
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 28, NO. 6, JUNE 2009 901

Using Data Compression for Increasing
Memory System Utilization

Ozcan Ozturk, Member, IEEE, Mahmut Kandemir, Member, IEEE, and Mary Jane Irwin, Fellow, IEEE

Abstract—The memory system presents one of the critical chal-
lenges in embedded system design and optimization. This is mainly
due to the ever-increasing code complexity of embedded applica-
tions and the exponential increase seen in the amount of data they
manipulate. The memory bottleneck is even more important for
multiprocessor-system-on-a-chip (MPSoC) architectures due to
the high cost of off-chip memory accesses in terms of both energy
and performance. As a result, reducing the memory-space occu-
pancy of embedded applications is very important and will be even
more important in the next decade. While it is true that the on-chip
memory capacity of embedded systems is continuously increasing,
the increases in the complexity of embedded applications and the
sizes of the data sets they process are far greater. Motivated by
this observation, this paper presents and evaluates a compiler-
driven approach to data compression for reducing memory-
space occupancy. Our goal is to study how automated compiler
support can help in deciding the set of data elements to compress/
decompress and the points during execution at which these
compressions/decompressions should be performed. We first study
this problem in the context of single-core systems and then extend
it to MPSoCs where we schedule compressions and decompres-
sions intelligently such that they do not conflict with application
execution as much as possible. Particularly, in MPSoCs, one needs
to decide which processors should participate in the compression
and decompression activities at any given point during the course
of execution. We propose both static and dynamic algorithms for
this purpose. In the static scheme, the processors are divided
into two groups: those performing compression/decompression
and those executing the application, and this grouping is main-
tained throughout the execution of the application. In the dynamic
scheme, on the other hand, the execution starts with some group-
ing but this grouping can change during the course of execution,
depending on the dynamic variations in the data access pattern.
Our experimental results show that, in a single-core system, the
proposed approach reduces maximum memory occupancy by
47.9% and average memory occupancy by 48.3% when averaged
over all the benchmarks. Our results also indicate that, in an
MPSoC, the average energy saving is 12.7% when all eight bench-
marks are considered. While compressions and decompressions
and related bookkeeping activities take extra cycles and memory
space and consume additional energy, we found that the improve-

Manuscript received October 16, 2008; revised January 6, 2009. Current
version published May 20, 2009. This work is supported in part by NSF
Grants 0811687, 0720645, 0720749, 0702519, a grant from Microsoft Re-
search and a grant from GSRC. This paper extends the material presented in
GLSVLSI’05 [1] and ASPDAC’06 [2] by giving more detailed information
about the algorithms and by presenting an experimental analysis of the pro-
posed approach. This paper was recommended by Associate Editor E. Martin.

O. Ozturk is with the Department of Computer Engineering, Bilkent Univer-
sity, Ankara 06800, Turkey (e-mail: ozturk@cs.bilkent.edu.tr).

M. Kandemir is with the Microsystems Design Laboratory, Computer
Science and Engineering Department, The Pennsylvania State University,
University Park, PA 16802 USA.

M. J. Irwin is with the Computer Science and Engineering Department,
The Pennsylvania State University, University Park, PA 16802 USA.

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TCAD.2009.2017430

ments they bring from the memory space, execution cycles, and
energy perspectives are much higher than these overheads.

Index Terms—Compilers, data compression, embedded systems,
memory optimization, multiprocessor-system-on-a-chip (MPSoC).

I. INTRODUCTION

MOST EMBEDDED systems have very tight constraints
on memory space, power consumption, and perfor-

mance. In particular, memory constraints are getting increas-
ingly important as both the code complexity of embedded
applications and the amount of data they process are increasing.
While it is true that the memory capacity of embedded systems
is continuously increasing, the increases in the application
complexity and data-set sizes are far greater. In addition, many
parallel embedded systems execute multiple applications si-
multaneously, which puts additional pressure on the on-chip
memory capacity. For example, many commercial architectures
today employ scratch-pad memories (SPMs). However, since
an SPM is very small in size when compared to main memory
and is shared by multiple data sets (e.g., different arrays)
simultaneously, in many cases, some important (critical) data
blocks are still left in the off-chip memory. Therefore, for
many large data-intensive embedded applications, taking full
advantage of the SPM is not possible. As a result, memory-
space utilization remains one of the most pressing challenges
for many embedded execution environments, and there is a
growing need for techniques that make best use of the avail-
able memory space without hurting application performance
significantly. Prior research on memory systems proposed and
evaluated several techniques, which can potentially improve
the memory performance of embedded software. Power and
memory-space efficiency, on the other hand, have received
relatively less attention so far.

One of the techniques that can be used to reduce the memory-
space consumption (occupancy) of embedded applications is
data compression. The goal of data compression is to represent
an information source (e.g., a data file, a speech signal, an
image, or a video signal) as accurately as possible using the
fewest number of bits. Previous research considered efficient
hardware- and software-based data-compression techniques
and applied compression to different domains. While data
compression can be an effective way of reducing the memory-
space consumption of embedded applications, it needs to be
exercised with care since performance and power costs of
decompression (when we need to access data stored currently
in the compressed form) can be overwhelming. Therefore,
compression/decompression decisions must be made based on
a careful analysis of the data access patterns of the application.

0278-0070/$25.00 © 2009 IEEE

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Bilkent University Institutional Repository

https://core.ac.uk/display/52922648?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

902 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 28, NO. 6, JUNE 2009

Our first goal in this paper is to study how automated
compiler support can help in deciding the set of data elements to
compress/decompress and the points during execution at which
these compressions/decompressions should be performed. The
proposed compiler support, targeting single-core-based sys-
tems, achieves this by analyzing the source code of the applica-
tion to be optimized and identifying the order in which different
data blocks are accessed. Based on this analysis and data-reuse
information, the compiler then automatically inserts explicit
compression and decompression calls in the application code.
The compression calls target the data blocks that are not ex-
pected to be used in the near future, whereas the decompression
calls target those data blocks with expected reuse but currently
in compressed form. We discuss our compiler algorithm in
detail and present an example that illustrates how it operates
in practice. In providing automated compiler support for data
compression, we want to achieve two objectives. First, we want
to enable memory-space savings without the involvement of the
application programmer, i.e., the programmer gets the benefits
of reducing the memory-space consumption without any major
effort on her part. Second, we want to minimize the potential
impact of data compression on performance. To do this, our
automated approach makes use of data-reuse analysis.

We then extend our data-compression approach to
multiprocessor-system-on-a-chip (MPSoC) architectures. In
the context of MPSoCs, our goal is to schedule compressions
and decompressions such that they do not conflict with
parallel application execution. Specifically, one needs to decide
which processors should participate in the compression and
decompression activities at any given point during the course of
execution. This is because allowing each processor to perform
compression and decompression (in addition to application
execution) would put compression and decompression into the
critical path execution, thereby affecting the performance of
parallel execution significantly. We propose two different strat-
egies for such a division: static and dynamic. In the static scheme,
the processors are divided into two groups: those performing
compression/decompression and those executing the applica-
tion, and this grouping is maintained throughout the execution
of the application (i.e., it is fixed). In the dynamic scheme, on
the other hand, the execution starts with some grouping, but this
grouping changes during the course of execution (i.e., it adapts
itself to the dynamic requirements and data access pattern of the
application being executed). This is achieved by keeping track
of the wrongly done compressions at runtime and adjusting the
number of processors allocated for compression/decompression
accordingly. In the second part of this paper, our main goal is
to explore these two processor space partitioning strategies,
identify their pros and cons, and draw conclusions.

Our experimental results show that the proposed approach
reduces both maximum and average memory occupancies sig-
nificantly. In addition, we show that it can save more mem-
ory space than an alternate compiler technique that exploits
lifetime information to reclaim the memory space occupied
by dead data blocks, i.e., the data blocks that completed their
last uses. Our experimental results obtained by simulating
the execution of an MPSoC indicate that the most important
problem with the static scheme is one of determining the ideal
number of processors that need to be allocated for compression/

Fig. 1. Example curves for MMO and AMO.

decompression. The results also show that the dynamic scheme
successfully modulates the number of processors used for
compression/decompression according to the dynamic behavior
of the application, and this, in turn, improves overall perfor-
mance significantly.

