disjunction of literals) of the
form

∨
i∈Pk

xi

∨
j∈Nk

x̄j , where |Pk ∪ Nk| = 2 ∀k, and S is minimal with this property (see
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Crama and Hammer 2009). Since every minimal vertex cover of Gf not containing both a
vertex i and its complement ī satisfies this property, we get the desired result. �

The definition of equivalence given for submodular functions in Ekin (1997) and in Ekin
et al. (1997) has to be revised for quadratic functions. More formally,

Definition 3.1 Two literals xα
i and x

β

j for α,β ∈ B are called equivalent if both xα
i x

β̄

j and

xᾱ
i x

β

j are prime implicants of f .

It is easy to see that if xα
i and x

β

j are equivalent, then by definition xᾱ
i and x

β̄

j are also

equivalent and that equivalence is a transitive relationship. If xα
i and x

β

j are equivalent, we
shall shortly state that iα and jβ are equivalent.

Lemma 3.2 Let C be a minimal vertex cover of Gf that does not contain both a vertex and
its negation. If iα and jβ are equivalent, then C either contains both iα and jβ or both iᾱ

and j β̄ .

Proof If iα ∈ C, then iᾱ �∈ C by our assumption on C. Also, the equivalence of iα and
jβ implies that {iᾱ, jβ} ∈ E. Therefore, in order to cover this edge, C must contain jβ .
In a similar way, one can conclude that if iᾱ belongs to C then so does j β̄ . Finally, since
both {iα, j β̄} and {iᾱ, jβ} are edges of Gf , any vertex cover satisfying the hypothesis must
contain either iα or iᾱ . �

Let G∗
f = (V ∗,E∗) be the graph obtained from Gf in the following way. We identify all

vertices in an equivalence class of W ∪W into a single vertex in V ∗. With this identification,
the equivalence classes come in pairs. In particular, if I = {iα1

1 , i
α2
2 , . . . , i

αk

k } is an equiva-
lence class corresponding to node I of V ∗, then I = {iᾱ1

1 , i
ᾱ2
2 , . . . , i

ᾱk

k } is also an equivalence
class corresponding to node I of V ∗. Note that an equivalence class may happen to consist
of a single vertex.

By definition, in G∗
f , there is an edge between two nodes Iα and J β respectively corre-

sponding to equivalence classes I α and J β if and only if {ia, j b} is an edge of Gf for some
ia ∈ I α , and jb ∈ J β where a, b,α,β ∈ B . With the definition of equivalence classes, we
must have {I, I } ∈ E∗ for every equivalence class I such that |I| ≥ 2. As it has already been
established in Lemma 3.2, if C is a minimal vertex cover of Gf that does not contain both a
vertex and its negation, then for every equivalence class I such that |I| ≥ 2, C must either
contain all elements in I or all elements in I . Hence, a minimal vertex cover of Gf that does
not contain both a vertex and its negation corresponds to a minimal vertex cover of G∗

f that
does not contain a vertex and its negation. In fact, we shall assert a stronger statement with
Lemma 3.5 but prior to that we first make two simple observations which together guarantee
that no information is lost during the process of shrinking the equivalent vertices into single
ones.

Lemma 3.3 No edge of Gf joins a vertex to an equivalent vertex.

Proof Assume to the contrary that iα and jβ are two equivalent literals for which
{iα, jβ} ∈ E. By definition of equivalence in Definition 3.1, and the construction of Gf ,

xα
i x

β

j , xα
i x

β

j , and xα
i x

β

j must all be prime implicants of � which violates the definition of
primality. �
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Lemma 3.4 If {Iα, J β} ∈ E∗, then xa
i xb

j is a prime implicant of f ∀ia ∈ I α and ∀jb ∈ J β

such that i �= j .

Proof The result trivially follows from the consensus procedure and the definition of equiv-
alence. Indeed, let |I α| ≥ 2 and say i

a1
1 , i

a2
2 ∈ I α and jb ∈ J β . Now, if x

a1
i1

xb
j is a prime

implicant of f then so is x
a2
i2

xb
j since by the equivalence of x

a1
i1

and x
a2
i2

, x
a1
i1

x
a2
i2

is a prime
implicant of f and its consensus with x

a1
i1

xb
j yields x

a2
i2

xb
j . �

Lemma 3.5 No minimal vertex cover of G∗
f contains both a vertex and its negation.

