
European Journal of Operational Research 201 (2010) 89–98

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Bilkent University Institutional Repository
Contents lists available at ScienceDirect

European Journal of Operational Research

journal homepage: www.elsevier .com/locate /e jor
Discrete Optimization

New solution methods for single machine bicriteria scheduling problem:
Minimization of average flowtime and number of tardy jobs q

Fatih Safa Erenay a, Ihsan Sabuncuoglu b, Ays�egül Toptal b,*, Manoj Kumar Tiwari c

a Department of Industrial and System Engineering, University of Wisconsin, Madison, WI, USA
b Department of Industrial Engineering, Bilkent University, 06800 Ankara, Turkey
c Department of Industrial Engineering and Management, Indian Institute of Technology Kharagpur, Kharagpur 721302, India

a r t i c l e i n f o
Article history:
Received 8 March 2007
Accepted 12 February 2009
Available online 20 February 2009

Keywords:
Bicriteria scheduling
Average flowtime
Number of tardy jobs
Beam search
0377-2217/$ - see front matter � 2009 Elsevier B.V. A
doi:10.1016/j.ejor.2009.02.014

q The appendix of this paper is presented as an onlin
website.

* Corresponding author. Tel.: +90 (312) 2901702.
E-mail addresses: erenay@wisc.edu (F.S. Erena

Sabuncuoglu), toptal@bilkent.edu.tr (A. Toptal), mkt0
a b s t r a c t

We consider the bicriteria scheduling problem of minimizing the number of tardy jobs and average flow-
time on a single machine. This problem, which is known to be NP-hard, is important in practice, as the
former criterion conveys the customer’s position, and the latter reflects the manufacturer’s perspective
in the supply chain. We propose four new heuristics to solve this multiobjective scheduling problem.
Two of these heuristics are constructive algorithms based on beam search methodology. The other two
are metaheuristic approaches using a genetic algorithm and tabu-search. Our computational experiments
indicate that the proposed beam search heuristics find efficient schedules optimally in most cases and
perform better than the existing heuristics in the literature.

� 2009 Elsevier B.V. All rights reserved.
1. Introduction

Many existing studies on scheduling consider the optimization
of a single objective. In practice, however, there are situations in
which a decision maker evaluates schedules with respect to more
than one measure. Several recent multicriteria scheduling papers
address single machine bicriteria scheduling problems. In the vein
of this literature, the current study considers the minimization of
mean flowtime ðFÞ and the number of tardy jobs (nT) on a single
machine. Our contribution lies in developing new heuristics that
outperform the current approximate solution methodologies and
in characterizing the effectiveness of these proposed heuristics in
terms of various problem parameters.

The number of tardy jobs and average flowtime are significant
criteria for characterizing the behavior of manufacturers who want
to meet the due dates of their customers while minimizing their
own inventory holding costs. The solution to the single machine
problem can be used as an aggregate schedule for the manufac-
turer, or for generating a more detailed schedule for a factory based
on a bottleneck resource. We propose four heuristics to find
approximately the efficient schedules that minimize nT and F on a
single machine. Efficient schedules are the set of schedules that can-
not be dominated by any other feasible schedule. All other sched-
ll rights reserved.

e companion at the journal’s

y), sabun@bilkent.edu.tr (I.
9@iitkgp.ac.in (M.K. Tiwari).
ules that are not in this set are dominated by at least one of these
efficient schedules. Although optimizing either of the objectives, nT

or F, on a single machine is polynomially solvable, finding efficient
schedules that account for them simultaneously is NP-hard (Chen
and Bulfin, 1993).

In the literature, most studies on bicriteria scheduling consider a
single machine and the minimization of couples of criteria, such as
the following: maximum tardiness and flowtime (Smith, 1956; Heck
and Roberts, 1972; Sen and Gupta, 1983; Köksalan, 1999; Lee et al.,
2004; Haral et al., 2007), maximum earliness and flowtime (Köksa-
lan et al., 1998; Köktener and Köksalan, 2000; Köksalan and Keha,
2003), maximum earliness and number of tardy jobs (Güner et al.,
1998; Kondakci et al., 2003), total weighted completion time and
maximum lateness (Steiner and Stephenson, 2007), and total earli-
ness and tardiness (M’Hallah, 2007). Extensive surveys of bicriteria
single machine scheduling studies are provided by Dileepan and Sen
(1988), Fry et al. (1989), and Yen and Wan (2003). Several recent pa-
pers investigate bicriteria scheduling problems in other machining
environments (Allahverdi, 2004; Toktas� et al., 2004; Arroyo and
Armentano, 2005; Gupta and Ruiz-Torres, 2005; Varangharajan
and Rejendran, 2005; Vilcot and Billaut, 2008). Nagar et al. (1995),
T’kindt and Billaut (1999), and Hoogeveen (2005) review the multi-
criteria scheduling literature. Other notable studies on multicriteria
scheduling investigate the complexity of several problems (e.g.,
Chen and Bulfin, 1993; T’kindt et al., 2007).

Chen and Bulfin (1993) report that the problem of minimizing
nT while F is optimum, on a single machine, can be optimally
solved by a polynomial time algorithm, a.k.a. the adjusted SPT order.
This algorithm uses Moore’s Algorithm on the SPT order to break

https://core.ac.uk/display/52922658?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:erenay@wisc.edu
mailto:sabun@bilkent.edu.tr
mailto:toptal@bilkent.edu.tr
mailto:mkt09@iitkgp.ac.in
http://www.sciencedirect.com/science/journal/03772217
http://www.elsevier.com/locate/ejor

90 F.S. Erenay et al. / European Journal of Operational Research 201 (2010) 89–98
ties among jobs with equal processing times; we refer to the se-
quence generated according to this algorithm as the SPT order. In
another study, Emmons (1975) develops an algorithm for the prob-
lem of minimizing F while nT is optimum, which is shown to be NP-
Hard by Huo et al. (2007).

In the current paper, we seek efficient schedules to minimize the
number of tardy jobs and average flowtime on a single machine.
The first study on this problem was by Nelson et al. (1986), who
proposed a constructive heuristic and an optimal solution based
on a branch and bound procedure. In another study, Kiran and Unal
(1991) define several characteristics of the efficient solutions. Kon-
dakci and Bekiroglu (1997) present some dominancy rules, which
they use to improve the efficiency of the optimal solution procedure
by Nelson et al. (1986). Recent studies on the problem propose
some general-purpose procedures. Köktener and Köksalan (2000)
and Köksalan and Keha (2003) developed heuristic methods based
on simulated annealing and a genetic algorithm, respectively. The
latter study reports that a genetic algorithm generally outperforms
simulated annealing in terms of solution quality, however, a simu-
lated annealing approach is faster than a genetic algorithm.

After reviewing these studies, we observe that only a few solu-
tion methodologies (one exact and three heuristics) were proposed
for the problem considered in this paper. Moreover, these solution
methods are not compared with each other in detail. The only
exception is a study by Köksalan and Keha (2003), in which the
authors test the performance of their proposed genetic algorithm,
relative to the simulated annealing approach of Köktener and
Köksalan (2000). A comparison of these two iterative methods with
respect to the optimum solution was also made, however, it was
limited to a problem size of 20 jobs. In this study, we present four
new algorithms: two are constructive algorithms, based on the
beam search method, and the other two work iteratively utilizing
a genetic algorithm (GA) and tabu-search (TS). We compare these
proposed heuristics with each other and with the exact and heuris-
tic solution methods available in the literature.