II. RELATED WORK

To reduce the size of a program’s code segment, Cooper
and Harvey [3] use pattern-matching-based techniques. A re-
duced instruction set computer system that can directly execute
compressed programs is presented in [4]. Very long instruction
word processors are also considered in compression-related
work [5]–[9]. Data compression is used to reduce storage re-
quirements, bus bandwidth, and energy consumption [10]–[19].
Using a hardware compressor enables faster compression/
decompression, and this has been achieved by various tech-
niques [10], [20]–[22]. Our work is different from these prior
efforts as we give the task of the management of the compressed
data blocks to the compiler. In deciding the data blocks to
compress and decompress, our compiler approach exploits the
data-reuse information extracted from the array accesses in
the application source code. Prior work on MPSoCs discusses
several advantages of these architectures over complex single-
processor-based designs [23]–[30]. Using compression in an
MPSoC environment has been investigated by Alameldeen and
Wood [31]. In this paper, the authors introduce an adaptive
policy that dynamically adapts to the costs and benefits of cache
compression. In [32], this work has been extended to include
an adaptive prefetching mechanism. Our work is different from
these prior efforts on MPSoCs as it explores the potential of
compression in parallel execution.

III. MEMORY-SPACE OCCUPANCY

Memory-space occupancy indicates the memory space oc-
cupied by application data at each point during the course of
execution. There are two important metrics associated with
memory-space occupancy. The first one is the maximum mem-
ory occupancy (MMO), which gives the maximum memory
space occupied by data during the course of execution when
considering all execution cycles. The second metric is the
average memory occupancy (AMO), which gives the memory
occupancy when averaged over all execution cycles. Fig. 1
shows these two metrics for an example case. Note that the

OZTURK et al.: USING DATA COMPRESSION FOR INCREASING MEMORY SYSTEM UTILIZATION 903

Fig. 2. Memory organization. Our compiler creates a directory with entries,
each of which corresponding to a tile of array X . Each entry in the directory
of array X (denoted as X[[�I]]) contains a pointer to the memory location where
the corresponding tile is stored. By using this pointer, we are able to access the
correct tile (could be compressed or decompressed).

drops in the memory occupancy curve indicate either some
application-level dead memory block recycling or system-level
garbage collection. Both these metrics, MMO and AMO, can
be important targets for optimizations. MMO is critical to
minimize as it captures the amount of memory that needs to be
allocated for the application if the application is to run success-
fully without an out-of-memory exception. The AMO metric,
on the other hand, can be important in a multiprogramming-
based embedded execution environment where multiple ap-
plications compete for the same memory space. In particular,
in an MPSoC setting, saved memory space can be used to
increase the number of parallel applications. The goal behind
our compiler-directed approach is to reduce both MMO and
AMO for array/loop-intensive embedded applications. Note
that, array/loop-intensive applications are frequently used in
embedded image/video processing [33]. Furthermore, reducing
MMO and AMO can result in both performance and energy
improvements.

IV. DATA COMPRESSION IN THE SINGLE-CORE CASE

A. Compiler Algorithm

Employing data compression in managing the memory space
of an embedded system requires a careful analysis of the data
access pattern of the application under consideration. This is
because exercising data compression in an untimely manner
can cause significant performance and power penalties. For
example, compressing data blocks with short reuse distances
can increase the number of decompressions dramatically. Fur-
thermore, decompressing data blocks with long reuse distances
prematurely can increase memory-space consumption unneces-
sarily. Therefore, one needs to be very careful in deciding both
the set of data blocks to compress/decompress and the points in
execution to compress/decompress them. Clearly, this is an area
that can benefit a lot from automation.

1) Data Tiling and Memory Compression: Our scheme
compresses only the arrays that can benefit from data com-
pression (this can be determined either through profiling or via
programmer annotations). These arrays are referred to as the
“compressible” arrays in this paper. We do not compress scalar
variables or incompressible arrays, i.e., the arrays that cannot
benefit from data compression. Fig. 2 shows the organization

Fig. 3. Data tiling for array X .

of the memory space for supporting our compiler-directed data-
compression approach. We divide the memory space into three
parts: compressed area, decompression buffer, and static data
area. The static data area contains scalar variables, incom-
pressible arrays, and the directories for compressible arrays.
The data entities in the static area are statically allocated at
compilation time. The compressed area and the decompression
buffer, however, are dynamically managed at runtime based
on the compiler-determined schedule for compressions and
decompressions. Note that, as can be seen from Fig. 2, both
compressed arrays/tiles and decompressed arrays/tiles can be
present at the same time. Even some blocks of a given array
can be compressed while some other blocks are decompressed.

We expect our technique to be more successful in the context
of embedded systems where data sets are mostly integer or
fixed point (instead of floating point). It needs to be noted,
however, that our approach can work with data with different
compressibilities, as we manage the memory space at a tile
granularity (i.e., a less compressible data set will occupy more
tiles). Although, in theory, the compressibility of a data block
can change during the course of execution of the program
(due to updates), we found in our experiments that this happens
very rarely in practice.

We divide each compressible array into equal-sized tiles
(blocks). An element of a tiled array X can be indexed using
the following expression: X[[�I]][�J], where �I is the tile subscript
vector, which indexes a tile of array X , and �J is the intratile
subscript vector, which indexes an element within a given tile.
For example, Fig. 3 shows an array X that is divided into nine
(3 × 3) tiles, and each tile contains sixteen (4 × 4) elements.
As an example, X[[2, 3]] refers to the tile at the second row, third
column, and X[[2, 3]][3, 2] refers to the data element at the third
row, second column of tile X[[2, 3]].

Fig. 2 shows how we store the tiled arrays in the memory. For
each compressible array X , our compiler creates a directory,
each entry of which corresponding to a tile of array X , and
can be indexed using a tile subscript vector. Each entry in the
directory of array X , denoted as X[[�I]] (�I is a tile subscript
vector), contains a pointer to the memory location where the
corresponding tile is stored. The directory of each array is
stored in the static data area of the memory space.

An array tile can be either compressed or uncompressed.
Uncompressed tiles are stored in the decompression buffer,
and compressed tiles are stored in the compressed area. The
decompression buffer is divided into equal-sized blocks, and
the size of a block is equal to that of a tile. We use a free table to
keep track of the free blocks in the decompression buffer. When
we need to decompress a tile, we first need to allocate a free
block in the decompression buffer. Compressed tiles are stored

904 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 28, NO. 6, JUNE 2009

Fig. 4. Architecture supporting memory compression.

in the compressed area. The memory in this area is divided into
equal-sized slices. The size of a slice is smaller than that of
a block in the decompression buffer. In our implementation,
a slice is equal to a quarter of a block. Although the size of
tiles is fixed, the compression ratio depends on the specific tile.
Therefore, the number of slices required to store a compressed
tile may vary from one tile to another. In Fig. 2, we can see that
the slices belonging to the same tile form a link table. As in the
case of the decompression buffer, the compressed area also has
a free table keeping all free slices.

Fig. 4 shows the architecture of our system. When the
program starts its execution, all tiles are in the compressed
format and are stored in the compressed area. A compressed
tile is decompressed and stored in the decompression buffer by
a decompresser before it is accessed by the program. If this
tile belongs to an array that is not written (updated) by the
current loop nest, the compressed version of this tile remains
in the compressed area. On the other hand, if this tile belongs
to an array that might be written by the current loop nest, we
discard the compressed version of this tile and return the slices
occupied by this tile to the free table of the compressed area.
When we need to decompress a new tile but there is no free
space in the decompression buffer, we select a set of old tiles
in the decompression buffer and discard them to make space
for the new tile. If a victim tile (the tile to be evicted) belongs
to an array that might be written by the current loop nest,
we must decompress and store its compressed version in the
compressed area before we evict its uncompressed version. On
the other hand, if this tile belongs to an array that is not written
by the current loop nest, we can discard the uncompressed
version of this tile without recompressing it. The important
point to note is that our approach is not tied to any specific
compression/decompression algorithm, and the compressor and
decompresser can be implemented either in software or hard-
ware. In our current implementation, however, we use only
software-based compression/decompression.

It should be emphasized that data tiling is required by our
implementation of memory compression, not by the logic of
the application. Therefore, we do not require the programmer
to be aware of the data tiling performed transparently for
enabling data compression. Our compiler automatically (i.e.,
in a user-transparent manner) tiles every array that needs to
be compressed. Data tiling requires two mapping functions p

Fig. 5. Code transformation for data tiling and loop tiling. (a) Original loop
nest. (b) With data tiling only. (c) With both data tiling and loop tiling.

and q that map an original array subscript vector to tile and
intratile subscript vectors, respectively. That is, we map X[�I]
into X[[p(�I)]][q(�I)]. In this paper, given a tile size T , we use the
following mapping functions:

p((i1, i2, . . . , in))= (�i1/N1�, �i2/N2�, . . . , �in/Nn�)

q((i1, i2, . . . , in))= (i1 mod N1, i2 mod N2, . . . , in mod Nn)

where N1, N2, . . . , Nn are sizes (extents) of each dimension
subscript vector such that N1N2 . . . Nn = T . When an array
is tiled, our compiler also rewrites the program statements that
access this array accordingly.