Proof Let M be a minimal vertex cover of G∗
f . Barring trivial cases, we may assume that

|M| ≥ 4. Let us suppose that M contains both a vertex I and its negation Ī . By the mini-
mality of M it follows that there exists a vertex J α �∈ M such that {I, J α} is an edge of G∗

f .
Similarly, there exists a vertex Kβ �∈ M such that {Ī ,Kβ} is an edge of G∗

f . Note that it is
not possible to have J α = Kβ . Assume to the contrary that I and Ī (where I could be sin-
gleton) correspond to an equivalence class and its negation, respectively, having a common
neighbor J α (where |J α| could be 1) in G∗

f . Since {I, J α} ∈ E∗ and {Ī , J α} ∈ E∗, by the
previous lemma, xa

i xb
j and xā

i xb
j must be prime implicants of f for all ia ∈ I and jb ∈ J β .

However, this is in contradiction with the primality of these terms. So, J α �= Kβ . However,
in this case {J α,Kβ} is an edge of G∗

f which is not covered by M . Indeed, if both edges
{I, J α}, {Ī ,Kβ} are present, it means that there exist ia ∈ I, j b ∈ J α , and kc ∈ Kβ such that
both xa

i xb
j and xā

i xc
k are prime implicants of f , in which case their consensus i.e. xb

j x
c
k must

also be a prime implicant of f (Note that J ᾱ = Kβ is not a possibility since it would mean
I ∪ J ᾱ is contained in some equivalence class). �

We conclude that the minimal vertex covers of Gf that do not contain a vertex and its
negation (the prime implicants of f d ) correspond precisely to the minimal vertex covers
of G∗

f .
There exist several algorithms in the literature for generating all maximal independent

sets of a graph G = (V ,E) in incremental polynomial time (Johnson et al. 1988; Lawler et
al. 1980). Since the maximal independent sets are precisely the complements of the minimal
vertex covers, we have established the following result.

Theorem 3.2 Dualization of quadratic functions can be performed in incremental polyno-
mial time.

We shall summarize the dualization algorithm by an example.

Example 3.1 Let the Boolean function f be given by the quadratic DNF

x1 ∨ x̄1x2 ∨ x̄3x̄4 ∨ x4x5 ∨ x3x̄5 ∨ x4x̄6 ∨ x5x̄7 ∨ x6x8.

• Step 1: Find the complete DNF representation � of f . If f = 1 then f d = 0 and the
algorithm stops. In this example:

� = x1 ∨ x2 ∨ x̄3x̄4 ∨ x̄3x5 ∨ x3x4 ∨ x4x5 ∨ x3x̄5 ∨ x̄4x̄5 ∨ x̄3x̄6 ∨ x4x̄6 ∨ x̄5x̄6

∨x3x̄7 ∨ x̄4x̄7 ∨ x5x̄7 ∨ x̄6x̄7 ∨ x6x8 ∨ x̄7x8 ∨ x̄3x8 ∨ x4x8 ∨ x̄5x8.
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Fig. 1 G∗
f

• Step 2: Identify all the equivalence classes. In this example, literals x̄3, x4, and x̄5 are
equivalent.

• Step 3: Construct G∗
f (see Fig. 1). Note that the vertices corresponding to literals 7 and

8̄ can be eliminated from G∗
f without any loss since they will not appear in any prime

implicant of f d .
• Step 4: Find all the maximal independent sets of G∗

f . Each maximal independent set
corresponds to a prime implicant of f d . In our example, we have 3 maximal independent
sets.

Maximal Independent Set Corresponding prime implicant of f d

3̄45̄,6, 7̄ x1x2x3x̄4x5x̄6x8

34̄5, 6̄,6 x1x2x̄3x4x̄5x̄7x8

34̄5, 6̄,8 x1x2x̄3x4x̄5x6x̄7

where we have appended the conjunction of linear terms in � to each prime implicant.

4 Dualization of a special class of degree-k functions

In this section, we extend the results on dualization of quadratic functions to a special class
of Boolean functions as defined below:

Definition 4.1 A Boolean function of degree k such that each prime implicant of degree
≥ 3 conflicts with another prime implicant in at most one literal is called a mild degree-k
function.

In particular, mild degree-2 functions are quadratic functions. Any positive Boolean func-
tion of degree k or an acyclic Horn function (Hammer and Kogan 1995) of degree k is a mild
degree-k function. However, mild degree-k functions are not limited to quadratic or Horn
classes. The following is a mild degree-4 function on 11 variables which is not q-Horn
(a class introduced in Boros et al. 1990 which properly generalizes quadratic and Horn
functions).