The organization of this paper is as follows: In Section 2, we
present an explicit mathematical formulation for the problem of
minimizing the number of tardy jobs and average flowtime on a
single machine. In Section 3, we describe Nelson et al.’s (1986)
optimal solution method for this problem. The proposed beam
search algorithms are presented in Section 4, and GA and TS algo-
rithms are described in Section 5. We discuss the findings of our
extensive numerical study in Section 6. Finally, we present general
conclusions and future research directions in Section 7.

2. Problem formulation

We consider a single machine environment in which N jobs are
to be scheduled with the objective of minimizing the number of
tardy jobs and average flowtime. In this environment, jobs have
due dates and deterministic processing times. We assume that pre-
emption is not allowed and that there exists no precedence rela-
tionship between jobs. Pj and dj are the processing time and the
due date of job j, respectively. Denoting S as a feasible schedule,
FðSÞ represents the average flowtime of schedule S, and nT(S) refers
to the number of tardy jobs resulting from schedule S.

Our approach aims at finding efficient schedules for minimizing
F and nT. More formally, we are interested in finding a set of sched-
ules where, if S is an element of this set, then there exists no sche-
dule S0 satisfying the following constraints, while at least one of
these constraints is strict:

nTðS0Þ 6 nTðSÞ; and FðS0Þ 6 FðSÞ:

The solution approach builds on the fact that optimizing either one
of the objectives, nT or F, on a single machine is polynomially solv-
able. It is well known in the scheduling literature that the shortest
processing time (SPT) rule minimizes the average flowtime and that
Moore’s Algorithm (Moore, 1968) minimizes the number of tardy
jobs. In the rest of the manuscript, we will denote nT (SPT) and nT

(Moore) as the number of tardy jobs when all jobs are sequenced
using the SPT rule and Moore’s Algorithm, respectively. Kiran and
Unal (1991) showed that for each number of tardy jobs between
nT (SPT) and nT (Moore), there exists at least one corresponding effi-
cient schedule. The range between nT (SPT) and nT (Moore) is re-
ferred to as the efficient range of the number of tardy jobs. Any
schedule having a number value of tardy jobs that is outside the
efficient range is dominated by some efficient schedule. Since there
exists at least one efficient schedule for every nT value in this range,
the total number of efficient schedules for a given problem is at
least nT (SPT) – nT (Moore) + 1. Therefore, for a problem with N jobs,
we solve the following model for all n such that nT (SPT) P n P nT

(Moore).

Min8S FðSÞ
s:t: nTðSÞ ¼ n:

To present a more detailed formulation of the above problem, let us
define Xij and Yj as follows:

Xij ¼
1; if ith position is held by job j

0; o:w:

�
and

Yj ¼
1; if job j is tardy
0; o:w:

�

Also, let M and n denote a very large and very small number, respec-
tively. We next present an explicit mathematical model for our
problem. Recall that this model should be solved for all n 2 [nT

(Moore),nT (SPT)]

Min
1
N

XN

i¼1

XN

j¼1

ðN� iþ1ÞXijPj

 !

s:t:
XN

j¼1

Xij ¼ 1 for all i 2 f1;2; . . . Ng; ð1Þ

XN

i¼1

Xij ¼ 1 for all j 2 f1;2; . . . Ng; ð2Þ

dj � Pj �
XN

r¼2

Xr�1

i¼1

XN

k¼1

XrjXikPk P�M� Yj for all j 2 f1;2; . . . Ng;

ð3Þ

dj � Pj �
XN

r¼2

Xr�1

i¼1

XN

k¼1

XrjXikPk 6M� ð1� YjÞ � n

for all j 2 f1;2; . . . Ng; ð4Þ
XN

j¼1

Yj ¼ n: ð5Þ

In the above formulation, Eq. (1) assures that only one job can be
assigned to each position in the schedule. Eq. (2) makes sure that
there is no unassigned job. Expressions (3) and (4) jointly identify
whether job j is tardy or not, i.e., Yj = 0 or Yj = 1. Finally, Eq. (5) states
that only n jobs are tardy. Inequalities (3) and (4) are nonlinear, due
to the multiplication of Xrj and Xik. Since both variables are binary,
however, it is possible to linearize these inequalities by replacing
XrjXik with Zrjik and adding the following three constraints to the
model for all i, j, k, r 2 {1, . . . ,N}.

aÞ Xrj P Zrjik; bÞ Xik P Zrjik; cÞ Zrjik P Xrj þ Xik � 1:

Observe that, the efficient schedule that has nT (SPT) tardy jobs is
the schedule that is formed according to the SPT order. Therefore,
the remaining nT (SPT) – nT (Moore) efficient schedules need to be

F.S. Erenay et al. / European Journal of Operational Research 201 (2010) 89–98 91
found. Nelson et al. (1986) proposed an efficient branch and bound
algorithm to find all these schedules optimally. Yet this algorithm is
not computationally efficient for large size problems. Since the heu-
ristics that we propose will take from Nelson et al.’s branch and
bound algorithm (B&B Algorithm) and will be compared with it,
we next present a brief summary of this algorithm.

3. Optimal solution methodology for minimizing nT and F

The B&B Algorithm developed by Nelson et al. (1986) depends
on two key points. First is the fact that, given N jobs and a subset
of these N jobs, the schedule that gives a minimum value for F
while keeping the jobs in the given subset non-tardy is found using
Smith’s Algorithm (see Smith, 1956; Kiran and Unal, 1991). The
second point is presented in the following theorem.

Theorem 1. (Nelson et al., 1986). The jobs that are early in the SPT
order are also early in at least one of the efficient schedules with nT = n
for all n s.t. nT (SPT) P n P nT (Moore).

This theorem implies that in order to find an efficient schedule
with nT = n, it is necessary to determine which other nT (SPT) – n jobs
will be early, besides the early jobs of the SPT order. Therefore, to
minimize F subject to having n tardy jobs, all subsets with cardinal-
ity nT (SPT) – n that are composed of the tardy jobs in the SPT order
should be evaluated using Smith’s Algorithm. The schedule that is
obtained through this evaluation is the efficient schedule for nT = n.

The B&B method is designed to determine one efficient sche-
dule at every level of the branch and bound tree. More specifically,
at the kth level, an efficient schedule for nT = nT (SPT) – k is found,
where k=0, . . . ,nT (SPT) – nT (Moore). In this tree, each node stores a
set of jobs that need to be kept non-tardy. We will refer to this set
as the early job set. An early job set at level k is a subset of N jobs
with cardinality N – nT (SPT) + k. The nodes at level k cover all pos-
sible subsets that have the specified cardinality. Of these jobs, N –
nT (SPT) in each early job set are the early jobs of the SPT order, and
the remaining k are among the tardy jobs of the SPT order. Smith’s
Algorithm is run for each node in level k, and the schedule that has
the minimum F while keeping the corresponding N – nT (SPT) + k
jobs non-tardy is found. The schedule that gives the least F consid-
ering all the nodes at level k, is the efficient schedule for nT = nT

(SPT) � k. The procedure is repeated for each level of the branch
and bound tree. The tree starts with the node that stores the early
jobs of the SPT order at the level 0 and ends at the level nT (SPT) –
nT (Moore), after finding the efficient schedule for nT (Moore).