2) Loop Tiling: While data tiling transforms the memory
layout of each compressible array, loop tiling (also known
as iteration space blocking) transforms the order in which
the array elements are accessed within a loop nest. If used
appropriately, loop tiling can significantly reduce the number
of decompressions invoked during the execution of a loop nest.
Fig. 5 shows such an example. Fig. 5(a) shows the original
code of a loop nest, which accesses a 600 × 600 array X .
We apply data tiling to array X such that the size of each
tile is 100 × 100. Fig. 5(b) shows the code after data tiling.
For illustration purposes, let us assume that the decompression
buffer has a space to store up to three tiles and that we use
a least recently used-based policy to select the victim tiles in
the decompression buffer. We can compute that, during the
execution of this loop nest, we need to invoke the decompresser
100 times for each tile. Hence, the decompresser is invoked
100 × 36 = 3600 times. By applying loop tiling to the loop
nest shown in Fig. 5(b), we obtain the tiled loop nest shown in
Fig. 5(c). In this tiled code, loop iterators i and j are the intertile
iterators, and the loop nest formed by them is referred to as
the intertile loop nest. Similarly, the iterators ii and jj are the
intratile iterators, and the loop nest formed by them is referred
to as the intratile loop nest. During the execution of this loop
nest, the decompresser is invoked only 36 times, once for each i,
j combination. In the rest of this paper, we assume that the loop
nests in the application program have been appropriately tiled
according to the layout of the arrays imposed by data tiling.

3) Compression-Based Space Management: Our compiler
inserts a buffer management code at each loop nest that uses

OZTURK et al.: USING DATA COMPRESSION FOR INCREASING MEMORY SYSTEM UTILIZATION 905

the decompression buffer. For ease of discussion, we use the
following abstract form to represent a tiled loop nest:

for �I = �L to �U

{
T1

(
R1(�I),W1(�I)

)
;

T2

(
R2(�I),W2(�I)

)
;

. . .

Tn

(
Rn(�I),Wn(�I)

) }

where �I is the iteration vector and �L and �U are the lower
and upper bound vectors for the loop nest. Ti (i = 1 . . . n)
represents an intratile loop nest. Since we focus on the access
pattern of each array at a tile level, we treat each intratile loop
nest as an atomic operation. Ri(�I) is the set of tiles that might
be read, and Wi(�I) is the set of tiles that might be written in
the intratile loop nest Ti at the intertile iteration �I . Ri(�I) and
Wi(�I) can be computed as follows:

Ri(�I)=
{

Xk

[[
f

(i)
j (�I)

]]
|

“ . . .= . . . Xk

[[
f

(i)
j (�I)

]]
[. . .] . . . ” appears in Ti

}

Wi(�I)=
{

Xk

[[
f

(i)
j (�I)

]]
|

“Xk

[[
f

(i)
j (�I)

]]
[. . .]= . . . ” appears in Ti

}

where Xk is an array accessed by Ti and f
(i)
j (�I) is a mapping

function that maps intertile iteration vector �I into a tile of array
Xi. Note that, we must be conservative in computing Ri(�I) and
Wi(�I). For intratile loop nest Ti, let us assume

Wi(�I)

=
{
Xk1

[[
f

(i)
1 (�I)

]]
,Xk2

[[
f

(i)
2 (�I)

]]
,Xkj

[[
f

(i)
j (�I)

]]}
Ri(�I) − Wi(�I)

=
{
Xkj+1

[[
f

(i)
j+1(�I)

]]
,Xkj+2

[[
f

(i)
j+2(�I)

]]
,Xkm

[[
f (i)

m (�I)
]]}

.

In the transformed code, we use counter c to count the
number of intratile loop nests that have been executed up to
a specific point. B is the set of tiles that are currently in the
decompression buffer. Before entering intratile loop nest Ti, we
need to decompress all the tiles in the set Ri(�I) ∪ Wi(�I) − B.
That is, all the tiles that will be used by Ti must be available
in the uncompressed format before we start executing Ti.
When decompressing a tile t, we may need to evict a tile
from the decompression buffer if there is no free block in the
decompression buffer (indicated by |B| = D). Each tile t in
the decompression buffer is associated with an integer t.r, in-
dicating when this tile will be reused in the future. Specifically,
t1.r < t2.r indicates that tile t1 will be reused earlier than t2.
When evicting a tile, we select the one that will be reused in the
furthest future. Each tile t in the decompression buffer also has
a flag t.w indicating whether this block has been written since
its last decompression. If this victim tile has been written, we
need to recompress this tile. Before entering Ti, we also update
the next reuse time (t.r) for each tile (t) used by Ti. The next
reuse time of tile t is computed using t.r = c + di(t), where
c is the number of intratile loop nests that have been executed

Fig. 6. Example that demonstrates how our approach operates.

and di(t) is the reuse distance of tile t at intratile loop nest Ti.
The reuse distance of a tile is the number of intratile loop nests
executed between the current and the next accesses to that tile.
We use a compiler-based approach to compute di(t)—the reuse
distance of tile t at intratile loop nest Ti. The interested reader
is referred to [2] for a detailed analysis.

4) Example: Fig. 6(a) shows an intertile loop nest contain-
ing two intratile loop nests: L1 and L2. Intratile loop nest
L1 uses tiles X[[i, j]] and X[[i, j + 1]], with reuse distances
d1 = 3 and d2 = 1, respectively. Intratile loop nest L2 uses tiles
X[[i, j + 1]] and X[[i, j − 1]], with reuse distances d3 = 1 and
d4 = ∞, respectively. This code uses nine tiles throughout its
execution. Fig. 6(b) shows the state of the decompression buffer
during the execution. We observe that each tile is decompressed
only once, which indicates that our compiler-directed buffer
management approach is very effective in minimizing the num-
ber of decompressions.

B. Experiments

1) Platform: We implemented our compression-based ap-
proach using the Stanford University Intermediate Format
(SUIF) [34] compiler infrastructure. SUIF defines a small ker-
nel and an intermediate representation, around which several in-
dependent optimization passes can be added. We implemented
our approach as a separate pass. We observed during our ex-
periments that the largest increase in original compilation times
was about 65%, over the original case without our optimization.
To gather performance statistics, we used the SimpleScalar [35]
simulation environment and modeled an embedded architecture.

906 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 28, NO. 6, JUNE 2009

To obtain energy numbers, we used energy models similar
to Wattch [36]; the memory energy values (which include
both dynamic and leakage components) are obtained using the
CACTI tool [37]. We assume that a 1-MB SRAM memory is
available, and the on-chip memory space is divided into banks,
each being 64 KB. Furthermore, we assume that memory access
latencies for on- and off-chip memories are 2 and 100 cycles,
respectively. Note that our main goal is to reduce the memory-
space consumption of a given application (both MMO and
AMO). We are not really concerned in this paper with the
question of how to utilize the memory space saved through our
compiler-based approach (the saved memory space can be used
for different purposes). However, to demonstrate the potential
side benefits of our approach, we also present performance and
energy statistics.

As our compression/decompression method, we used the
Lempel–Ziv–Oberhumer (LZO) algorithm [38]. LZO is a data-
compression library which is suitable for data decompression
in real time. It is very fast in compression and extremely fast in
decompression. The algorithm is both thread safe and lossless.
In addition, it supports overlapping compression and in-place
decompression. We want to mention, however, that our com-
piler approach can work with any compression/decompression
algorithm and is not tied to a particular one in any way.

For each benchmark code in our experimental suite, we
performed experiments with five different versions, which can
be summarized as follows.

1) BASE: The base execution does not employ any data
compression or decompression, but only uses iteration
space tiling. The specific loop tiling strategy used is due
to Coleman and McKinley [39]. The memory saving and
performance overhead results presented in the rest of
this section are all normalized with respect to this base
version.

2) LF: This is similar to the BASE scheme in that it does
not employ any data compression or decompression. The
difference between LF and BASE is that the former uses a
lifetime analysis at a data block level and reclaims the
memory space occupied by dead data blocks, i.e., the
block that will not be used during the rest of the execu-
tion. Consequently, as compared to the BASE version, one
can expect this scheme to reduce both MMO and AMO.
This version implements an optimal strategy in recycling
the dead blocks, i.e., the memory space allocated to a
given data block is recycled into free space as soon as
the data block is dead (i.e., completed its last reuse).

3) AGG: This is a compression/decompression-based
scheme that uses data compression very aggressively.
Specifically, as soon as an access to a data block is
completed, it is compressed. While one can expect this
approach to reduce memory-space consumption signifi-
cantly, it can also incur significant performance penalties.

