
ARTICLE IN PRESS

Engineering Applications of Artificial Intelligence 23 (2010) 331–345

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Bilkent University Institutional Repository
Contents lists available at ScienceDirect
Engineering Applications of Artificial Intelligence
0952-19

doi:10.1

$This

Framew

FP6-507

(TUBITA
� Corr

E-m

tr (U. G
journal homepage: www.elsevier.com/locate/engappai
Scenario-based query processing for video-surveillance archives$
Ediz S-aykol, Uğur Güdükbay�, Özgür Ulusoy

Department of Computer Engineering Bilkent University, 06800 Bilkent, Ankara, Turkey
a r t i c l e i n f o

Article history:

Received 9 February 2009

Received in revised form

16 June 2009

Accepted 4 August 2009
Available online 19 September 2009

Keywords:

Video surveillance

Scenario-based querying and retrieval

Visual query specification

Event-based querying

After-the-fact analysis
76/$ - see front matter & 2009 Elsevier Ltd. A

016/j.engappai.2009.08.002

work was supported in part by the Eu

ork Program’s MUSCLE Network of Excellence

752, and by the Scientific and Technical

K), with Grant number EEEAG-105E065.

esponding author. Tel.: +90 312 290 13 86; fa

ail addresses: ediz@cs.bilkent.edu.tr (E. S-ayko

üdükbay), oulusoy@cs.bilkent.edu.tr (Ö. Uluso
a b s t r a c t

Automated video surveillance has emerged as a trendy application domain in recent years, and

accessing the semantic content of surveillance video has become a challenging research area. The

results of a considerable amount of research dealing with automated access to video surveillance have

appeared in the literature; however, significant semantic gaps in event models and content-based

access to surveillance video remain. In this paper, we propose a scenario-based query-processing system

for video surveillance archives. In our system, a scenario is specified as a sequence of event predicates

that can be enriched with object-based low-level features and directional predicates. We introduce an

inverted tracking scheme, which effectively tracks the moving objects and enables view-based

addressing of the scene. Our query-processing system also supports inverse querying and view-based

querying, for after-the-fact activity analysis. We propose a specific surveillance query language to

express the supported query types in a scenario-based manner. We also present a visual query-

specification interface devised to facilitate the query-specification process. We have conducted

performance experiments to show that our query-processing technique has a high expressive power

and satisfactory retrieval accuracy in video surveillance.

& 2009 Elsevier Ltd. All rights reserved.
1. Introduction

In a traditional surveillance system, a human operator
monitors multiple environments simultaneously to detect, and
possibly prevent, a dangerous situation. Human perception and
reasoning, however, are limited in their ability to process the
amount of spatial data perceived by the senses. These limits may
vary, depending on the complexity of the events and their time
instances. In recent years, the acceleration in capabilities of
communication equipment and in automatic video-processing
techniques, combined with the decreasing cost of technical
devices, has resulted in increased interest in video surveillance
applications. In turn, these applications have augmented the
capabilities of the human operators.

An automated video surveillance system should support both
real-time alarm generation and offline inspection components to
satisfy the requirements of the operators (Regazzoni et al., 2001).
In either side, the input video stream should be processed
appropriately so that the actions are correctly analyzed. The
ll rights reserved.

ropean Commission’s Sixth

Project, with Grant number

Research Council of Turkey

x: +90 312 266 40 47.

l), gudukbay@cs.bilkent.edu.

y).
primary challenges are the large input size and the high variability
of the audio-visual features, hence it still remains a challenging
issue to access the semantic content of the videos automatically.

Video surveillance process generally consists of the following
stages: modeling the environment, detecting moving objects
(also called regions), classifying objects, tracking objects, and
understanding behavior (Hu et al., 2004). Background/foreground
subtraction (Collins et al., 2000; Kim et al., 2005; Gutchess et al.,
2001; Li et al., 2003; Paschos and Valavanis, 1999; Duque et al.,
2006) or temporal template-based methods (Haritao

˘
glu

et al., 2000; Bobick and Davis, 2001) are widely used to detect
moving objects. One of the basic aims in understanding the
objects’ behavior is detecting the anomalies in the objects’ actions
(Duque et al., 2006; Xiang and Gong, 2006, 2008; Zhong et al.,
2004; Hamid et al., 2005; Duong et al., 2005). Abnormal situations
and anomalies are reported to the operator and/or stored in a
database for later inspection (Durak et al., 2007; S-aykol et al.,
2005a). One of the basic tasks in offline inspection is the content-
based retrieval of surveillance videos from the database. In the
literature, the researchers generally assume simple data struc-
tures for the semantic content: events and objects. The event
descriptors contain time information and the objects acting in the
event. Object indexing is not as frequent as event indexing and
lacks low-level (or object-based) features.

There are specific situations that can be considered as a
sequence of events, and the existence of the whole sequence is of
interest. We propose scenario-based query processing to detect

https://core.ac.uk/display/52922644?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
www.elsevier.com/locate/engappai
dx.doi.org/10.1016/j.engappai.2009.08.002
mailto:ediz@cs.bilkent.edu.tr
mailto:ediz@cs.bilkent.edu.tr
mailto:gudukbay@cs.bilkent.edu.tr
mailto:gudukbay@cs.bilkent.edu.tr
mailto:gudukbay@cs.bilkent.edu.tr
mailto:gudukbay@cs.bilkent.edu.tr
mailto:oulusoy@cs.bilkent.edu.tr

ARTICLE IN PRESS

E. S-aykol et al. / Engineering Applications of Artificial Intelligence 23 (2010) 331–345332
such sequences in video-surveillance archives, and hence to
reduce the gap between low-level features and high-level
semantic content. Our system provides support for querying by
event-based and object-based features. The supported query
types can be ordered to form a scenario-based query, where the
temporal information among the (sub)queries is also included in
the query expression.