As stated above, we use Smith’s Algorithm to evaluate the nodes
of Nelson et al.’s B&B tree. Smith’s Algorithm minimizes F given
Tmax is zero, where Tmax is the maximum tardiness. Equivalently,
it finds the schedule that minimizes F given nT = 0. In order to uti-
lize this algorithm at a node, we first set the due dates of the jobs
not included in the corresponding early job set to infinity. That is,
for each node k, we solve the following problem using Smith’s
Algorithm:

Min8S F;

s:t: TmaxðSÞ ¼ 0;
dj ¼ 1 8j R Ek;

where Ek is the early job set of node k.

4. Proposed beam search algorithms

Beam search is a fast and approximate branch and bound algo-
rithm, where instead of expanding every node to the next level, as
in the classical branch and bound tree, only a limited number of
promising nodes are expanded. Thus, rather than performing all
branch and bound tree operations, beam search efficiently operates
on only a small portion of the tree. Examples of beam search applica-
tions on various scheduling problems include Sabuncuoglu and
Karabuk (1998), Sabuncuoglu and Bayiz (1999), Ghirardi and Potts
(2005).

Generally, at a level of beam search tree, the nodes are evaluated
via a global evaluation function. The nodes with the highest scores
are selected to be expanded to the next level. The number of these
nodes is fixed and is called beam width (b) in the literature. In some
beam search applications, a portion of the nodes to be expanded to
the next level is chosen randomly. A variation of beam search algo-
rithms uses local evaluation functions to eliminate some of the nodes
before evaluating them with the global evaluation function. This
approach is called a filtered beam search. Sabuncuoglu et al. (2008)
provide a comprehensive review of beam search algorithms.

There are two types of beam search implementations with re-
spect to the branching procedure: dependent and independent
beam search. We applied both of these branching procedures to
the problem under consideration.

4.1. Independent beam search (BS-I)

The first two levels (level 0 and level 1) of our beam search tree
are the same as Nelson et al.’s search tree. At level 2, however, only
b nodes are expanded to the next level. These b nodes have the b
smallest F values obtained from applying Smith’s Algorithm. At
the next levels, only one node from the same parent can be expanded
to the next level. The schedule implied by the node with the mini-
mum F among all the nodes at a level, is the heuristic efficient sche-
dule for that level. Note that the global evaluation function of BS-I is
the average flowtime obtained by running Smith’s Algorithm for a
node. This algorithm utilizes an independent beam search because
its solution tree has b independent branches. As in Nelson et al.’s
B&B Algorithm, BS-I terminates at level nT (SPT) – nT (Moore) after
finding a heuristic efficient schedule for nT = nT (Moore).

4.2. Dependent beam search (BS-D)

The dependent beam search algorithm is a slightly modified
version of the independent beam search algorithm. In the indepen-
dent beam search tree, after the second level, only one node is ex-
panded to the next level, among the nodes from the same parent.
In the dependent beam search, however, all the nodes at a level
are evaluated together, without considering their parent nodes,
and b nodes with the smallest F values are expanded to the next
level. This implies that more than one node that has the same par-
ent node can be expanded to the next level.

Note that the heuristic proposed by Nelson et al. (1986) is based
on expanding the node with the minimum flowtime at each level
of a given B&B tree. It can be observed that this heuristic is nothing
but a special version of our proposed beam search algorithms, with
a beam width of 1. In the rest of the text, we refer to this heuristic
as Nelson’s Heuristic.

Next, we illustrate the proposed beam search algorithms over a
numerical example.

Example: Consider a single machine scheduling problem with
six jobs having the processing time and due-date information as
in Table 1.

In order to find the heuristic efficient schedules for the above
problem instance, we first need to determine the efficient range.
It turns out that we have nT (Moore) = 1, F (Moore) = 19.83, nT

(SPT) = 4, and F (SPT) = 13, and, therefore, the efficient range con-
tains four values. Recall that SPT order is the efficient schedule cor-
responding to nT = 4 and that it has jobs 1 and 2 as early and the
remaining jobs as tardy.

Figs. 1a and 1b show the search trees using BS-I and BS-D,
respectively, for b = 2. Both trees have four levels, each correspond-

Table 1
Problem parameters.

Job (j) Processing time (Pj) Due date (dj)

1 1 40
2 2 3
3 3 5
4 5 7
5 10 20
6 15 32

92 F.S. Erenay et al. / European Journal of Operational Research 201 (2010) 89–98
ing to a different nT value, with the single node in Level 1 repre-
senting the SPT order. The early jobs at each node k are stored in
set Ek, and the schedules that give the minimum flowtime while
keeping these jobs non-tardy are found using Smith’s Algorithm.
5. Proposed iterative algorithms

In this section, we propose two iterative algorithms based on
tabu-search and genetic algorithm approaches. Such approaches,
E2:{1,2,3} .413,5.31

E6:{1,2,3,
4}

E7:{1,2,3,
5}

E8:{1,2,3,
6}

Infeasible

14.3, 2 14.3, 2

E13:{1,2,3
5,6}16, 1

Level 1 nT= nT(SPT) = 4

Level 2 nT = 3

Level 3 nT= 2

Level 4 nT= 1
E12:{1,2,3

5,4}

Infeasible

Fig. 1a. Independent beam search tree fo

E2:{1,2,3}
.41*3,5.31

E6 :{1,2,3
4}

E7 :{1,2,3
5}

E8 :{1,2,3
6}

Infeas ible

14.3, 2 14.3, 2

E1 3 :{1,2,3
5,6}16, 1

Level 1 nT= nT(SPT) = 4

Level 2 nT = 3

Level 3 nT= 2

Level 4 nT= 1
E1 2 :{1,2,3

5,4}
E1 4:{1,2,3,

6,4}

Infeas ibleInfeasible

Fig. 1b. Dependent beam search tree for the numerical example when b = 2. (*The first e
second entry is the number of tardy jobs.)
in general, are generic metaheuristics for locating a good approx-
imation to the global optimum of a given function, in a large
search space. Tabu search belongs to the class of local search
techniques and is based on avoiding local optima by using mem-
ory structures called tabu lists. These lists temporarily record vis-
ited solutions and prevent the algorithm from cycling around
these solutions. Genetic algorithms, on the other hand, are among
global search heuristics. Solutions are represented as chromo-
somes with varying gene structures. A typical genetic algorithm
is based on changing an initially generated set of solutions using
techniques such as mutation and crossover, until a terminating
condition is satisfied.
5.1. Proposed tabu-search approach

The proposed TS Algorithm utilizes Theorem 1 and Smith’s
Algorithm. To find a heuristic efficient schedule with nT = n, subsets
of cardinality nT (SPT) – n that include the tardy jobs of the SPT or-
der are searched. First, a subset with cardinality nT (SPT) – n is ran-
E1:{1,2}

E3:{1,2,4} E4:{1,2,5} E5:{1,2,6}3,38.313,38.313,61

E10:{1,2,5,
4}

E11:{1,2,5,
6}15.5, 2

E9:{1,2,5,
3}14.3, 2

E15:{1,2,5
3,6}

E14:{1,2,5
3,4} 16, 1

Infeasible

Infeasible

r the numerical example when b = 2.

E1 :{1,2}

E3:{1,2,4} E4:{1,2,5} E5:{1,2,6}
3,38.313,38.313,61

E1 0 :{1,2,5
4}

E1 1:{1,2,5
6}15.5, 2

E9 :{1,2,5
3}14.3, 2

E1 5 :{1,2,3
6,5}16, 1

Infeasible

ntry refers to the minimum flowtime when the jobs in set E2 are nontardy and the

F.S. Erenay et al. / European Journal of Operational Research 201 (2010) 89–98 93
domly selected and taken as the current subset. Then, some neigh-
bors of this current subset with cardinality nT (SPT) – n are gener-
ated. Next, these neighbors are evaluated using Smith’s Algorithm.
The neighbor for which Smith’s Algorithm gives the least F is ac-
cepted as the new current subset. After 100 iterations, or if every
neighbor appears to be infeasible, the schedule that Smith’s Algo-
rithm finds for the current subset is accepted as the heuristic effi-
cient schedule with nT = n.