4) CD: This is the compiler-directed scheme proposed in
this paper. As discussed earlier in detail, it uses compres-
sion and decompression based on the data-reuse informa-
tion extracted from the program code by the automatic
compiler analysis.

5) CD+LF: This is a scheme that combines our
compression-based approach with dead block recycling.

TABLE I
OUR BENCHMARKS AND THEIR CHARACTERISTICS

Fig. 7. Memory-space occupancy for benchmark Jacobi’s.

In principle, this version should generate the best
memory occupancy savings.

The set of benchmark codes used in this part of our exper-
iments are given in Table I. The second column of this table
explains the functionality implemented by each benchmark.
The next two columns show MMO and AMO in kilobytes for
real input data. The last column gives the execution cycles
under the base version, i.e., the one without any data compres-
sion/decompression or lifetime analysis. As aforementioned,
our results are presented as normalized values with respect to
those obtained with the BASE version. In our experiments, all
arrays in each application are marked as compressible.

2) Results: Our first set of results are shown in Fig. 7 for
a representative benchmark: Jacobi’s. This graph gives the
memory-space occupancy during execution for the five dif-
ferent versions explained earlier. The execution time of each
benchmark is divided into 20 epochs (each epoch has the same
number of execution cycles). The value corresponding to an
epoch is the maximum value seen in that epoch. One can
make several important observations from this graph. First, as
expected, the memory occupancy trend of the BASE version
continuously increases. In comparison, the LF version has
much better memory occupancy behavior. Note that the sudden
drops in its curve correspond to dead block recycling. The AGG
scheme also shows savings over the BASE version, due to its
aggressive compression. When we look at the behavior of our
approach (CD), we see that, while it is not as good as the
AGG scheme, its results are competitive with those obtained
using the LF scheme. In other words, data compression can
be as effective as dead block recycling. Finally, we see that
the best space savings are achieved with the CD+LF version
since it combines the advantages of both data compression and

OZTURK et al.: USING DATA COMPRESSION FOR INCREASING MEMORY SYSTEM UTILIZATION 907

TABLE II
MMO AND AMO VALUES (IN KILOBYTES) WITH DIFFERENT SCHEMES

Fig. 8. Comparison with the optimal scheme.

dead block recycling. Table II summarizes the MMO and AMO
values (in kilobytes) for all our benchmarks. We see that both
CD and CD+LF schemes are able to reduce both MMO and
AMO significantly.

It is also interesting to see how close our approach can come
to optimal. In order to check this, we implemented an integer-
linear-programming-based tool that can give us the optimal
memory-space savings, given the input tile access pattern. Un-
fortunately, this tool is slow in finding an optimal result; there-
fore, we were able to run it only for four of our benchmarks. The
results (the percentage savings in MMO) are shown in Fig. 8
(the results for the CD and CD+LF are reproduced for ease
of comparison). We see from these results that, for these four
benchmarks, the average MMO savings are 41.9%, 54.7%, and
59.6% for the CD, CD+LF, and optimal schemes, respectively.
In other words, our approach, when combined with a lifetime-
based memory saving strategy, can come close to optimal.

While these results clearly show that our approach is able
to reduce memory-space occupancy significantly, the mem-
ory consumption is only one part of the whole picture. The
other part is the impact on execution cycles and energy con-
sumption. The performance and energy overheads incurred
by our approach depends largely on the underlying execution
model. For our experiments, we assumed that the same thread
executes both application and compressions/decompressions.
Fig. 9 shows the percentage increase in execution cycles for
our approach (CD) with respect to the BASE scheme. As can be
seen from these results, the average degradation in performance
is 8.02%. The largest increases occur with the mpeg-2 and wave
benchmarks since they exhibit the lowest data reuse among
our benchmarks. Since the compiler-based approach exploits

Fig. 9. Increase in execution cycles.

Fig. 10. Savings in energy consumption due to our approach.

data-reuse information in minimizing the performance over-
heads due to decompressions, it is less successful with these
two codes. The performance degradations with the remaining
benchmarks on the other hand are not very large. The energy
results with the CD scheme are shown in Fig. 10. In performing
the experiments from which we collected the energy numbers,
we assumed that each memory bank can be placed into a low
power (low leakage) mode when it is not used in the past
2000 cycles (using a mechanism similar to that discussed in
[40], except that we turn on/off the memory at a bank granular-
ity). While in the low leakage mode, a bank is assumed to con-
sume 5% of its original leakage energy (per cycle). Since data
compression reduces the total memory demand, the optimized
programs operate with fewer banks on average, which, in turn,
reduces the energy consumption. Consequently, as can be seen
from Fig. 10, our approach saves energy over the BASE case in
all benchmarks, and the average energy saving is 16.9%. Note
that, we did not explicitly show the energy savings brought by
the CD+LF scheme as they are very similar to the ones brought
by the CD scheme. This is due to the fact that both CD+LF and
CD exercise the same banks except some slight differences.

Fig. 11 shows, for each benchmark, the breakdown of over-
heads incurred by our approach into three categories:
compression, decompression, and bookkeeping overheads
(which include all table management activities). We see that,
while the contribution of each type of overhead varies with the
benchmark used, all types of overheads contribute to the final

908 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 28, NO. 6, JUNE 2009

Fig. 11. Breakdown of the performance overheads incurred by our ap-
proach into three categories: compression, decompression, and bookkeeping
overheads.

Fig. 12. Memory overheads brought by our approach as a fraction of MMO.

result. It needs to be noted, however, that these overheads are al-
ready captured in the MMO and AMO results presented earlier.

Fig. 12 shows the extra memory overheads brought by our
approach, as a fraction of MMO (when the codes are optimized
using our approach). Note that this value ranges from 3.9% to
6.9%, averaging on 5.3%. Note also that these overheads are
already included in both the MMO and AMO results presented.

V. DATA COMPRESSION IN THE MPSOC CASE

Accessing off-chip memory presents at least three major
problems in an MPSoC architecture. First, off-chip memory
latencies are continuously increasing due to increases in proces-
sor clock frequencies. Consequently, large performance penal-
ties are paid even if a small fraction of memory references go
off-chip. Second, the bandwidth between the MPSoC and the
off-chip memory may not be sufficient to handle simultane-
ous off-chip access requests coming from multiple processors.
Third, frequent off-chip memory accesses can increase overall
power consumption dramatically. In the remaining part of this
paper, we propose and evaluate an on-chip memory man-
agement scheme for MPSoCs based on data compression. A
critical issue in this context is to schedule compressions and
decompressions intelligently so that they do not conflict with
ongoing application execution. In particular, one needs to de-

cide which processors should participate in the compression
and decompression activities at any given point during the
course of execution. While it is conceivable that all processors
can participate in both application execution and compression/
decompression activities, this may not necessarily be the best
option. This is because, in many cases, some processors are
idle (and therefore cannot take part in application execu-
tion anyway) and can be utilized entirely for compression/
decompression and related tasks, thereby allowing other
processors to focus solely on application execution. There-
fore, an execution scheme that carefully divides the available
computing resources between application execution and online
compression/decompression can be very useful in practice.

A. Our Approach

1) Architecture and Code Parallelization: The MPSoC
architecture that we consider in this paper is a shared
multiprocessor-based system, where a certain number of
processors (typically, on the order of 4–32) share the same
memory address space. In particular, we assume that there
exists an on-chip (software-managed [41]–[43]) memory space
shared by all processors. We keep the subsequent discussion
simple by using a shared bus as the interconnect, although
one could use more sophisticated interconnects as well. The
processors also share a large off-chip memory space. It should
be noted that there is a trend toward designing domain-specific
memory architectures [33], [44]–[47]. Such architectures are
expected to be very successful in some application domains,
where the software can analyze the application code, extract the
regularity in data access patterns, and optimize the data trans-
fers between on-chip and off-chip memories. Such software-
managed memory systems can also be more power efficient
than a conventional hardware-managed cache-based memory
hierarchy [42], [43]. In this study, we assume that the software
is in charge of managing the data transfers between the on-chip
memory space and the off-chip memory space, although, as will
be discussed later, our approach can also be used with a cache-
based system.