In our earlier work (S-aykol et al., 2005a), we provided the
preliminaries of a system architecture along with a brief introduc-
tion on the meta-data extraction process. The architecture of our
system is shown in Fig. 1. The focus and contributions of this paper
are on the query-processing component, which provides support
for scenario-based, event-based, and object-based queries, where
the low-level object features and directional predicates can be used
to improve expressiveness and effectiveness. Our query model also
supports inverse querying as well as some statistical view-based
query types that can be used as tools for activity analysis in various
domains, e.g., video forensics. Our Video Surveillance Query
Language (VSQL) has been designed specifically for scenario-
based querying purposes. A query-specification interface has also
been developed, which can be considered as the visual counterpart
of VSQL. The query-specification interface is as generic and flexible
as our query model.

The main contributions of our work can be listed as follows:
�

Fig
pr

co

ex

ale

an
The query-processing system we propose provides support for a
wide range of query types valuable for video surveillance. The
supported query types include event and object queries enriched
with the low-level feature descriptors (e.g., color, shape) and
directional predicates. The system allows scenario-based query-

ing, where a scenario is a sequence of events ordered temporally.
This type of querying increases the retrieval quality of offline
inspection, and to the best of our knowledge, no video
surveillance system has been introduced in the literature that
supports scenario-based querying enhanced with object-based
Motion
Analysis and

Event
Annotation

Real-Time
Alerting

Visual Query
Specification
and Retrieval

Interface

Operator-SideSystem-Side

Meta-Data Storage

Query Processing

Content-
based

Querying
and

Retrieval

Video Archive

. 1. The architecture of our system. The queries are handled by the query-

ocessing module, which communicates with both the meta-data store and the

ntent-based retrieval module. The meta-data contains event and object features

tracted by automated tools. These automated tools also trigger the real-time

rting module. The visual query interface is used to submit queries to the system

d to visualize the results.
low-level features and directional predicates. Our observations
have shown that scenario-based querying provides an effective
medium for after-the-fact activity analysis, since the abnormal-
ities can be expressed in an effective form while preserving the
temporal relations among events with a wide set of low-level
subqueries.

�
 In our data model, we introduce a new data representation

scheme for region tracking, which we call inverted tracking. The
main benefit of this scheme is that it addresses the scene in a
view-based manner with respect to the human operators’
points of view. Since the operators inspect the scene to
determine abnormalities performed by the moving objects,
fixed view-based addressing is employed as a part of our data
model to enhance its expressive power. For example, the most
popular paths of the moving objects and the number of objects
entering the scene from the left/right side can be queried.

�
 We present a rule-based query-processing module devised to

provide efficient processing for scenario-based querying. We
use Prolog as our inference engine. The meta-data that we
extract are generic in the sense that the predicates are valid and
valuable in almost every type of video-surveillance application.
Our rule-based query-processing module provides a flexible
mechanism for external predicate definition (i.e., simply by rule
injection) so that the system can be tailored to various domains.

�
 We provide a textual query language (VSQL) and its visual

counterpart to provide complete querying and retrieval cap-
ability. These components are designed in a generic and flexible
manner so that they can be used in a variety of video-
surveillance domains.

The rest of the paper is devoted to the detailed description of the
approaches we propose for data modeling and querying in video
surveillance. Section 2 provides a discussion of the related work.
Section 3 presents the data model proposed to achieve querying
and retrieval of video surveillance archives. The query-processing
capabilities of our work are described in Section 4. Section 5
discusses the visual query-specification interface designed to
express scenario-based queries. The results of the performance
experiments are presented in Section 6. Section 7 provides a
discussion of the unique features of our approach as compared to
the state of the art. Section 8 concludes the paper and provides
future research directions.
2. Related work

Although there are a significant number of approaches to
dynamic scene segmentation (Collins et al., 2000; Kim et al.,
2005; Gutchess et al., 2001; Li et al., 2003; Paschos and Valavanis,
1999; Haritaŏglu et al., 2000; Bobick and Davis, 2001; Thirde et
al., 2006) and abnormal action detection (Duque et al., 2006;
Xiang and Gong, 2006, 2008; Zhong et al., 2004; Hamid et al.,
2005; Duong et al., 2005), the offline query-processing capabil-
ities are rather limited in most of the existing video-surveillance
systems. Retrieving video sequences related to a previously
generated alarm is the basic way of querying the semantic
content of surveillance videos (e.g., Lyons et al., 2000; Shet et al.,
2005). In the following we provide a brief description of the
existing video-surveillance systems.

Collins et al.’s (2000) video surveillance and monitoring
(VSAM) system is one of the complete prototypes for object
detection, tracking, and classification as well as for calibrating
a network of sensors for a surveillance environment. The
hybrid algorithm developed in that work is based on adaptive
background subtraction by three-frame differencing. The back-
ground maintenance scheme is based on a classification of pixels

ARTICLE IN PRESS

Raw Video
Data

Moving
Regions

Classified
Objects

Annotated
Actions

Conceptual
Predicates

Fig. 2. The semantic flow in information extraction.

E. S-aykol et al. / Engineering Applications of Artificial Intelligence 23 (2010) 331–345 333
(either moving or non-moving) performed by a simple threshold
test. A model is provided on temporal layers for pixels and pixel
regions in order to better detect stop-and-go movements.