The procedure described above is a forward search starting
from nT = nT (SPT) � 1 and continuing towards nT = nT (Moore).
Our initial runs indicate, however, that the forward search cannot
find a heuristic efficient schedule for some nT = n, where nT

(SPT) P n P nT (Moore). Thus, a backward search is also performed
starting from nT = nT (Moore). In this backward search, the jobs that
are tardy in Moore’s Algorithm are allowed to be tardy at every
iteration. For each nT = n, which other n – nT (Moore) jobs will be
allowed to be tardy is searched in the same manner as in the for-
ward search. After backward and forward searches are completed,
among all the schedules found for nT = n, the one with the smallest
F is selected as the heuristic efficient schedule. Detailed descrip-
tions of the forward and backward search mechanisms are given
in Appendix A.

5.1.1. Neighborhood generation
The neighbors of the current subset are generated by selecting a

specific job from the current subset and replacing it with another
job that is not an element of the current subset. The selected job
is replaced with every possible job, one by one, to generate all pos-
sible neighbors. A job is selected to be replaced with a probability
that is inversely proportional to the number of times the job has
been selected before (i.e., Nj). That is, the probability of selecting
job j is given by

pj ¼
tjPN
j¼1tj

; where tj ¼
PN

j¼1Nj

Nj
; j 2 f1;2; . . . ;Ng:
5.1.2. Tabu list and aspiration criterion
The jobs from the current subset that are selected to be replaced

are added to the tabu list. Once a job is added to the tabu list, it is
kept there for the next five iterations. The aspiration criterion is to
override the tabu status of a move if this move yields the best solu-
tion so far.

5.1.3. Stopping criteria
As discussed above, the TS Algorithm terminates after a forward

search and a backward search are completed. Both of these
searches are based on evaluating 100 consecutive neighbors for
nT = n where nT (SPT) P n P nT (Moore).

5.2. Proposed genetic algorithm

The proposed genetic algorithm (GA) tries to find the jobs to be
tardy in the efficient schedule with nT = n, for all n, such that nT

(SPT) Pn P nT (Moore). It searches on the subset of the N jobs with
cardinality n. The proposed algorithm uses binary representation,
that is, each of these subsets is represented with chromosomes
of N genes having a value 1 or 0. Each gene represents the tardiness
state of the corresponding job. For example, if the jth gene has va-
lue 1, then the jth job is allowed to be tardy, otherwise the jth job
should be non-tardy.

Recall that the schedule that gives minimum F while keeping
the jobs with gene value zero as non-tardy can be found using
Smith’s Algorithm. Therefore, finding the right chromosome is
equivalent to finding the efficient schedule. The steps of GA can
be found in Appendix B.
5.2.1. The fitness function
The fitness function is used to determine the worst two chro-

mosomes in the current population and the second parent chromo-
some for crossover operations via tournaments. We define the
fitness function as

w
nTðCÞ � nj j

nTðSPTÞ � nTðMooreÞ þ ð1�wÞ FðCÞ � FðSPTÞ
FðMooreÞ � FðSPTÞ

:

This function is quite similar to the one used by Köksalan and Keha
(2003). The only difference is that nT(C) and FðCÞ are obtained by
evaluating chromosome C using Smith’s Algorithm.

5.2.2. Initial population
Köksalan and Keha (2003) present an algorithm to find the ini-

tial schedule with nT = n. Their genetic algorithm starts the search
for the efficient schedule with nT = n at this initial schedule. They
refer to this algorithm as the initial heuristic. We propose another
initialization heuristic. For a given problem having nT 6 n, we as-
sign a job to each position starting from the first position. Job j is
eligible to be assigned to the current position if scheduling the
remaining unassigned jobs according to Moore’s Algorithm yields
at most n tardy jobs in total. Among the eligible jobs, the one with
the shortest processing time will be placed in the current location
in the schedule.

The population size is constant and is equal to 30. In forming an
initial population of chromosomes, for each nT value in
{n,n � 1,n + 1,n + 2}, one schedule is generated using Köksalan
and Keha (2003)’s initial heuristic, and one schedule is found using
our initial heuristic. A total of eight chromosomes are created rep-
resenting the tardy jobs in these schedules. Similarly, three other
chromosomes are generated for the EDD order, the SPT order,
and the sequence that results from Moore’s Algorithm. The latter
two chromosomes are used to form the neighbors. That is, by
changing the values of some genes from 1 to 0, five neighbor chro-
mosomes are produced from the chromosome representing the SPT
order. Another five are generated by changing the values of some
genes from 0 to 1 in the chromosome corresponding to Moore’s
Algorithm. In both cases, the total gene values of the neighbor
chromosomes will be equal to n. Lastly, nine solutions are gener-
ated randomly. The initial population consists of all these listed
chromosomes.

5.2.3. Crossover and mutation operators
In order to update the population, two chromosomes, called

parents, are chosen for crossover. The first parent is generated with
a tournament and the second parent is selected randomly. The
tournament for the first parent involves determining the chromo-
some that has the best fitness function value, among five randomly
selected ones. Two-point crossover operation is used in the pro-
posed algorithm. Here, two genes on the parent chromosomes
are selected randomly, and parts of the chromosomes between
these genes are interchanged to generate two new chromosomes.
These two chromosomes are added to the population, and the
two worst chromosomes according to the fitness function are ex-
tracted from the population. This crossover mechanism is similar
to the one presented by Köksalan and Keha (2003). Mutation is ap-
plied to a randomly selected chromosome in the current popula-
tion. The selected chromosome’s two genes, one with value 1 and
the other with value 0, are selected randomly, and their gene val-
ues are interchanged.

5.2.4. Stopping criteria
In order to find a heuristic efficient schedule for nT = n where nT

(SPT) P n P nT (Moore), varying values of the weight w are used in
the fitness function (see Step 7 of the algorithm in Appendix B). For

Table 2
Due date ranges.

Due date type Due date range

I [0,0.4SP]
II [0.1SP,0.3SP]
III [0.25SP,0.45SP]
IV [0.3SP,1.3SP]

94 F.S. Erenay et al. / European Journal of Operational Research 201 (2010) 89–98
a given w value, the search is complete after 100 crossovers or if the
best chromosome does not change for 20 consecutive crossovers.

6. Computational results

In order to evaluate the performances of the proposed heuris-
tics, we conducted experiments on randomly generated problems
with sizes of 20, 30, 40, 60, 80, 100, and 150 jobs. The processing
times are taken as uniformly distributed in the ranges [0,25] and
[0,100], representing low and high processing time variability,
respectively. The due dates are also uniformly distributed on the
four different ranges summarized in Table 2. Here, SP denotes
the sum of the processing times of the N jobs. The same due date
and processing time distributions are used by Köksalan and Keha
(2003).