We employ a loop-nest-based code parallelization strategy
for executing array-based applications in this MPSoC architec-
ture. In this strategy, each loop nest is parallelized for the coars-
est grain of parallelism where the computational load processed
by the processors between global synchronization points is
maximized. We achieve this as follows. First, an optimizing
compiler, again built on top of the SUIF infrastructure [34],
analyzes the application code and identifies data reuses and
data dependences. Then, the loops with data dependences and
reuses are placed into inner positions (in the loop nest being
optimized). This ensures that the loop nest exhibits a decent
data locality, and the loops that remain the outer positions (in
the nest) are mostly dependence free. After this step, for each
loop nest, the outermost loop that does not carry any data de-
pendence is parallelized. Since this type of parallelization tends
to minimize the frequency of interprocessor synchronization
and communication, we believe that it is very suitable for an
MPSoC architecture. We use this parallelization strategy irre-
spective of the number of processors used for parallel execution
and irrespective of the code version used. It should be empha-
sized, however, that, when some of the processors are reserved

OZTURK et al.: USING DATA COMPRESSION FOR INCREASING MEMORY SYSTEM UTILIZATION 909

for compression/decompression, they do not participate in the
parallel execution of loop nests. While we use this specific loop
parallelization strategy in this work, its selection is actually
orthogonal to the focus of this work. In other words, our
approach can work with different loop parallelization strategies.

2) Our Objectives: We can itemize the major objectives of
our compression/decompression-based on-chip memory man-
agement scheme for MPSoCs as follows.

1) We would like to compress as much data as possible. This
is because the more data are compressed, the more space
we have in the on-chip memory, which will be available
for new data blocks.

2) Whenever we access a data block, we prefer to find it in
an uncompressed form. This is because, if it is in a com-
pressed form during the access, we need to decompress
it (and spend extra execution cycles for that) before the
access could take place.

3) We do not want the decompressions to come into the
critical path of execution. That is, we do not want to
employ costly algorithms at runtime to determine which
data blocks to compress or to use complex compression/
decompression algorithms.

It is to be noted that some of these objectives conflict with
each other. For example, if we aggressively compress each
data block as soon as the current access to it terminates, this
can lead to a significant increase in the number of cases where
we access a data block and find it compressed. Therefore, an
acceptable execution model based on data compression and
decompression should exploit the tradeoffs between these
conflicting objectives. Note also that, even if we find the
data block in the on-chip memory in the compressed form,
depending on the processor frequency and the decompression
algorithm employed, this option can still be better than
not finding it in the on-chip storage at all and bringing it
from the off-chip memory. Moreover, our approach tries to
take decompressions out of the critical path (by utilizing idle
processors) as much as possible, and it thus only compresses the
data blocks that will not be needed for some time. Furthermore,
the off-chip memory accesses keep getting more and more
expensive in terms of processor cycles and power consumption.
Therefore, one might expect a compression-based MPSoC
memory management scheme to be even more attractive in the
future.

3) Compression/Decompression Policies and Implementa-
tion Details: We explore two different strategies, explained in
the following, for dividing the available processors between
compression/decompression (and related activities) and appli-
cation execution.

1) Static Strategy:1 In this strategy, a fixed number of
processors are allocated for performing compression/
decompression activity, and this allocation is not changed
during the course of execution. The main advantage of

1Static and Dynamic are used to describe how we select the processors which
will perform the compression and those which will do the actual application
processing. In Static, the number of processors are preset to a certain value
regardless of what happens at runtime. On the other hand, Dynamic decides
this at runtime considering the workload. However, both techniques use a
compiler to decide which blocks to compress/decompress and when this will
be performed.

this strategy is that it is easy to implement. Its main draw-
back is that it does not seem easy to determine the ideal
number of processors to be employed for compression
and decompression. This is because this number depends
on several factors such as the application’s data access
pattern, the number of total processors in the MPSoC,
and the relative costs of compression and decompression
and off-chip memory access. In fact, as will be discussed
later in detail, our experiments clearly indicate that each
application demands a different number of processors
(to be allocated for compression/decompression and re-
lated activities). Furthermore, it is conceivable that, even
within an application, the ideal number of processors to
employ in compression/decompression could vary across
the different execution phases.

2) Dynamic Strategy: The main idea behind this strategy
is to eliminate the optimal processor selection problem
of the static approach aforementioned. By changing the
number of processors allocated for compression and de-
compression dynamically, this strategy attempts to adapt
the MPSoC resources to the dynamic application behav-
ior. Its main drawback is the additional overhead it entails
over the static one. Specifically, in order to decide how to
change the number of processors (allocated for compres-
sion and decompression) at runtime, we need a metric
that allows us to make this decision during execution.
In this section, we make use of a metric, referred to as
the miscompression rate, which gives the rate between
the number of accesses made to the compressed data
and the total number of accesses. We want to reduce the
miscompression rate as much as possible since a high
miscompression rate means that most of the data accesses
find the data in the compressed form, and this can degrade
overall performance by bringing decompressions into the
critical path.

Irrespective of whether we are using the static or dynamic
strategy, we need to keep track of the accesses to different data
blocks to determine their access patterns so that an effective
on-chip memory-space management can be developed. In
our architecture, this is done by the processors reserved for
compression/decompression (see [1] for more details). The
processors reserved for compression and decompression main-
tain reuse information at the data block granularity. For a data
block, we define the interaccess time as the gap (in terms of
intervening block accesses) between two successive accesses
to that block. Our approach predicts the next interaccess time
to be the same as the previous one, and this allows us to rank
the different blocks according to their next estimated accesses.
Then, using this information, we can decide which blocks
to compress, which blocks to leave as they are, and which
blocks to send to the off-chip memory. Consider Fig. 13(a)
which shows the different possible cases for a given data block.
After the current use of the block is over, we estimate its
next access. If it is soon enough (in relative to the other on-
chip blocks)—denoted Next use (1)—we keep the block in the
on-chip memory as it is (i.e., without any compression). On
the other hand, if the next access is not that soon [as in the
case marked Next use (2)], we compress it (but still keep it in
the on-chip memory). Finally, if the next use of the block is

910 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 28, NO. 6, JUNE 2009

Fig. 13. (a) Different scenarios for data when its current use is over. (b) Com-
parison of on-demand decompression and predecompression. Arrows indicate
the execution timeline of the program.

predicted to be really far [see Next use (3) in Fig. 13(a)], it is
beneficial to send it to the off-chip memory (the block can be
compressed before being forwarded to the off-chip memory to
reduce transfer time/energy).

Our implementation of this approach is as follows. When the
current use of a data block is over, we predict its next use and
rank it along with the other on-chip blocks. Then, using two
threshold values (Th1 and Th2) and taking into account the
size (capacity) of the on-chip memory, we decide what to do
with the block. More specifically, if the next use of the block is
(predicted to be) Tn cycles away, we proceed as follows: keep
the block in the on-chip memory uncompressed, if Tn ≤ Th1,
or else, keep the block in the on-chip memory compressed,
if Th1 < Tn ≤ Th2, or else, send the block to the off-chip
memory if Tn > Th2.

It is to be noted that this strategy clearly tries to keep data
with high reuse in on-chip memory as much as possible, even
doing so requires compressing the data. As an example, suppose
that we have just finished the current access to data block DBi,
and the on-chip memory currently holds s data blocks (some
of which may be in a compressed form). We first calculate the
time for the next use of DBi (call this value Tn). As explained
earlier, if Tn ≤ Th1, we want to keep DBi in the on-chip
memory in an uncompressed form. However, if there is no space
for it in the on-chip memory, we select the data block DBj

with the largest next-use distance, compress it, and forward
it to the off-chip memory. We repeat the same procedure if
Th1 < Tn ≤ Th2 except that we leave DBi in the on-chip
memory in a compressed form. Finally, if Tn > Th2,DBi

is compressed and forwarded to the off-chip memory. This
algorithm is executed after the completion of processing any
data block. Furthermore, a similar activity takes place when we
want to bring a new block from the off-chip memory to the on-
chip memory or when we create a new data block.

While this approach takes care of the compression part, we
also need to decide when to decompress a data block. Basically,
there are at least two ways of handling decompressions. First, if
a processor needs to access a data block and finds it in the com-
pressed form, the block should be decompressed first before
the access can take place. This is termed as on-demand decom-
pression in this paper, and an example is shown in Fig. 13(b)
as Decompress (1). In this case, the data block in question is
decompressed just before the access is made. A good memory-
space-management strategy should try to minimize the number
of on-demand decompressions since they incur performance
penalties.

The second strategy is referred to as predecompression in
this paper and is based on the idea of decompressing the data
block before it is really needed. This is akin to software-based
data prefetching [48] employed by some optimizing compil-
ers. In our implementation, predecompression is performed by
the processors allocated for compression/decompression since
they have the next access information for the data blocks. An
example predecompression is marked as Decompress (2) in
Fig. 13(b). We want to maximize the number of predecompres-
sions for the compressed blocks so that we can hide as much
decompression time as possible. Notice that, during predecom-
pression, the processors allocated for application execution are
not affected, i.e., they continue with application execution. Only
the processors reserved for compression and decompression
participate in the predecompression activity.