Stringa and Regazzoni (2000, 1998) and Regazzoni et al.
(1998) propose a real-time surveillance system employing
semantic video-shot detection and indexing. In their system,
lost objects are detected with the help of temporal rank-order
filtering. The interesting video shots are detected by a hybrid
approach using low-level (color) and semantic features. Re-
trieving all the clips related to an alarm is the basic way of
querying the system.

Kim and Huang (2002a, b) present an object-based video
abstraction model, where a moving-edge detection scheme is
used for video frames. The edge map of a frame is extracted and
compared with the background edge map to detect the moving
edges and regions. A semantic shot-detection scheme is
employed to select object-based key-frames. When a change
occurs in the number of moving regions, the current frame is
declared as a key-frame, indicating that an important event has
occurred. If the number of moving objects remains the same in
the next frame, a shape-based change detector is applied to the
following frames.

Rivlin et al. (2002) propose a real-time system for moving
object detection, tracking, and classification where the video
stream originates from a static camera. Effective background
initialization and background adaptation techniques are em-
ployed for better change detection. The target detection phase
also benefits from a color table representing object data. The
detected moving objects are classified as human, animal, and
vehicle with the help of an expressive set of feature vectors. The
authors initiate their feature-vector selection process with a
wide set of object-appearance and temporal features. A reduced
set, which leads to the best classification accuracy in their
experiments, is used for classification. The authors also present
a classification approach that combines appearance and mo-
tion-based features to increase the accuracy (Bogomolov et al.,
2003).

IBM’s MILS (MIddleware for Large Scale Surveillance) (Ham-
papur et al., 2005) system provides a complete solution for video
surveillance, including data-management services that can be
used for building large-scale systems. MILS also provides query
services for surveillance data, including time, object size, object

class, object motion, context-based object content similarity queries,
and any combination of these. The system employs relevance
feedback and data-mining facilities to increase its effectiveness.

Lyons et al. (2000) developed a system called video content
analyzer (VCA), the main components of which are background
subtraction, object tracking, event reasoning, graphical user
interface, indexing, and retrieving. They adapt a non-parametric
background-subtraction approach based on Elgammal et al.
(1999). VCA differentiates between people and objects and the
main events it recognizes are entering scene, leaving scene, splitting,
merging, and depositing/picking-up. Users are able to retrieve video
sequences based on event queries whose categories are similar to
those we use.

Brodsky et al. (2001) designed a system for indoor visual
surveillance, specifically for use in retail stores and homes. They
assume a stationary camera and use background subtraction. A
list of events that the object participates in is stored for each
object, simply, entering, leaving, merging, and splitting.

Shet et al. (2005) presented a visual surveillance system,
VidMAP, that combines real-time video-processing algorithms
with logic programming to represent and recognize activities.
They used Prolog for the high-level rules that correspond to their
supported query set. Entry violation, theft, and possess are
examples of rules they use to answer specific queries.
3. Data model

Our multi-layered data model contains region-level information
at the lowest level; e.g., pixel-data for moving regions and motion
orientation. At the next level, object-level information is extracted;
e.g., class type (e.g., human, non-human, object group) and color and
shape feature vectors. At the third level, primitive object actions are
annotated; e.g., stop, move, and enter. At the highest level,
conceptual event predicates are detected to identify activities, e.g.,
crossover, deposit, approach. This information-extraction scheme,
shown in Fig. 2, is explained in the following subsections. Annotated

actions and conceptual predicates are the primary aspects of our
meta-data and used directly in the query model.

3.1. Extraction of moving regions

We employ an adaptive background maintenance scheme to
extract the moving regions (or moving objects) in a video frame,
similar to the one proposed in Collins et al. (2000). This technique
is combined with three-frame differencing to detect the moving
pixels. These pixels are then passed through region grouping
methods and morphological operations to identify the moving
regions. This technique can be formulated as follows:

Let If ðx; yÞ denote the intensity value of a pixel at ðx; yÞ in video
frame f . Hence, Mf ðx; yÞ ¼ 1 if ðx; yÞ is moving in frame f , where Mf

is a vector holding moving pixels. A threshold vector Tf ðx; yÞ for a
frame f is needed for detecting pixel motions. The basic test
condition to detect moving pixels with respect to Tf ðx; yÞ can be
formulated as

Mf ðx; yÞ ¼
1 if ðjIf ðx; yÞ � If�1ðx; yÞj4Tf ðx; yÞÞ and ðjIf ðx; yÞ � If�2ðx; yÞj4Tf ðx; yÞÞ;

0 otherwise:

(

ð1Þ

The (moving) pixel intensities that are greater than the back-
ground intensities ðBf ðx; yÞÞ are used to fill in the region of a
moving object. This step requires a background maintenance task
based on the previous intensity values of the pixels. Similarly, the
threshold is updated based on the observed moving-pixel
information in the current frame. A statistical background and
threshold maintenance scheme is employed, as presented in the
following equations:

B0ðx; yÞ ¼ 0; ð2Þ

Bf ðx; yÞ ¼
aBf�1ðx; yÞþð1� aÞIf�1ðx; yÞ; Mf ðx; yÞ ¼ 0;

Bf�1ðx; yÞ; Mf ðx; yÞ ¼ 1;

(
ð3Þ

T0ðx; yÞ ¼ 1; ð4Þ

Tf ðx; yÞ ¼
aTf�1ðx; yÞþð1� aÞðk� jIf�1ðx; yÞ � Bf�1ðx; yÞjÞ; Mf ðx; yÞ ¼ 0;

Tf�1ðx; yÞ; Mf ðx; yÞ ¼ 1;

(
ð5Þ

where a is the learning constant, and the constant k is set to 5 in
Eq. (5). Bf ðx; yÞ is analogous to the local temporal average of pixel
intensities, and Tf ðx; yÞ is analogous to k times the local temporal
standard deviation of pixel intensities computed with an infinite
impulse (IIR) filter (Collins et al., 2000).