Before performing an extensive numerical study, we conducted
a preliminary analysis to decide on a beam width value. We ob-
served that the quality of the solution for a problem is very sensi-
tive to a marginal increase in the beam width at its smaller values.
As the beam width increases, however, its impact on the solution
quality diminishes. We also observed that the range of the beam
width values that improve the solution is smaller for small size
problems. Therefore, we focused on the largest sized problems
within our consideration to decide on a single value for the beam
width and used it for all problems. Namely, for each processing
time and due-date combination, we generated five sample prob-
lems with 150 jobs (i.e., 40 problems overall).

Recall that the total number of efficient schedules for a given
problem is at least nT (SPT) – nT (Moore) + 1. Our sample problems
yielded 756 efficient schedules, each corresponding to a different
nT value for an instance. In order to measure the impact of increas-
ing beam width, we considered the number of heuristic efficient
schedules that had a better solution quality at the new beam width
value, compared to that at b = 1. Fig. 2 shows a plot of how the
number of such cases changes with increasing beam width, when
BS-I is used. The behavior of how the performance of BS-D changes
with increasing beam width is similar. As seen in Fig. 2, the perfor-
mance of the beam search does not change much after b = 20;
therefore, we took b = 20 for using BS-I and BS-D.
0

5

10

15

20

25

30

35

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29
Beam Width

Nu
m

be
rC

as
es

th
at

De
vi

at
io

n
O

cc
ur

s

Fig. 2. Number of heuristic efficient schedules in which BS-I with beam width b
yields a better solution than BS-I with beam width 1.
6.1. Comparison with the optimal solution

Since the B&B Algorithm developed by Nelson et al. (1986) re-
quires long computational times (e.g., up to four days for a problem
with 60 jobs), the performance of the proposed heuristics, relative
to the optimum solution, was tested only for small size problems
(i.e., 60 jobs or less). A detailed comparison of all the heuristics
among themselves was made over large size problems (with more
than 60 jobs), and the results will be presented in the next section.

Comparison of the heuristics with the optimal solution was
made over 320 small size problems, resulting from 10 instances
for each combination of job size, due date, and processing time dis-
tribution. These problems were solved using the seven heuristics
(i.e., Nelson’s Heuristic, BS-I, BS-D, Köksalan and Keha (2003)’s ge-
netic algorithm (GA(K&K)), Köktener and Köksalan (2000)’s simu-
lated annealing (SA(K&K)), the proposed tabu-search (TS), and
the proposed genetic algorithm (GA)), and were compared with
Nelson’s optimal solution procedure. Köksalan and Keha (2003)
state that tournament size does not affect the performance of
GA(K& K) considerably. Therefore, we took the tournament size
as 5 for all genetic algorithm applications.

The following four measures were considered in our
experiments.
(i) Average percentage deviation: Average percentage deviation
illustrates the average gap between the heuristic and the opti-
mal solution over all efficient schedules and test problems for
which this gap is positive. These cases will be referred to as devi-
ation instances in the rest of the manuscript. The average per-
centage deviation of a heuristic from the optimum is defined as
PM

m¼1

PnT ðm;SPTÞ
n¼nT ðm;MooreÞ100� Fðm;nÞ�FOPTðm;nÞ

FOPTðm;nÞPM
m¼1

PnT ðm;SPTÞ
n¼nT ðm;MooreÞum;n

:

Here, M is the total number of problems; Fðm;nÞ and
FOPTðm;nÞ are, respectively, the mean flowtime values of the
heuristic and the optimum solutions of the mth problem, gi-
ven nT = n. nT(m,Moore) and nT(m,SPT) are the number of tar-
dy jobs for the mth problem, when jobs are sequenced
according to Moore’s Algorithm and the SPT order. Finally,
um,n is defined as

um;n ¼
1; if Fðm;nÞ > FOPTðm;nÞ
0; o:w:

(

(ii) Maximum Percentage Deviation¼maxðm;nÞ 100� Fðm;nÞ�FOPTðm;nÞ
FOPTðm;nÞ

� �
,

where nT (SPT) P n P nT (Moore) for a test problem. We use
maximum percentage deviation as an indicator of the worst-
case performance of a heuristic.

(iii) ND/NTotal, where ND (total number of deviation instances) and
NTotal (total number of efficient schedules) are defined as
ND ¼
XM

m¼1

XnT ðm;SPTÞ

n¼nT ðm;MooreÞ
um;n and

NTotal ¼
XM

m¼1

nTðm; SPTÞ � nTðm;MooreÞ þ 1½ �:

ND/NTotal is the proportion of deviation instances among all
efficient schedules for the M problems; therefore, (1 � ND/
NTotal) is the proportion of optimally found efficient schedules
by a heuristic.
(iv) Average CPU time: The average computation time spent in
finding all heuristic efficient schedules for a test problem,
using a Pentium 3.00 GHz processor.

F.S. Erenay et al. / European Journal of Operational Research 201 (2010) 89–98 95
Table 3 summarizes the results of our experiments with prob-
lem sizes of 20, 30, 40, and 60 jobs. The results indicate that Nel-
son’s Heuristic, BS-I and BS-D perform better than GA(K&K) and
SA(K&K), according to all performance measures. The average per-
centage deviation value for the problems with 60 jobs is the only
exception for which GA(K&K) outperforms BS-I. The reason behind
this is that BS-I resulted in only five deviation instances, and one of
the deviation values was high. For all other performance measures,
BS-I performs better than GA(K&K).

For problems with 20, 30, and 40 jobs, BS-I and BS-D find all
efficient schedules optimally, and they consume the same amount
of computational time. For problems with 60 jobs, BS-D and BS-I
both yield some deviation instances; however, the number of such
instances is smaller than for the other heuristics. When BS-I and
BS-D are compared to Nelson’s Heuristic, we observe that their
solution quality is better; however, they require more computa-
tional time. Although the performances of GA(K&K), SA(K&K),
and Nelson’s Heuristic worsen as the problem size increases, the
performances of the beam search heuristics are quite stable.

Another observation is that both GA and TS perform better than
GA(K&K) and SA(K&K) but not as good as the beam search algo-
rithms. GA outperforms TS, according to the average percentage
deviation criterion, for three out four different job sizes. For the
problems with 40 and 60 jobs, however, TS finds a greater number
of efficient schedules optimally than GA does. Their average devi-
Table 4
Average deviation from optimum in problems with low processing time variability (%).

Problem size Due date type Nelson’s Heuristic BS-I

20 Jobs I 0.28 0
II 0 0
III 0 0
IV 0 0

30 Jobs I 0 0
II 0 0
III 0 0
IV 1.95 0

40 Jobs I 0.19 0
II 1.06 0
III 0.04 0
IV 0 0

60 Jobs I 0.27 0.61
II 0.01 0.01
III 0 0
IV 0 0

Table 3
Comparison of the heuristics with the optimum solution.

Problem size Performance measure Nelson’s Heuristic BS-I

20 Jobs Average deviation (%) 0.28 0
ND/NTotal 1/183 0/183
Maximum deviation (%) 0.28 0
CPU time (seconds) 0.01 0.01

30 Jobs Average deviation (%) 1.26 0
ND/NTotal 5/260 0/260
Maximum deviation (%) 3.00 0
CPU time (seconds) 0.01 0.02

40 Jobs Average deviation (%) 0.34 0
ND/NTotal 7/365 0/365
Maximum deviation (%) 1.08 0
CPU time (seconds) 0.02 0.04

60 Jobs Average deviation (%) 0.39 0.90
ND/NTotal 15/582 5/582
Maximum deviation (%) 2.22 2.22
CPU time (seconds) 0.05 0.14
ation values do not exhibit a pattern according to the job size. As
job size increases, however, ND/NTotal increases for both TS and GA.