The compression/decompression implementation explained
previously is valid for both the static and the dynamic schemes.
However, in the dynamic strategy case, an additional effort
is needed for collecting statistics on the rate between the
number of on-demand compressions and the total number of
data block accesses (as mentioned earlier, this is called the
miscompression rate). Our current implementation maintains
a global counter that is updated, within a protected memory
region in the on-chip storage, by all the processors reserved for
compression/decompression. An important issue that is to be
addressed is when do we need to increase/decrease the number
of processors allocated for compression/decompression and
related activities. For this, we adopt two thresholds Mr1 and
Mr2. If the current miscompression rate is between Mr1

and Mr2, we do not change the existing processor allocation.
If it is smaller than Mr1, we decrease the number of proces-
sors allocated for compression/decompression. In contrast, if
it is larger than Mr2, we increase the number of processors
allocated for compression/decompression. The rationale behind
this approach is that, if the miscompression rate becomes
very high, this means that we are not able to decompress
data blocks early enough; therefore, we put more processors
for decompression. On the other hand, if the miscompression
rate becomes very low, we can reduce the resources that we
employ for decompression. To be fair in our evaluation, all
the performance data presented in Section V-B include these
overheads as well.

It is important to measure miscompression rate in a low-
cost yet accurate manner. One possible implementation is to
calculate/check the miscompression rate after every T cycles.
The important issue then is to select the most appropriate
value for T . A small T value may not be able to capture
miscompression rate accurately and incurs significant over-
head at runtime. In contrast, a large T value does not cause
much runtime overhead. However, it may force us to miss
some optimization opportunities by delaying potential useful
compressions and/or decompressions. In our experiments, we
implemented this approach and also measured the sensitivity of
our results to the value of the T parameter. Finally, it should
also be mentioned that keeping the access history of the on-
chip data blocks requires some extra space. Depending on the
value of T , we allocate a certain number of bits per data block
and update them each time a data block is accessed. In our

OZTURK et al.: USING DATA COMPRESSION FOR INCREASING MEMORY SYSTEM UTILIZATION 911

TABLE III
BASE SIMULATION PARAMETERS USED IN OUR EXPERIMENTS

implementation, these bits are stored in a certain portion of
the on-chip memory, reserved just for this purpose. While this
introduces both space and performance overhead, we found
that these overheads are not really excessive. In particular, the
space overhead was always less than 4%. Furthermore, all the
performance numbers given in the next section include the cycle
overheads incurred for updating these bits. Apart from this
bookkeeping required to keep track of reuse blocks and capture
miscompressions, the space management for blocks is similar
to the case with a single core (explained earlier).

B. Experimental Evaluation

1) Setup: We used Simics [49] to simulate an on-chip mul-
tiprocessor environment. Simics is a simulation platform for
hardware development and design space exploration. It sup-
ports modifications to the instruction set architecture, archi-
tectural performance models, and devices. We use a variant of
the LZO compression/decompression algorithm [38] to handle
compressions and decompressions; the decompression rate of
this algorithm is about 20 MB/s. It is to be emphasized that
while, in this particular implementation, we chose LZO as
our algorithm, our approach can work with any algorithm.
In our approach, LZO is executed by the processors reserved
for compression/decompression. To collect energy numbers,
we enhanced the base Simics platform with Wattch-like [36]
energy models. Table III lists the base simulation parameters
used in our experiments.

Since most of the applications used in Section IV-B are
not amenable to parallelism, we could not use them in our
MPSoC experiments. Instead, we tested the effectiveness of
our approach using five randomly selected applications (swim,
apsi, fma3d, mgrid, and applu) from the SpecFP2000 suite [50]
and three applications (ocean, raytrace, and BLU) from the
Splash2 suite [51]. For each application, we fastforwarded the
first 500 million instructions and simulated the next 250 million
instructions. Two important statistics about these applications
are given in Table IV. Since the original applications work with
floating-point data (which is not amenable to compression), we
converted their data to integers. The second column in Table IV
(labeled Cycles-1) gives the execution time, in terms of cycles,
of the original applications. The values in this column were

TABLE IV
BENCHMARK CODES USED AND IMPORTANT STATISTICS. IN OBTAINING

THESE STATISTICS, THE REFERENCE INPUT SETS ARE USED

obtained by using our base configuration (Table III) and using
eight processors to execute each application without any data
compression/decompression. In more details, the results in the
second column of this table are obtained by using a parallel
version of the software-based on-chip memory management
scheme proposed in [43]. This scheme is a highly optimized
dynamic approach that keeps the most reused data blocks in
the on-chip memory as much as possible. In our opinion,
it represents the state-of-the-art in software-managed on-chip
memory optimization if one does not employ data compression/
decompression. The performance (execution cycles) results
reported in the next section are given as fractions of the values
in this second column, i.e., they are normalized with respect
to the second column of Table IV. The third column (named
Cycles-2), on the other hand, gives the execution cycles for
a compression-based strategy where each processor both par-
ticipates in the application execution and performs on-demand
decompression. In addition, when the current use of a data
block ends, it is always compressed and kept on-chip. The
on-chip memory space is managed in a fashion which is very
similar to that of a fully associative cache. When we compare
the results in the last two columns of this table, we see that this
naive compression-based strategy is not any better than the case
where we do not make use of any compression/decompression
at all (the second column of the table). That is, in order to
take advantage of data compression, one needs to employ
smarter strategies. Our approach goes beyond this simplistic
compression-based scheme and involves dividing the processor
resources between those that do computation and those that
perform compression/decompression-related tasks.

912 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 28, NO. 6, JUNE 2009

Fig. 14. (a) Normalized execution cycles (with respect to our base configuration without any data compression/decompression) for the static strategy using
different |C| values. (b) Comparison of the best static strategy (for each benchmark) and the dynamic strategy. Results are normalized with respect to our base
configuration without any data compression/decompression. (c) Breakdown of the overheads into three different components for the static and dynamic schemes.

2) Results With the Base Parameters: Fig. 14(a) shows the
behavior (normalized execution cycles with respect to our base
configuration without any data compression/decompression)
of the static approach with different |C| values (|C| = n
means n out of eight processors are used for compression/
decompression). As can be seen from the x-axis of this graph,
we changed |C| from one to seven. One can observe from
this graph that, in general, the different applications prefer
different |C| values for the best performance characteristics.
For example, while apsi demands three processors dedicated
for compression/decompression for the best results, the cor-
responding number for applu is one. This is because each
application has typically a different degree of parallelism in
its different execution phases. That is, not all the processors
participate in the application execution, e.g., as a result of
data dependences or due to load imbalance concerns, and such
otherwise idle processors can be employed for compression
and decompression. We further observe from this graph that
increasing |C| beyond a certain value causes performance dete-
rioration in all applications. This is due to the fact that employ-
ing more processors for compression and decompression than
necessary prevents the application from exploiting the inherent
parallelism in its loop nests, and that, in turn, hurts the overall
performance. In particular, when we allocate six processors
or more for compression and decompression, the performance
of all eight applications in our suite becomes worse than the
original execution cycles.

It is important to explain at this point why, in some cases,
as can be observed from Fig. 14(a), smaller |C| values gen-
erate better results, as compared to using larger |C| values.
It needs to be emphasized that, in all the experiments of
Fig. 14(a), we used all eight processors in the MPSoC archi-
tecture. However, the |C| value used (which is varied between
one and seven) indicates how many of these processors are
used exclusively for compression/decompression-related activ-
ities. In some cases, asking all (or most of) processors to do
compression/decompression (in addition to executing their part
of the application) can put these compression/decompression
activities in the critical path, and this, in turn, increases the
overall execution latency. Instead, reserving a certain set of
processors for compression/decompression (i.e., not asking
them to participate at the application execution) can take
compression/decompression out of the critical path and im-
prove performance by making sure that the data required by
processors that execute the application code become available

Fig. 15. Processor usage for the dynamic strategy over the execution period.

(i.e., decompressed) in time. It is also important to note that
compressing data practically increases the effective on-chip
memory capacity and allows the application to keep more tiles
in on-chip memory, and this improves performance if we are
able to take decompressions out of the critical path of execution.