3.2. Tracking moving regions

We employ a view-based motion tracking approach similar to
the motion history image (MHI) technique proposed in Bobick and

ARTICLE IN PRESS

E. S-aykol et al. / Engineering Applications of Artificial Intelligence 23 (2010) 331–345334
Davis (2001). MHI detects and tracks the parameters (structure
and orientation) of the moving regions. In an MHI, the pixel
intensity is encoded as a function of the temporal history of the
motion at that pixel, where the pixels that moved more recently
are brighter. This technique enables us to track the trajectories of
regions. Here, the MHI ðMHIf ðx; yÞÞ of a frame f is constructed by
the update rule in Eq. (6):

MHIf ðx; yÞ ¼
t; Mf ðx; yÞ ¼ 1;

maxð0;MHIf�1ðx; yÞ � 1Þ; Mf ðx; yÞ ¼ 0;

(
ð6Þ

where t denotes the temporal extent of a motion. Dynamic
schemes are available for selecting a better value for t (e.g.,
backward-looking algorithm in Bobick and Davis, 2001).

We also provide a scheme to store the object appearance
history on a video frame, which we call inverted tracking. The
name inverted is generally used to imply that a mapping from the
content is stored along with the actual content. Here, the actual
content is the extracted moving regions, and a view-based
mapping is hold along with the content. Fig. 3 illustrates the
inverted-tracking technique that we employ on a sample video
frame. The video frame Iðx; yÞ is divided into 16 cells
corresponding to four subdivisions in x and y directions. The
number 16 is selected not only to decrease the computational and
storage costs of the system, but also to provide effective positional
object-history tracking. We validated the selection of 16 cells by
also experimenting with values 4 and 64. If we use four
subdivisions, the effectiveness of the tracking is lower. When we
use 64 subdivisions, the effectiveness of the tracking is higher but
the computational complexity and storage costs are higher. The
inverted-tracking technique improves region-tracking capability
because object locations are tracked with respect to a fixed view-
based reference—the cell in which the object appeared. Since
more than one object might appear in a cell, the technique holds
object lists for each cell.

While computing a region’s appearance in a cell, we consider
its center of mass (cm). The cm ¼ ðxcm ; ycm Þ is computed as

xcm ¼

Pn
i xi

n
; ycm ¼

Pn
i yi

n
; ð7Þ

where n is the total number of pixels in a region.
A

B

C

Fig. 3. The inverted tracking scheme illustrated on a sample video frame (Ninth

IEEE International Workshop on Performance Evaluation of Tracking and

Surveillance (PETS), 2006). The boxes A, B, and C hold for the structures keeping

track of object appearance lists along with a time stamp to keep track of the

duration of an object within a cell.
Definition 1 (Region appearance within a cell). The region r has
appeared in a cell i if cm of r is inside the boundaries of i

inclusively. To break ties, the boundaries are assumed to belong to
the cell on the left and down.

If an object is moving in a cell i, it is kept in the object-
appearance list of the cell i until it leaves the boundaries of the cell.
If the object stops, it is not dropped from the list until a pre-
specified time duration passes. A specific type of motion where an
object enters the scene, stops for a certain time, and then leaves the
scene is called loitering (Tenth IEEE International Workshop on
Performance Evaluation of Tracking and Surveillance (PETS), 2007);
this activity is considered as a potential abnormal situation. Hence,
our inverted tracking scheme does not drop objects until the pre-
specified amount of time (generally taken as 60 s) passes in order to
detect loitering, simply by tracing the object appearance lists.
However, if the object stops and then starts moving before loitering
happened, we can detect that the previously stopped region is
moving again by tracing back the object list belonging to that cell.
Based on the assumption that the objects will be seen after
occlusion before loitering, this delayed dropping of objects from
appearance lists also helps to handle the occlusion problem of
tracking, and to cope with object tracking errors.

The object-appearance lists are updated under two conditions:
the first one is when a new region r is detected. Based on the value
of the cm of r, the cell i that r has appeared in is found and r is
appended to that cell’s list with a time stamp. The second update
condition is when a region r has passed through the boundary
between two cells. In this case, r is moved from the list of the cell in
which it previously appeared to the list of the newly entered cell.

This scheme helps to address the scene in a view-based
manner. Since operators look at a fixed scene and inspect moving
objects while trying to figure out the abnormal situations, a fixed
view-based addressing provides a medium for view-based query-
ing of the scene content. Examples of the types of queries
supported include: the most popular path of the moving objects,
the number of objects entering the scene from the left/right side,
and the cell in which a specific event happened most frequently.

3.3. Classification of objects

To keep our system generic, we categorize the (moving)
regions into three classes: human, non-human, and object-group.
The low-level color and shape features and the aspect-ratio of the
regions’ MBRs are used for classification. The low-level features
are stored in normalized color and shape feature vectors, as
described in S-aykol et al. (2005b). The color vector stores the
distance-weighted intensity values in order to take the color
distribution around a pixel into account. This type of color-feature
encoding is different from traditional color vectors, and aids the
object-classification process. The shape vector is a composition of
a region’s angular and distance spans, which are computed based
on the region’s center of mass (cm) (S-aykol et al., 2004). These
encoding schemes are invariant under scale, rotation, and
translation, and effective for object classification.