Table 3 further shows that Nelson’s Heuristic is the fastest of all
seven approximate solution methods. Although GA(K&K)’s solution
quality is better than that of SA(K&K), it is much slower than
SA(K&K). GA is the slowest heuristic. BS-I and BS-D perform much
better than GA(K&K), SA(K&K), GA, and TS in terms of the average
CPU time.

Tables 4 and 5 summarize the average percentage deviation val-
ues for low and high processing time distributions, respectively,
under each due date distribution type and problem size combina-
tion. These tables illustrate that BS-I, BS-D provide better solutions
than do GA, SA, SA(K&K), and GA(K&K) with respect to each job
size, processing time, and due date distribution type. In fact, BS-I
and BS-D deviate from the optimal solution only in the problem
sizes of 60 jobs.

Tables 4 and 5 further indicate that the problems generated
using Type IV due date distribution are solved quite effectively
by the beam search heuristics and by Nelson’s Heuristic. Recall that
this distribution type represents problems with loose due dates.
Although these algorithms also work well for problems with tigh-
ter due dates (i.e., due date distribution types I, II, or III), most devi-
ation instances occur in these problem types. Processing time
variability, on the other hand, does not affect the solution quality
of BS-I and BS-D. For Nelson’s Heuristic, deviation from optimality
BS-D GA(K&K) SA(K&K) GA TS

0 0.50 3.16 0.18 0.34
0 0.68 5.41 0 0.97
0 0.22 4.64 0.33 1.66
0 0.32 7.22 0 0.07

0 0.78 1.62 0.47 0.13
0 0.23 3.31 0.11 0.58
0 0.16 2.46 0 0.22
0 0.61 3.54 0.35 0.23

0 1.06 1.52 0.38 0.86
0 0.22 2.11 0.08 0.22
0 0.22 3.33 0.08 0.03
0 0.35 4.68 0.23 0.25

0.91 0.77 1.64 0.42 0.68
0.01 0.25 1.96 0.08 0.04
0 0.13 3.04 0.03 0.05
0 0.25 3.55 0.08 0.13

BS-D GA(K&K) SA(K&K) GA TS

0 0.64 4.57 0.14 0.44
0/183 63/183 177/183 7/183 37/183
0 7.17 34.38 0.33 4.57
0.01 0.26 0.22 0.50 0.30

0 0.54 2.52 0.34 0.32
0/260 158/260 248/260 42/260 52/260
0 8.04 22.48 2.27 3.83
0.02 1.08 0.49 2.06 1.15

0 0.60 2.71 0.24 0.54
0/365 125/365 358/365 115/365 85/365
0 3.82 26.76 1.94 5.0
0.04 3.10 0.73 6.10 2.87

0.93 0.53 2.58 0.29 0.67
2/582 486/582 573/582 308/582 186/582
0.182 4.05 3.35 25.15 7.55
0.14 15.53 1.70 30.79 12.95

Table 5
Average deviation from optimum in problems with high processing time variability (%).

Problem size Due date type Nelson’s Heuristic BS-I BS-D GA(K&K) SA(K&K) GA TS

20 Jobs I 0 0 0 0.92 3.09 0.08 0.46
II 0 0 0 0.38 3.67 0 0.22
III 0 0 0 0.24 5.67 0 0.03
IV 0 0 0 0.87 6.11 0 0.22

30 Jobs I 0.19 0 0 0.89 1.41 0.42 0.30
II 2.39 0 0 0.14 2.01 0.02 0.20
III 0.005 0 0 0.08 4.03 0 1.92
IV 0 0 0 0.40 3.75 0.18 0.23

40 Jobs I 0 0 0 0.87 1.37 0.23 1.14
II 0.88 0 0 0.30 2.14 0.04 0.13
III 0 0 0 0.20 3.99 0.03 0.01
IV 0 0 0 0.37 3.82 0.05 0.13

60 Jobs I 0 0 0 1.08 1.77 0.48 1.02
II 0.62 0 0 0.22 1.90 0.05 0.02
III 0.001 0 0 0.17 2.89 0.05 0.02
IV 0 0 0 0.29 4.08 0.12 0.27

96 F.S. Erenay et al. / European Journal of Operational Research 201 (2010) 89–98
mostly occurs in the problems with low processing time variability
combined with Type I due dates and in problems with high pro-
cessing time variability combined with Type II due dates. It can
also be observed that GA performs better in problems with high
processing time variability.

It is important to note that, as the problem size increases, Nel-
son’s Heuristic, BS-I, BS-D, SA(K&K), and TS may fail to find a solu-
tion for some of the efficient schedules. As stated before, for a given
problem, there are nT (SPT) – nT (Moore) + 1 efficient schedules. In
some of the 320 test problems, however, these heuristics cannot
find an approximate solution specifically for the efficient schedule
with nT (Moore) number of tardy jobs (see Table 6). The number of
such problems is very small, and most of the cases that cannot be
solved by Nelson’s Heuristic are solved by BS-I and BS-D. Neverthe-
less, the number of these instances seems to increase as the prob-
lem size increases. In order to see whether this trend will continue
for larger problem sizes and to better observe the performance of
our heuristics, we performed experiments on problems with 80,
100, and 150 jobs.

6.2. Experiments on larger problem sizes

We generated larger size problems with 80, 100, and 150 jobs
using the same processing time and due date distributions dis-
cussed earlier. For each job size, processing time, and due date dis-
tribution type, we generated 10 problems and obtained 240
problems in total. In our experiments with larger problems, the
first measure that we consider is the average percentage difference
of a heuristic’s solution from that of Nelson’s Heuristic, which is gi-
ven by

PM
m¼1

PnT ðm;SPTÞ
n¼nT ðm;MooreÞ100� FNelsonðm;nÞ�Fðm;nÞ

FNelsonðm;nÞPM
m¼1

PnT ðm;SPTÞ
n¼nT ðm;MooreÞwm;n

; ð6Þ
Table 6
Number of efficient schedules for which no solution is found.

Heuristic 20 Jobs 30 Jobs 40 Jobs 60 Jobs

Nelson’s Heuristic 0/183 0/260 5/365 15/582
BS-I 0/183 0/260 2/365 4/582
BS-D 0/183 0/260 1/365 3/582
GA(K&K) 0/183 0/260 0/365 0/582
SA(K&K) 3/183 3/260 1/365 8/582
GA 0/183 0/260 0/365 0/582
TS 5/183 16/260 20/365 48/582
where F(m,n) is the minimum flowtime for the mth problem, when
nT = n, given by a heuristic other than Nelson’s. FNelsonðm;nÞ is the
minimum flowtime resulting from Nelson’s Heuristic for the same
problem. nT(m,Moore) and nT(m, SPT) are the number of tardy jobs
using Moore’s Algorithm and SPT order, respectively. Finally, wm,n

is defined as

wm;n ¼
1; if Fðm; nÞ– FNelsonðm;nÞ;
0; o:w:

(

Average percentage difference illustrates the average gap between
the solution of a heuristic (i.e., BS-I, BS-D, GA(K&K), SA(K&K), GA,
TS) and that of Nelson’s Heuristic over all efficient schedules and
test problems, where the two solutions differ. In our experimenta-
tion with larger size problems, we take Nelson’s Heuristic as a
benchmark, because, among the heuristic approaches proposed in
the literature, Nelson’s Heuristic performs the best, as discussed
in Section 6.1. Note that, according to Expression (6), larger values
of average percentage difference indicate better performance for a
heuristic. Other measures we consider in the experiments with lar-
ger problems are as follows.