� = x4x5 ∨ x4x6 ∨ x4x7 ∨ x5x6 ∨ x5x7 ∨ x6x7 ∨ x1x̄2x4x8 ∨ x1x2x5x9 ∨ x̄1x̄3x6x10

∨ x̄1x3x7x11 ∨ x̄8x̄9x̄10x̄11 ∨ x4x̄9x̄10x̄11 ∨ x5x̄8x̄10x̄11 ∨ x7x̄8x̄9x̄10 ∨ x6x̄8x̄9x̄11.
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Let � be the complete DNF representation of a mild degree-k function f . Say,

�(x1, . . . , xn) =
m∨

k=1

(
∧

i∈Pk

xi

∧

j∈Nk

x̄j

)
, (3)

Without loss of generality, we keep assuming that � does not have the constant 1 or linear
terms as prime implicants. Following a similar construction as for the graph Gf in Sect. 3,
let Hf = (W ∪ W, E ) be the hypergraph associated with this function. In particular, W =
{1, . . . , n}, W = {1̄, . . . , n̄}, and E = {E1, . . . ,Em}, where Ek = {i : i ∈ Pk} ∪ {j̄ : j ∈ Nk}.
In other words, the vertices of this hypergraph are the literals appearing in � and the hyper-
edges correspond to the terms in �.

Let us recall Definition 3.1 on the equivalence of literals. Proceeding as we did in Sect. 4,
let H∗

f = (V ∗, E ∗) be the hypergraph obtained from Hf where equivalence classes and their

negations from W ∪ W are respectively identified as single vertices in V ∗. One can easily
attain parallel results to those stated in Lemmas 3.1–3.4 for mild degree-k functions as
follows:

Lemma 4.1

(1) The prime implicants of f d are in one-to-one correspondence with those minimal
transversals of Hf that do not contain both a vertex i and its complement ī for any
i ∈ W .

(2) Let S be a minimal transversal of Hf that does not contain both a vertex and its nega-
tion. Then, for any equivalence class I such that |I| ≥ 2, S either contains I or its
negation in its entirety.

(3) No hyperedge of Hf contains two equivalent literals.
(4) If xαP where P is a conjunction of literals, is a prime implicant of f , then so is yβP

for every yβ which is equivalent to xα .

Proof The proofs are basic extensions of those stated for Lemmas 3.1–3.4 and therefore are
omitted here. �

Lemma 4.2 If there exists a prime implicant P in � of degree ≥ 3 which conflicts with
another prime implicant Q in �, then the consensus of P and Q exists and is absorbed by
another prime implicant T in �.

Proof Since P and Q conflict, and since P is not quadratic, they must conflict in exactly
one variable. In other words, P is of the form xαP ′ and Q is of the form xᾱQ′ where P ′
and Q′ are elementary conjunctions that do not conflict. Then their consensus P ′Q′ is an
implicant of the underlying function which must be absorbed by a prime implicant T in �

since � is complete. �

Lemma 4.3 No minimal vertex cover of H∗
f contains both a vertex and its negation.

Proof Assume to the contrary that M is a vertex cover of cardinality at least 5 containing
both I and Ī . By the minimality of M , there exist E′ ∈ E ∗ where I ∈ E′ and E′′ ∈ E ∗ where
Ī ∈ E′′ and no vertex from (E′ \ I )∪ (E′′ \ Ī ) belongs to M . Repeating the arguments in the
proof of Lemma 3.5, it is not possible to have |E′| = |E′′| = 2. Without loss of generality,
we may assume that |E′| ≥ 3. Note that it is not possible to have J α ∈ E′ \ I and J ᾱ ∈
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E′′ \ Ī since this would violate the fact that two prime implicants of f (one corresponding to
hyperedge E′ and the other corresponding to hyperedge E′′) one of which is not quadratic
(any one of the possible prime implicants corresponding to hyperedge E′) conflict in at
most one literal. Therefore, due to Lemma 4.2, in E ∗ there must exist an edge E′′′ such that
E′′′ ⊆ (E′ \ I ) ∪ (E′′ \ Ī ). However, this edge is not covered by M . �

Using the hypergraph dualization results of Boros et al. (1998) and Eiter and Gottlob
(1995) for bounded degree hypergraphs (those for which each edge has a bounded cardinal-
ity) along with Lemma 4.3, we have:

Theorem 4.1 Dualization of mild degree-k functions given in complete DNF form can be
performed in incremental polynomial time.
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