The color and shape features, as being the most frequent
descriptors, are used in most of the existing systems in a
combined way. The main reason for this combined usage is to
improve the retrieval effectiveness. In our k nearest neighbors
based classification scheme, the color and shape information can
be linearly combined with proper weights, and we use the
temporal averages of these vectors computed during tracking. A
global distance value can be obtained by linear combination of
three partial distances with appropriate weights during the
classification process (Jain and Vailaya, 1996). A possible set of
weights can be determined by performing similarity calculations

ARTICLE IN PRESS

E. S-aykol et al. / Engineering Applications of Artificial Intelligence 23 (2010) 331–345 335
for each of the two feature vectors separately. The average-case
retrieval accuracies as a result of these two similarity calculations
are normalized and used as feature weights in the linear
combination. This pre-computed weight assignment provides
more effective results since this approach reflects the character-
istics of the datasets.

For the similarity calculations between test objects and trained
objects, we used the histogram intersection technique (Swain and
Ballard, 1991). In this technique, two normalized histograms (i.e.,
combined feature vectors) are intersected as a whole to determine
a distance value. Both of the histograms must be of the same size,
and the distance between the histograms is a floating point
number between 0 and 1. Equivalence is designated with
similarity value 1, and the similarity between the two histograms
decreases in parallel with the similarity value approaches to 0.

Let H1½1 . . .n� and H2½1 . . .n� denote two normalized histograms
of size n, and SH1 ;H2

denote the similarity value between H1 and H2.
Then, SH1 ;H2

can be expressed as

SH1 ;H2
¼

Pn
i minðH1½i�;H2½i�Þ

minðjH1j; jH2jÞ
; ð8Þ

where jHj denotes the L1-norm (i.e., length) of an histogram H.
We used the PETS 2006 and PETS 2007 benchmark datasets for

the training phases. A fivefold cross-validation method is
employed and k is chosen as 10. The preprocessing steps include
the extraction of the moving regions and their corresponding
color and shape vectors. The weights of the color feature vectors
are found to be lower than the weights of the other two feature
vectors (i.e., distance span and angular span) as expected, since
the color values of the objects are less discriminative in video
surveillance domain. The classification algorithm outputs the
percentages for the class values (e.g., 47% human, 34% non-
human, 19% object-group), and the moving region is classified by
the highest percentage value. To improve our classification
scheme, we are planning to embed more effective clustering
techniques to further split the object groups.
3.4. Annotation of events

Having classified the moving objects in a video sequence, we
annotated the actions of objects automatically. Counting the
number of moving objects gives an important clue about the
annotation of an event, since the number of moving objects
changes at the time of an event. Hence, we utilized a keyframe-
based annotation process, where a keyframe is identified when
the total number of moving objects changes or the cell-id of an
object changes. This keyframe-based processing provides an
easier way for detecting conceptual abnormalities. This type of
annotation and meta-data usage reduces the search space and
enables efficient querying when the video archives are large
(Dönderler et al., 2004).
3.4.1. Single object annotation

Our system detects the following basic single-object actions:
enter, leave, stop, stop-and-go, and eight directional forms of move

coupled with the directional predicates (see odirection4 in
Appendix A). The orientation of a moving region, as suggested by
our tracking algorithm, is used to directly annotate move actions.
When an object stops and moves again later, we annotate the
action as a stop-and-go type after detecting the object’s next move
within a certain time interval. If this type of action takes more
time than allowed, then we annotate the action as loitering. The
other types of single-object actions are rather easier to detect
using the inverted tracking algorithm.
3.4.2. Multi-object annotation

Multi-object actions are also annotated in our framework.
These actions are approach, depart, deposit, pick-up, crossover, and
move-together. The first two can be identified by tracking the
Euclidean distance between two objects with respect to the center
of mass of the objects in consecutive frames. If the distance
between two objects in a previous frame is greater/smaller than
the distance in the current frame, these two objects are
approaching/departing to/from each other. The remaining four
types of multi-object actions are the primary sources for
anomalous situations. They are relatively harder to detect and
require complex mechanisms. The directional relations between
the moving objects are also handled by the help of the tracking
scheme. Fig. 4 illustrates the methods that we used to detect these
events.

If more than two objects are detected in a frame, the multi-
object actions (predicates) are extracted for all of the object pairs.
Single-object predicates are also extracted throughout the
appearance of the objects in the scene. The following sequence
of operations illustrates the event-based meta-data extraction for
two moving objects:
�
 Two objects O1 and O2 are identified. The annotation scheme
throws enterðO1Þ and enterðO2Þ.

�
 On the next frame, move predicates are thrown with the valid

directions for O1 and O2.

�
 Based on the Euclidean distance between O1 and O2, approach

or depart predicate is thrown.

�
 If O1 is human and O2 is non-human, there is potential for a

deposit or pick-up event (see Fig. 4(a) and (b)).

�
 If both O1 and O2 are human, the event could be crossover and/

or move-together, depending on the humans’ orientations (see
Fig. 4(c) and (d)).

�
 If both O1 and O2 are non-human, the event could be move-

together, assuming that the two objects are thrown by a human
outside the camera’s field of view.

�
 If O2 stops and O1 continues its motion at a later frame, deposit

event is detected. Throughout this detection, corresponding
move and depart predicates for both objects are thrown by the
algorithm as the position, velocity, and orientation of the
moving objects are tracked.

�
 To improve the accuracy of retrieval, the directional relations

for multi-object actions are also identified (e.g.,
depositðO1;O2; southÞ is extracted).