(i) N+: Number of solutions for efficient schedules over all test
problems that a specific heuristic performs better than Nel-
son’s Heuristic. That is,
Nþ ¼
XM

m¼1

XnT ðm;SPTÞ

n¼nT ðm;MooreÞ
gm;n; where

gm;n ¼
1; if Fðm;nÞ < FNelsonðm;nÞ
0; o:w:

(

(ii) N�: Number of solutions for efficient schedules over all test
problems that a specific heuristic performs worse than Nel-
son’s Heuristic. That is,
N� ¼
XM

m¼1

XnT ðm;SPTÞ

n¼nT ðm;MooreÞ
lm;n; where

lm;n ¼
1; if Fðm;nÞ > FNelsonðm; nÞ;
0; o:w:

(

Note that taking Nelson’s Heuristic as a point of reference, a
large value of N+ and a small value of N� are desirable for a
heuristic. � �
(iii) Maximum Percentage Difference¼maxðm;nÞ 100� FNelsonðm;nÞ�Fðm;nÞ
FNelsonðm;nÞ

.

A negative value of maximum percentage difference implies that
Nelson’s Heuristic performs better than the current heuristic, in

Table 7
Comparison of the other heuristics with Nelson’s Heuristic.

Problem size Performance measure BS-I BS-D GA(K&K) SA(K&K) GA TS

80 Jobs Average % difference 0.124 0.126 �0.532 �2.694 �0.223 �0.228
N+/NTotal 31/754 31/754 4/754 0/754 7/754 5/754
N�/NTotal 0/754 0/754 670/754 683/754 502/754 169/754
Max % difference 0.908 0.908 0.526 �0.007 0.526 0.473
Min % difference 0.000 0.000 �4.362 �21.319 �2.306 �4.133

100 Jobs Average % difference 0.069 0.069 �0.514 �2.946 �0.275 �0.278
N+/NTotal 39/990 39/990 4/990 0/990 8/990 5/990
N�/NTotal 0/990 0/990 922/990 912/990 768/990 509/990
Max % difference 0.685 0.685 0.534 �0.012 0.534 0.333
Min % difference 0.000 0.000 �4.600 �27.639 �3.527 �5.151

150 Jobs Average % difference 0.047 0.041 �0.480 �3.723 �0.259 �0.268
N+/NTotal 74/1531 77/1531 3/1531 0/1531 7/1531 7/1531
N�/NTotal 0/1531 0/1531 1480/1531 1310/1531 1332/1531 1026/1531
Max % difference 1.225 1.225 1.458 �0.037 1.458 1.222
Min % difference 0.000 0.000 �3.325 �38.030 �3.342 �5.941

Table 9
Average CPU time per problem in seconds.

Heuristic 80 Jobs 100 Jobs 150 Jobs

Nelson’s Heuristic 0.08 0.12 0.34
BS-I 0.35 0.82 3.95
BS-D 0.36 0.84 4.00
GA(K&K) 48.63 124.87 723.57
SA(K&K) 13.33 21.32 49.31
GA 94.77 245.22 1445.85
TS 36.43 88.52 420.13

F.S. Erenay et al. / European Journal of Operational Research 201 (2010) 89–98 97
all cases considered. Maximum percentage difference can be con-
sidered as a measure of the best-case performance of a heuristic,
and its higher values are desirable.

(iv) Minimum Percentage Difference¼minðm;nÞ 100� FNelsonðm;nÞ�Fðm;nÞ
FNelsonðm;nÞ

� �
.

A positive value of minimum percentage difference implies that
the current heuristic performs better than Nelson’s Heuristic.
Minimum percentage difference can be considered a measure
of the worst-case performance of a heuristic, and its higher val-
ues are desirable.

As Table 7 shows, the proposed beam search heuristics and Nel-
son’s Heuristic perform better than SA(K&K), GA(K&K), GA, and TS,
in larger size problems as well, with respect to all the measures. As
implied by the N+/NTotal and N�/NTotal measures, in almost all
cases, Nelson’s Heuristic performs better than or equal to these
iterative algorithms. Yet, BS-I and BS-D perform better than Nel-
son’s Heuristic. Furthermore, as job size increases, the number of
instances where the proposed heuristics outperforms Nelson’s
Heuristic increases. We also observe that BS-D performs slightly
better than BS-I on larger size problems. In most cases, however,
their solution qualities are almost the same. As seen in Table 7,
for problems with 150 jobs, BS-D outperforms Nelson’s Heuristic
in a few more instances than does BS-I.

GA and TS perform better than GA(K&K) and SA(K&K) for almost
all measures. The performances of TS and GA are nearly the same
for the cases in which they both find a solution. In these cases,
the overall average difference from Nelson’s Heuristic is nearly
the same. The best-case and worst-case performances of GA, as
measured by the maximum and minimum percentage differences,
respectively, are better than those of TS. The real handicap of TS is
that there are a considerable number of efficient schedules for
which it cannot find a heuristic solution (see Table 8). GA, on the
other hand, finds heuristic efficient schedules for every instance.

Table 8 illustrates that for all the heuristics, excluding GA and
GA (K&K), the number of efficient schedules for which no heuristic
Table 8
Number of efficient schedules for which no Heuristic solution is found.

Heuristic 80 Jobs 100 Jobs 150 Jobs

Nelson’s Heuristic 13/754 29/990 48/1531
BS-I 7/754 13/990 32/1531
BS-D 7/754 13/990 34/1531
GA (K&K) 0/754 0/990 0/1531
SA (K&K) 23/754 63/990 206/1531
GA 0/754 0/990 0/1531
TS 57/754 96/990 189/1531
solution is found increases with an increase in problem size. It can
also be observed that Nelson’s Heuristic cannot find any solution
for a larger number of efficient schedules than BS-I and BS-D. In
fact, if a heuristic efficient schedule cannot be found either by
BS-I or BS-D, it cannot be found by Nelson’s Heuristic either. There
are some nT values for which Nelson’s Heuristic cannot arrive at a
heuristic efficient schedule, but BS-I or BS-D can. Heuristic efficient
schedules that cannot be found frequently coincide with problems
that have a Type I due date distribution, and less frequently coin-
cide with those that have Types II and III.

While the number of no solution cases is quite high for SA(K&K)
and TS, GA and GA(K&K) find a solution for every nT value. As seen
in Table 9, however, the computation time requirements for GA
and GA(K&K) are much longer than those of the beam search algo-
rithms. Therefore, for large size problems, in order to find heuristic
efficient schedules for all nT values in the efficient range, BS-D or
BS-I should first be used to minimize the number of instances in
which no solution is found. Then, a genetic algorithm should be
utilized to solve the remaining instances.

7. Conclusions

As a result of our experiments, we conclude that BS-D and BS-I
perform quite well for the multicriteria scheduling problem of
minimizing the average flowtime and number of tardy jobs. In
most cases, these two algorithms find the efficient schedules opti-
mally. The only disadvantage of our beam search algorithms is
that, although rarely, they fail to find heuristic efficient solutions
for some nT values in the efficient range. For such cases, we propose
that GA or GA(K&K) be used. The proposed GA and TS algorithms
also yield better results than GA(K&K) and SA(K&K), even though
they are poor, relative to BS-D and BS-I.

With the insights gained from this study, we propose to extend
our current research to solve other multicriteria scheduling prob-
lems. This work can be extended to more complex settings, such

98 F.S. Erenay et al. / European Journal of Operational Research 201 (2010) 89–98
as parallel machine environments. It would also be interesting to
study robustness and stability measures in dynamic and stochastic
manufacturing settings.