The graph in Fig. 14(b) shows a comparison of the static
and dynamic strategies. The results in this graph are normalized
execution cycles with respect to our base configuration without
any data compression/decompression. The first bar for each
benchmark gives the best static version, i.e., the one that is ob-
tained using the ideal |C| value for that benchmark. The second
bar represents the normalized execution cycles for the dynamic
scheme. One can see from these results that the dynamic
strategy outperforms the static one for all the eight applica-
tions tested; the average performance improvement across all
benchmarks is 16.3% and 25.1% for the static and dynamic
strategies, respectively. That is, the dynamic approach brings
additional benefits over the static one. To better explain why
the dynamic approach generates better results than the static
one, we show in Fig. 15 the execution behavior of the dynamic
approach. More specifically, this graph divides the entire exe-
cution time of each application into 20 epochs and, for each
epoch, shows the most frequently used |C| value in that epoch.
One can clearly see from the trends in this graph that the
dynamic approach changes the number of processors dedicated
to compression/decompression over the time, and in this way,
it successfully adapts the available computing resources to the
dynamic execution behavior of the application being executed.

OZTURK et al.: USING DATA COMPRESSION FOR INCREASING MEMORY SYSTEM UTILIZATION 913

Fig. 16. Normalized energy consumption values.

Fig. 16 shows the normalized energy consumption results
under our approach. As in the single-core case, we assumed
that the memory space is divided into equal-sized banks (each is
64 KB) and that each bank can be transitioned to a low leakage
mode if it is idle for a certain period of time. We see that our
approach reduces energy consumption, i.e., it is beneficial from
the energy perspective as well. However, the energy savings are
lower than the performance savings, as the energy overheads
incurred due to compression/decompression cannot be hidden
(unlike the performance overhead which can be hidden most of
the time during parallel execution). Still, we also see that the
average energy saving is 12.7% when all eight benchmarks are
considered.

We, next, present how the overheads incurred by our ap-
proach [effects of which are already shown in Fig. 14(a) and
(b)] are decomposed into different components. In the bar chart
shown in Fig. 14(c), we give the individual contributions of the
three main sources of overheads: compression, decompression,
and reuse updates, threshold checks, and other bookkeeping
activities. We see from these results that, in the static approach
case, compression and decompression activities dominate the
overheads, most of which are actually hidden during paral-
lel execution. In the dynamic approach case, on the other
hand, the overheads are more balanced, since the process of
determining the |C| value to be used currently incurs addi-
tional overheads. Again, as in the static case, an overwhelm-
ing percentage of these overheads are hidden during parallel
execution.

VI. CONCLUSION AND FUTURE WORK

This paper has presented a compiler-directed approach that
inserts compression and decompression calls in the application
code to reduce maximum and average memory-space consump-
tion. In this approach, the compiler analyzes a given application
code and extracts data-reuse information at the data block level.
It then uses this information in deciding the set of data blocks
to be compressed/decompressed as well as the points at which
these actions need to be invoked. This paper also shows how
data compression can be used in MPSoC-based architectures
to reduce the number of off-chip accesses. Specifically, it
explores two different approaches: static and dynamic. To test
the effectiveness of our approach in reducing memory-space
occupancy, we applied it to several array-based benchmarks.
Our experimental results reveal that the proposed approach is
very effective in reducing the memory-space consumption. The
results also show that the proposed approach outperforms other
schemes tested. We believe that these results are encouraging
and motivate further research on compiler-directed data com-
pression. As future work, we also would like to compare our

compiler-directed approach with techniques using a hardware
compressor.

REFERENCES

[1] O. Ozturk, M. Kandemir, and M. J. Irwin, “Using data compression in
an MPSoC architecture for improving performance,” in Proc. 15th ACM
GLSVLSI, 2005, pp. 353–356.

[2] O. Ozturk, G. Chen, and M. Kandemir, “Compiler-guided data compres-
sion for reducing memory consumption of embedded applications,” in
Proc. Conf. Asia South Pacific Des. Autom., Jan. 2006, pp. 814–819.

[3] K. D. Cooper and T. J. Harvey, “Compiler-controlled memory,” in Proc.
8th Int. Conf. ASPLOS, 1998, pp. 2–11.

[4] A. Wolfe and A. Chanin, “Executing compressed programs on an embed-
ded RISC architecture,” in Proc. 25th Annu. Int. Symp. Microarchitecture,
MICRO, 1992, pp. 81–91.

[5] M. Ros and P. Sutton, “Code compression based on operand-factorization
for VLIW processors,” in Proc. Conf. Data Compression, 2004, p. 559.

[6] S. Debray and W. Evans, “Profile-guided code compression,” in Proc.
ACM SIGPLAN Conf. Program. Language Des. Implementation, 2002,
pp. 95–105.

[7] B. Tunstall, “Synthesis of noiseless compression codes,” Ph.D. disserta-
tion, Georgia Inst. Technol., Atlanta, GA, 1967.

[8] Y. Xie, W. Wolf, and H. Lekatsas, “Code compression for VLIW proces-
sors using variable-to-fixed coding,” in Proc. 15th Int. Symp. Syst.
Synthesis, 2002, pp. 138–143.

[9] C. H. Lin, Y. Xie, and W. Wolf, “LZW-based code compression for
VLIW embedded systems,” in Proc. Conf. Des., Autom. Test Eur., 2004,
pp. 76–81.

[10] B. Abali, M. Banikazemi, X. Shen, H. Franke, D. E. Poff, and T. B. Smith,
“Hardware compressed main memory: Operating system support and per-
formance evaluation,” IEEE Trans. Comput., vol. 50, no. 11, pp. 1219–
1233, Nov. 2001.

[11] L. Benini, D. Bruni, A. Macii, and E. Macii, “Hardware-assisted data
compression for energy minimization in systems with embedded proces-
sors,” in Proc. Conf. Des., Autom. Test Eur., 2002, pp. 449–453.

[12] C. D. Benveniste, P. A. Franaszek, and J. T. Robinson, “Cache-memory in-
terfaces in compressed memory systems,” IEEE Trans. Comput., vol. 50,
no. 11, pp. 1106–1116, Nov. 2001.

[13] A. Macii, E. Macii, F. Crudo, and R. Zafalon, “A new algorithm for
energy-driven data compression in VLIW embedded processors,” in
DATE Conf. Expo., 2003, pp. 10 024–10 029.

[14] J. Yang, Y. Zhang, and R. Gupta, “Frequent value compression in data
caches,” in Proc. 33rd Annu. ACM/IEEE Int. Symp. Microarchitecture,
2000, pp. 258–265.

[15] E. Ahn, S.-M. Yoo, and S.-M. S. Kang, “Effective algorithms for
cache-level compression,” in Proc. 11th Great Lakes Symp. VLSI, 2001,
pp. 89–92.

[16] Y. Zhang and R. Gupta, “Enabling partial cache line prefetching through
data compression,” in 32nd ICPP, 2003, pp. 277–285.

[17] J. S. Lee, W. K. Hong, and S. D. Kim, “Design and evaluation of a selec-
tive compressed memory system,” in Proc.IEEEICCD,1999, pp.184–191.

[18] O. Ozturk and M. Kandemir, “ILP-based energy minimization techniques
for banked memories,” ACM Trans. Des. Autom. Electron. Syst., vol. 13,
no. 3, pp. 1–40, Jul. 2008.

[19] O. Ozturk, M. Kandemir, and G. Chen, “Access pattern-based code com-
pression for memory-constrained systems,” ACM Trans. Des. Autom.
Electron. Syst., vol. 13, no. 4, pp. 1–30, Sep. 2008.

[20] D. J. Craft, “A fast hardware data compression algorithm and some algo-
rithmic extensions,” IBM J. Res. Develop., vol. 42, no. 6, pp. 733–745,
Nov. 1998.

[21] P. A. Franaszek, L. A. Lastras-Montano, S. Peng, and J. T. Robinson,
“Data compression with restricted parsings,” in Proc. DCC, 2006,
pp. 203–212.

914 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 28, NO. 6, JUNE 2009

[22] J. L. Nunez, C. Feregrino, S. Bateman, and S. Jones, “The x-matchlite
FPGA-based data compressor,” in Proc. ACM/SIGDA 7th Int. Symp.
FPGA, 1999, p. 255.

[23] MAJC-5200. [Online]. Available: http://www.sun.com/microelectronics/
MAJC/5200wp.html

[24] MP98: A Mobile Processor. [Online]. Available: http://www.am.necel.
com/news/newsdetail.html?page=000207a

[25] K. Olukotun, B. A. Nayfeh, L. Hammond, K. Wilson, and K. Chang,
“The case for a single-chip multiprocessor,” SIGPLAN Not., vol. 31, no. 9,
pp. 2–11, 1996.

[26] F. Gharsalli, S. Meftali, F. Rousseau, and A. A. Jerraya, “Automatic gen-
eration of embedded memory wrapper for multiprocessor SoC,” in Proc.
39th DAC, 2002, pp. 596–601.