3.5. Meta-data extraction

The meta-data is generic in the sense that the extracted
predicates appear in almost any type of video-surveillance
application. The set of rules used in querying can be tailored to
specific applications by defining domain-specific predicates in
terms of these basic ones. The extracted meta-data includes both
object-based facts (i.e., class value, color, shape) and event-based
facts (event-label, acting objects, frame number), which are
stored at keyframes in a video. The cell-id suggested by the
inverted-tracking scheme is also stored with the object-based and
event-based meta-data facts to provide view-based querying
support. We inserted a video-id descriptor to each of the facts to
discriminate the meta-data with respect to different video files in
an archive.

The extracted meta-data can be partitioned into two parts:
object-based and event-based. The object-based facts contain the
class value of the object as well as high-level color and shape
descriptors (see oclassdesc4 , ocolordesc4 , and
oshapedesc4 in Appendix A). The class value is determined

ARTICLE IN PRESS

H

NH

H

NH

H

…

t1 t2 t3

H H

NH…

t1 t2 t3

H

NH

H2 H2H2
H1 H1H1

t1 t2 t3

H2 H2H2
H1 H1H1

t1 t2 t3

Fig. 4. Annotation of events. (a) Two objects are detected at t1, and they are classified as one human (H) and one non-human (NH). Then, they are detected as two single

objects at t2, and when NH stops at t3, deposit is identified. (b) Similar to (a), but pick up is identified. (c) H1 and H2 are classified as human at t1, and an object group is

detected at t2. By tracking the orientations of the objects within t1–t3 time interval, crossover is identified. (d) Similar to (c), except that move together is identified because

H1 and H2 move in the same direction.

E. S-aykol et al. / Engineering Applications of Artificial Intelligence 23 (2010) 331–345336
by the classification algorithm. High-level feature descriptors are
determined by performing similarity calculations between the
object feature vectors and the pre-defined vectors. For the color
descriptor, the primary colors are encoded in a color vector that
we use in object classification. The primary color vectors and the
object color vectors are intersected (using the histogram inter-
section technique), and the most similar primary color label is
chosen as the high-level color descriptor for the object. Similar
computations are performed for the high-level shape descriptors.
Since our feature vectors are scale and rotation invariant, sample
figures for box, cone, cylinder, and sphere are used to encode shape
vectors. The most similar pre-defined shape label is chosen as the
high-level shape descriptor for the object. Since the color and
shape feature vectors of the objects may change in time
(especially color), this object information is stored along with
the keyframe number and cell-id. The object information fact is
specified as follows:
object-info(video-id, object-id,

object-class-desc, object-color-desc,

object-shape-desc, keyframe-number, cell-id).
Event-based meta-data is composed of facts for both single-
object and multi-object events. Since an event occurs at a specific
keyframe, the meta-data for event-based facts are stored at
keyframes. The event labels for both single and multi object event
types are also stored separately with the video-ids and keyframe
number to be used within the inverse querying support. These
event facts are specified as follows:
event-info(video-id, event-label,

keyframe-number, cell-id).

single-object-event-label(video-id, object-id,

keyframe-number, cell-id).

multi-object-event-label(video-id,

first-object-id, second-object-id,

direction, keyframe-number, cell-id).
We used an interval-based extension scheme to utilize the fact
storage mechanism. If the same event is triggered for at least two
consecutive keyframes, a keyframe interval is stored with the
event fact instead of separate facts with consecutive keyframe
numbers. This interval extension is applied for all facts where it is
applicable. This type of fact storage reduces the storage costs of
the system significantly. Query processing mechanism is also
capable of processing interval based fact storage. A sample listing
for the facts-base to clarify the meta-data storage mechanism that
we use is given in Appendix C.
4. Query model

One of the most important tasks in automated video
surveillance is query processing. Existing systems generally
support textual searches for event queries (Shet et al., 2005;
Stringa and Regazzoni, 2000). Some systems also support object
queries to some extent (Hampapur et al., 2005). However, not
every abnormal situation can be queried by keywords, predicates,
etc. Some situations can be treated as a sequence of events and
the whole sequence is of interest. One of the main contributions of
our work is the scenario-based querying capability to detect such
sequences, which is not easy to handle in real time. By ordering
the events in a scenario, the temporal information about the
events is included in the query specification.

Scenario-based querying by an effective set of semantic and
low-level features improves the retrieval effectiveness of the
framework and decreases the time needed for offline inspection.
These gains are more meaningful when the number of events to
be searched is relatively large and hard to identify as suspicious in
real time, as in after-the-fact analysis in video forensics.

We observe that there is a need for enhancing object queries
with low-level feature descriptors. When suspicious events occur,
directional specifications about objects give valuable information.
Our approach provides support for a wide range of event and
object queries, including low-level features and directional
predicates, to be posed as a part of the scenario. We also include
some specialized query types to provide coherent support for
after-the-fact activity analysis. Inverse querying, most popular path,
and most abnormal region query types are currently supported.
Due to the flexible nature of our data and query models, more
complex queries can be formulated.

4.1. Query expression and processing

There are two types of queries: simple and complex. Simple
queries have 12 single-object and six multi-object query types.
Single-object queries are enter/leave scene, stop/stop-and-go, and
move in eight directions. Multi-object queries include approach/

depart, deposit/pick-up, and crossover/move-together. Simple query
types can be ordered semantically to form a scenario query, and a
timegap value can be specified between simple subqueries.

ARTICLE IN PRESS

E. S-aykol et al. / Engineering Applications of Artificial Intelligence 23 (2010) 331–345 337
Complex queries are high-level queries that enable scene analysis
and statistical offline inspection. Inverse querying, most popular

path, and most abnormal region are specific complex query types
currently supported in our model.