Acknowledgements

The authors thank Süleyman Kardas� and Mustafa Aydoğdu for
their assistance in obtaining the numerical results for the genetic
algorithm and the tabu-search applications in this paper.

Appendix. Supplementary material

Supplementary data associated with this article can be found, in
the online version, at doi:10.1016/j.ejor.2009.02.014.

References

Allahverdi, A., 2004. A new heuristic for m-machine flowshop scheduling problem
with bicriteria of makespan and maximum tardiness. Computers and
Operations Research, 31; 157–180.

Arroyo, J.E.C., Armentano, V.A., 2005. Genetic local search for multi-objective
flowshop scheduling problems. European Journal of Operational Research 167,
717–738.

Chen, C.L., Bulfin, R.L., 1993. Complexity of single machine multi-criteria scheduling
problems. European Journal of Operational Research 70, 115–125.

Dileepan, P., Sen, T., 1988. Bicriterion static scheduling research for a single
machine. Omega 16, 53–59.

Emmons, H., 1975. One machine sequencing to minimize mean flowtime with
minimum tardy. Naval Research Logistics Quarterly 22, 585–592.

Fry, T., Armstrong, R., Lewis, H., 1989. A framework for single machine multiple
objective scheduling research. Omega 17, 595–607.

Ghirardi, M., Potts, C.N., 2005. Makespan minimization for scheduling unrelated
parallel machines: A recovering beam search approach. European Journal of
Operational Research 165 (2), 457–467.

Güner, E., Erol, S., Tani, K., 1998. One machine scheduling to minimize maximum
earliness with minimum number of tardy jobs. International Journal of
Production Economics 55, 213–219.

Gupta, J.N.D., Ruiz-Torres, A.J., 2005. Generating efficient schedules for identical
parallel machines involving flow-time and tardy jobs. European Journal of
Operational Research 167, 679–695.

Haral, U., Chen, R.-W., Ferrell, W.G., Kurz, M.B., 2007. Multiobjective single machine
scheduling with nontraditional requirements. International Journal of
Production Economics 106, 574–584.

Heck, H., Roberts, S., 1972. A note on the extension of a result on scheduling with
secondary criteria. Naval Research Logistics Quarterly 19, 403–405.

Hoogeveen, J.A., 2005. Multicriteria scheduling. European Journal of Operational
Research 167, 592–623.

Huo, Y., Leung, J.Y.T., Zhao, H., 2007. Complexity of two-dual criteria scheduling
problems. Operations Research Letters 35, 211–220.

Kiran, A.S., Unal, A.T., 1991. A single-machine problem with multiple criteria. Naval
Research Logistics 38, 721–727.
Kondakci, S.K., Bekiroglu, T., 1997. Scheduling with bicriteria: Total flowtime and
number of tardy jobs. International Journal of Production Economics 53, 91–99.

Kondakci, S., Azizoglu, M., Köksalan, M., 2003. Single machine scheduling with
maximum earliness and number tardy. Computers and Industrial Engineering
45, 257–269.

Köksalan, M., 1999. A heuristic approach to bicriteria scheduling. Naval Research
Logistics 46, 777–789.

Köksalan, M., Keha, A.B., 2003. Using genetic algorithms for single-machine
bicriteria scheduling problems. European Journal of Operational Research 145,
543–556.

Köksalan, M., Azizoglu, M., Kondakci, S., 1998. Minimizing flowtime and maximum
earliness on a single machine. IIE Transactions 30, 192–200.

Köktener, E.K., Köksalan, M., 2000. A simulated annealing approach to bicriteria
scheduling problems on a single machine. Journal of Heuristics 6, 311–327.

Lee, W.-C., Wu, C.-C., Sung, H.-J., 2004. A bi-criterion single-machine scheduling
problem with learning considerations. Acta Informatica 40, 303–315.

M’Hallah, R., 2007. Minimizing total earliness and tardiness on a single machine
using a hybrid heuristic. Computers and Operations Research 34, 3126–3142.

Moore, J.M., 1968. An n job, one machine sequencing algorithm for minimizing the
number of late jobs. Management Science 15, 102–109.

Nagar, A., Haddock, J., Heragu, S., 1995. Multiple and bicriteria scheduling: A
literature survey. European Journal of Operations Research 81, 88–104.

Nelson, R.T., Sarin, R.K., Daniels, R.L., 1986. Scheduling with multiple performance
measures: The one machine case. Management Science 32, 464–479.

Sabuncuoglu, I., Bayiz, M., 1999. Job shop scheduling with beam search. European
Journal of Operational Research 118, 390–412.

Sabuncuoglu, I., Karabuk, S., 1998. A beam search algorithm and evaluation of
scheduling approaches for FMSs. IIE Transactions 30, 179–191.

Sabuncuoglu, I., Gockun, Y., Erel, E., 2008. Backtracking and exchange of
information: Methods to enhance a beam search algorithm for assembly
line scheduling. European Journal of Operational Research 186, 915–
930.

Sen, T., Gupta, S.K., 1983. A branch and bound procedure to solve a bicriterion
scheduling problem. IIE Transactions 15, 84–88.

Smith, W.E., 1956. Various optimizers for single stage production. Naval Research
Logistics Quarterly 3, 1–2.

Steiner, G., Stephenson, P., 2007. Pareto optimal for total weighted completion time
and maximum lateness on a single machine. Discrete Applied Mathematics 155,
2341–2354.

T’kindt, V., Billaut, J.-C., 1999. Some guidelines to solve multicriteria scheduling
problems. IEEE International Conference on Systems, Man and Cybernetics
Proceeding 6, 463–468.

T’kindt, V., Bouibede-Hocine, K., Esswein, C., 2007. Counting and enumeration
complexity with application to multicriteria scheduling. Annals of Operations
Research 153, 215–234.

Toktas�, B., Azizoğlu, M., Köksalan, S.K., 2004. Two-machine flow shop scheduling
with two criteria: Maximum earliness and makespan. European Journal of
Operational Research 157, 286–295.

Varangharajan, T.K., Rejendran, C., 2005. A multi-objective simulated-annealing
algorithm for scheduling in flowshops to minimize the makespan and total
flowtime of jobs. European Journal of Operational Research 167, 772–795.

Vilcot, G., Billaut, J.C., 2008. A tabu search and a genetic algorithm for solving a
bicriteria general job shop scheduling problem. European Journal of Operational
Research 190, 398–411.

Yen, B.P.C., Wan, G., 2003. Single machine bicriteria scheduling: A survey.
International Journal of Industrial Engineering 10, 222–231.

http://dx.doi.org/10.1016/j.ejor.2009.02.014

	New solution methods for single machine bicriteria scheduling problem: Minimization of average flowtime and number of tardy jobs
	Introduction
	Problem formulation
	Optimal solution methodology for minimizing nT and \overline{F}
	Proposed beam search algorithms
	Independent beam search (BS-I)
	Dependent beam search (BS-D)

	Proposed iterative algorithms
	Proposed tabu-search approach
	Neighborhood generation
	Tabu list and aspiration criterion
	Stopping criteria

	Proposed genetic algorithm
	The fitness function
	Initial population
	Crossover and mutation operators
	Stopping criteria

	Computational results
	Comparison with the optimal solution
	Experiments on larger problem sizes

	Conclusions
	Acknowledgements
	Supplementary material
	References