[27] S. Meftali, F. Gharsalli, F. Rousseau, and A. A. Jerraya, “An optimal mem-
ory allocation for application-specific multiprocessor system-on-chip,” in
Proc. 14th ISSS, 2001, pp. 19–24.

[28] V. Krishnan and J. Torrellas, “A chip-multiprocessor architecture with
speculative multithreading,” IEEE Trans. Comput., vol. 48, no. 9, pp. 866–
880, Sep. 1999.

[29] M. Collin, R. Haukilahti, M. Nikitovic, and J. Adomat, “Socrates—
A multiprocessor SoC in 40 days,” in Conf. Des., Autom. Test Eur., 2001,
pp. 410–441.

[30] B. A. Nayfeh, L. Hammond, and K. Olukotun, “Evaluation of design
alternatives for a multiprocessor microprocessor,” in Proc. 23rd Annu.
ISCA, 1996, pp. 67–77.

[31] A. R. Alameldeen and D. Wood, “Adaptive cache compression for high-
performance processors,” in ISCA, 2004, pp. 212–223.

[32] A. R. Alameldeen and D. Wood, “Interactions between compression
and prefetching in chip multiprocessors,” in Int. Symp. HPCA, 2007,
pp. 228–239.

[33] F. Catthoor, E. de Greef, and S. Suytack, Custom Memory Management
Methodology: Exploration of Memory Organisation for Embedded Multi-
media System Design. Norwell, MA: Kluwer, 1998.

[34] R. P. Wilson, R. S. French, C. S. Wilson, S. P. Amarasinghe,
J. M. Anderson, S. W. K. Tjiang, S.-W. Liao, C.-W. Tseng, M. W. Hall,
M. S. Lam, and J. L. Hennessy, “SUIF: An infrastructure for research on
parallelizing and optimizing compilers,” SIGPLAN Not., vol. 29, no. 12,
pp. 31–37, 1994.

[35] T. Austin, E. Larson, and D. Ernst, “SimpleScalar: An infrastructure
for computer system modeling,” Computer, vol. 35, no. 2, pp. 59–67,
Feb. 2002.

[36] D. Brooks, V. Tiwari, and M. Martonosi, “Wattch: A framework for
architectural-level power analysis and optimizations,” in Proc. 27th Annu.
Int. Symp. Comput. Archit., 2000, pp. 83–94.

[37] G. Reinman and N. P. Jouppi, “Cacti 2.0: An integrated cache timing and
power model,” Compaq, Palo Alto, CA, Tech. Rep., Feb. 2000.

[38] LZO Algorithm. [Online]. Available: http://gnuwin32.sourceforge.net/
packages/lzo.htm

[39] S. Coleman and K. S. McKinley, “Tile size selection using cache orga-
nization and data layout,” in Proc. ACM SIGPLAN Conf. PLDI, 1995,
pp. 279–290.

[40] S. Kaxiras, Z. Hu, and M. Martonosi, “Cache decay: Exploiting genera-
tional behavior to reduce cache leakage power,” in Proc. 28th Annu. ISCA,
2001, pp. 240–251.

[41] S. Steinke, L. Wehmeyer, B. Lee, and P. Marwedel, “Assigning program
and data objects to scratchpad for energy reduction,” in Proc. Conf. Des.,
Autom. Test Eur., 2002, pp. 409–415.

[42] L. Benini, A. Macii, E. Macii, and M. Poncino, “Increasing energy
efficiency of embedded systems by application-specific memory hierar-
chy generation,” IEEE Des. Test Comput., vol. 17, no. 2, pp. 74–85,
Apr.–Jun. 2000.

[43] M. Kandemir, J. Ramanujam, J. Irwin, N. Vijaykrishnan, I. Kadayif, and
A. Parikh, “Dynamic management of scratch-pad memory space,” in
Proc. 38th Conf. Des. Autom., 2001, pp. 690–695.

[44] P. Faraboschi, G. Brown, J. A. Fisher, G. Desoli, and F. Homewood,
“Lx: A technology platform for customizable VLIW embedded process-
ing,” SIGARCH Comput. Archit. News, vol. 28, no. 2, pp. 203–213,
May 2000.

[45] M-core—MMC2001 Reference Manual, Motorola Corporation, Denver,
CO, 1998. [Online]. Available: http://www.motorola.com/SPS/MCORE/
info_documentation.htm

[46] CPU12 Reference Manual, Motorola Corporation, Denver, CO, 2000.
[Online]. Available: http://www.freescale.com/files/microcontrollers/doc/
ref_manual/CPU12RM.pdf

[47] TMS370CX7X 8-bit Microcontroller, Texas Instruments, Dallas, TX,
Feb. 1997. Revised. [Online]. Available: http://www-s.ti.com/sc/psheets/
spns034c/spns034c.pdf

[48] T. C. Mowry, M. S. Lam, and A. Gupta, “Design and evaluation of a
compiler algorithm for prefetching,” in Proc. 5th Int. Conf. ASPLOS,
1992, pp. 62–73.

[49] P. S. Magnusson, M. Christensson, J. Eskilson, D. Forsgren, G. Hållberg,
J. Högberg, F. Larsson, A. Moestedt, and B. Werner, “Simics: A full sys-
tem simulation platform,” Computer, vol. 35, no. 2, pp. 50–58, Feb. 2002.

[50] J. L. Henning, “SPEC CPU2000: Measuring CPU performance in the new
millennium,” Computer, vol. 33, no. 7, pp. 28–35, Jul. 2000.

[51] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta, “The
SPLASH-2 programs: Characterization and methodological considera-
tions,” in Proc. 22nd Annu. ISCA, 1995, pp. 24–36.

[52] M. Kandemir, A. Choudhary, J. Ramanujam, and P. Banerjee, “Improving
locality using loop and data transformations in an integrated framework,”
in Proc. 31st Annu. ACM/IEEE Int. Symp. Microarchitecture, MICRO,
1998, pp. 285–297.

Ozcan Ozturk (S’00–M’04) received the B.Sc. de-
gree from Bogazici University, Istanbul, Turkey,
the M.S. degree from the University of Florida,
Gainesville, and the Ph.D. degree from The
Pennsylvania State University, University Park, all in
computer engineering.

He is an Assistant Professor with the Depart-
ment of Computer Engineering, Bilkent University,
Ankara, Turkey. Prior to joining Bilkent, he was a
Software Optimization Engineer with the Cellular
and Handheld Group, Intel (Marvell). His research

interests are in the areas of chip multiprocessing, computer architecture, many-
core architectures, and parallel processing.

Dr. Ozturk is a recipient of the Marie Curie Fellowship from the European
Commission.

Mahmut Kandemir (S’98–A’99–M’03) is an As-
sociate Professor with the Computer Science and
Engineering Department, The Pennsylvania State
University, University Park, where he is a member of
the Microsystems Design Laboratory. His research
interests are in optimizing compilers, runtime sys-
tems, embedded systems, I/O and high-performance
storage, and power-aware computing. He is the au-
thor of more than 300 papers in these areas.

Mr. Kandemir is a recipient of the National Sci-
ence Foundation (NSF) Career Award and the Penn

State Engineering Society Outstanding Research Award. He is a member of
the Association for Computing Machinery. His research is funded by the NSF,
the Defense Advanced Research Projects Agency, and Semiconductor Research
Corporation.

Mary Jane Irwin (F’95) received the M.S. and
Ph.D. degrees in computer science from the Uni-
versity of Illinois, Urbana–Champaign, in 1975 and
1977, respectively.

She is an Evan Pugh Professor and the
A. Robert Noll Chair of Engineering with the
Computer Science and Engineering Department,
The Pennsylvania State University, University Park.
She was the Editor-in-Chief of the Association for
Computing Machinery (ACM)’s Transactions on
Design Automation of Electronic Systems from 1998

to 2004 and the Coeditor-in-Chief of ACM’s Journal of Emerging Technologies
in Computing Systems from 2005 to 2006. Her research and teaching interests
include computer architecture (power constrained and application specific) and
computer arithmetic, reliable systems design, and very large scale integration
systems design and design automation.

Dr. Irwin was the recipient of an Honorary Doctorate from Chalmers Uni-
versity, Göteborg, Sweden, in 1997, was named a Fellow of ACM in 1996, and
was elected to the National Academy of Engineering in 2003. She is currently
serving as a member of the National Research Council’s Board of Army Science
and Technology and the Computing Research Association (CRA) Committee
on the Status of Women in Computing Research Steering Committee. In the
past, she has served as an elected member of the IEEE Computer Society’s
Board of Governors and of ACM’s Council, as Vice President of ACM, and on
CRA’s Board of Directors.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues false
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