Our video surveillance query language (VSQL) provides support
for integrated querying of video surveillance archives by semantic
and low-level features. Semantic subqueries contain 12 single-
object event types and six multi-object event types, which can be
combined to form more complex queries. Descriptive keywords
can be supplied for the color and shape features of objects. Instead
of a detailed expression of these low-level features, an intuitive
way of query specification is chosen in our model, since it is more
realistic that the human operators inspecting (i.e., querying) the
videos would choose these features themselves from a set of pre-
specified labels corresponding to primary colors. VSQL also
provides support for inverse querying. The grammar for VSQL is
given in Appendix A. We are also planning to include query-by-
example and query-by-sketch types of strategies in the later
stages of our work.

Rule-based modeling is effective for querying video databases
(Dönderler et al., 2004). Hence, a rule-based model has been
designed for querying video surveillance archives. Fig. 5 shows the
flow of execution in our query processing scheme. A VSQL query is
sent to our inference engine, Prolog, which processes the meta-
data (i.e., fact-base) by using a set of rules (i.e., rule-base). Our
rule-base is customizable to specific applications since external
predicates can be defined in terms of the existing events. Prior to
this rule-based processing, the submitted query string is parsed
using a lexical analyzer. Variables (objects unbounded to a value
prior to querying) can be specified as part of the query that is to be
bound to meta-data after query processing. Scenario with bounded

atoms/variables is processed by the inference engine to produce
the result set. The following examples show the formulation of
scenario-based queries in VSQL.
Graphical User Interface (GUI)

Rule-Based Query Processing

Visual Query
Specification

Query Parsing

target range query condition

object assignment list scenario

Scenario with Bounded
Atoms/Variables

SWI Prolog
Inference Engine

Query
Result

Query Result
Presentation

bindingatoms
and/orvariables

filtering
results

Rule
Base

Fact
Base

Fig. 5. The query-processing flowchart. A VSQL query submitted to the GUI passes

through the parsing, binding, and processing steps; the results are then presented

to the user.
Query 1. A person enters a lobby with a bag, deposits his bag, and

leaves the lobby.
select
 segment
from
 all
where
 objectA = objdata(class=human),

objectB = objdata(class=non-human)
and enter(objectA) enter(objectB)
deposit(objectA,objectB) leave(objectA)
The query strings are formed by object conditions and event
conditions. Object conditions are expressed by
oobjcondition4 , and event conditions are expressed by
oevent� condition4 , as stated in the grammar for VSQL in
Appendix A. Based on the fact-base in Appendix C, the result of
the scenario-based query is segment [12,17].

Query 2. Two people enter a lobby, they meet, shake hands, and then

leave.
select
 segment
from
 all
where
 objectA = objdata(class=human), objectB =

objdata(class=human)
and enter(objectA) enter(objectB)
crossover(objectA,objectB) leave(objectA)

leave(objectA)
Our query model can be easily tailored to various video-
surveillance domains. The extracted semantic predicates are the
basic ones that can happen in almost every video-surveillance
application, and since a rule-based model is chosen for query
processing, different context models for different domains can be
generated by extending the predicate specifications. This exten-
sible nature of our system makes it more expressive and more
practical compared to most of the existing systems.

4.2. Scenario-based querying

A scenario-based query consists of a sequence of single-object
and/or multi-object event subqueries ordered temporally. Satisfy-
ing a scenario-based query means that all subqueries in the
scenario have to occur in a specific temporal interval. Hence, the
result of a scenario-based query is a set of intervals, where each
subquery is satisfied in an interval element in the result set.

Definition 2 (Result of a scenario-based query in a video). The
result RS;i of a scenario-based query S in a video vi is a set of
intervals specified as follows:

RS;i ¼ f½sS; eS�j all the events in S exist in order within ½sS; eS� in video vig:

Definition 3 (Result of a scenario-based query). The result RS of a
scenario-based query S for all the videos in the archive is a set of
pairs specified as follows:

RS ¼ fði;RS;iÞji denotes the index of video vi in the archiveg:

The intervals in the result sets can be categorized into two
types: non-atomic and atomic. Non-atomicity implies that the
condition holds for every frame within the interval. Thus, the
condition holds for any subinterval of a non-atomic interval.
Conversely, the condition associated with an atomic interval
does not hold for all its subintervals. The intervals in the
results of scenario-based queries are atomic, hence they
cannot be broken into parts. With this fact in mind, logical
conjunction and disjunction operations can be applied to the
results.

ARTICLE IN PRESS

Fig. 6. The conjunction operation applied on query results.

Fig. 7. The disjunction operation applied on query results.

E. S-aykol et al. / Engineering Applications of Artificial Intelligence 23 (2010) 331–345338
Assume two scenario-based queries and their results R1 and R2,
that contain atomic intervals. Figs. 6 and 7 present the pseudo-codes
for obtaining the conjunction RC ¼ R14R2 and the disjunction
RD ¼ R13R2 of the query results, respectively. An example is
provided in Appendix B to elaborate on these operations.

4.3. Event-based querying

Our query model provides support for event-based querying.
For example, users may want to query all the occurrences of a
single event of any single-object or multi-object type in the
archive. The result of an event-based query is a set of frames
where the event specified in the query has occurred, rather than a
set of intervals. Query 3 is an example of event-based querying.
Since the result of an event-based query is a set of frames, the
logical conjunction, and disjunction operations can be applied
directly on the results.

Definition 4 (Result of an event-based query in a video). The result
RE;i of an event-based query E in a video vi is a set of frame
numbers, specified as follows:

RE;i ¼ ffEj event E occurs in fEg:

Definition 5 (Result of an event-based query). The result RE of an
event-based query E for all the videos in the archive is a set of
pairs, specified as follows:

RE ¼ fði;RE;iÞji denotes the index of video vi in the archiveg:

Query 3. Where have all the crossovers happened in videos 1 and 4?
select
 frames
from
 1,4
where
 objectA = objdata(class=human),

objectB = objdata(class=human)
and crossover(objectA, objectB)
4.4. External predicate definition

Our query model allows for defining external predicates in
terms of the existing ones. The following is a simple example of
external predicate definition following the Prolog conventions.
The 16-cell grid is ordered row-wise, starting from the top-left
corner, with cells 1, 5, 9, and 13 on the left. Thus, enter-left

specifies a predicate of entrances from the left of the scene.
enter-left(X, F, G) :-
 enter(X, F, 1);
enter(X, F, 5);
enter(X, F, 9);
enter(X, F, 13).
Once the enter-left predicate has been specified, it can be used
as the existing predicate in scenario-based and event-based
querying, as shown in Query 4. It should be noted that move-

any is another external predicate defined to query the move action
in any of the eight directions.

ARTICLE IN PRESS

E. S-aykol et al. / Engineering Applications of Artificial Intelligence 23 (2010) 331–345 339
Query 4. List all the loitering intervals caused by the entrances from

the left in video 3.
select
 frames
from
 3
where
 objectA = objdata(class=human) and
enter-left(objectA) stop(objectA) 60

move-any(objectA)
4.5. Object-based querying

Our query model supports object-based queries in various
ways. First, the existence or appearance of an object can be
queried. The result of an object-based query is a set of frames
where the object has appeared. The low-level features (color,
shape) and class values (human, non-human, object-group) of the
objects can be used to enrich the query. As in event-based
querying, logical conjunction and disjunction operations can be
applied directly since the result of an object-based query is a
simple set.

Query 5. List the frames where a black object has appeared.
select
 frames
from
 all
where
 objectA = objdata(class=non-human,

color=black)
Another type of object-query specification uses the unification

concept in Prolog, a mechanism that binds variables to atoms. The
query processor returns all the objects satisfying some pre-
specified conditions, such as color, shape and class. The result of
this type of querying is a list of object labels bound to the
variables in the query. This type of querying is more meaningful
when the video archive is well annotated, which means that the
objects in videos have been assigned labels (e.g., domain-specific
names) a priori.

Query 6. List the names of all the persons with a black coat.
select
 OBJECTX
from
 all
where
 OBJECTX = objdata(class=human,

color=black)
4.6. Complex querying

In addition to simple queries, we provide a set of complex
queries to provide coherent support for after-the-fact activity
analysis. Inverse querying, most popular path, and most abnormal

region query types are currently supported. Due to the flexible
nature of our data and query models, more specific types of
complex queries can be introduced at any time; we are planning
to add more queries in the later stages of our work.

4.6.1. Inverse querying

Inverse querying means retrieving the list of events (see Query
7) or objects (see Query 8) appearing within a certain time
interval in a video. This inverse querying is very valuable for
offline inspection and is most effective when domain-specific
activity analysis is of concern.

Query 7. Which events occurred between frames 100 and 1000 in

video 1?
select
 events
from
 1
where
 inverse(100, 1000)
Query 8. Which objects appear between frames 100 and 1000 in

videos 3 and 4?
select
 objects
from
 3,4
where
 inverse(100, 1000)
4.6.2. View-based querying

In our inverted-tracking scheme, we divide the scene into 16
cells to enhance the expressive power of our query model. Queries
9 and 10 are examples of the most popular path and the most

abnormal region query types. The results of these queries are based
on the row-wise indexing of the 16 cells, where the first cell is in
the top-left corner. The most abnormal region is determined by
inspecting the high-level events (i.e., deposit, pick-up, crossover,
move-together). The cell-id that these events occur most is
selected as the most abnormal region. This might be a set of
regions since the event occurrences are counted.

The most popular path is determined by inspecting the
underlying data model for inverted tracking. The cell through
which the objects enter the scene most is identified as the most

frequently entered region, which is the initial point for the most
popular path. The end of this path is traced among the
remaining three sides of the scene. If the most frequently

entered region is a corner cell, the tracing is carried out among
the remaining two sides. The tracing operation to find the end
of the path includes determining the cell-id that objects leave
the scene most. Having determined the start, end, and the
direction of the path, the cells between the start and end cells
are traversed such that the cells visited by the objects most are
selected.

Query 9. What is the most popular path in video 1?
select
 most-popular-path
from
 1
Query 10. What is the most abnormal region in videos 3 and 4?
select
 most-abnormal-region
from
 3,4
The result for Query 9 is fð1; f5;6;10;11;12gÞg. The starting cell
is found to be 5 and the end cell is determined as 12. All the in-
between cells (i.e., 6;9;10;7;11;8 in traversing order) are
inspected and the most popular path is obtained. The result for
Query 10 is fð3; f7gÞ; ð4; f14gÞg.
5. Visual query specification

We include a visual query interface to provide a mechanism for
an intuitive way of VSQL query specification. This interface is easy
to use and devised in a flexible manner, which makes it easily
adaptable to various domains. The event predicate labels are
manageable through XML-based configuration files; hence, do-
main-specific or user-dependent event predicates can be used to
express queries.

The visual query interface provides object specification, event

specification, and scenario specification facilities. It also utilizes an
XML-based repository to make the specified objects available for
later use. The scenarios are expressed as a sequence of events and
the order of events can be changed to obtain various scenario
combinations. The query results are presented in a separate
window where the user can browse the results. The specification
of Query 11 through the interface is illustrated in Fig. 8.

ARTICLE IN PRESS

Fig. 8. The specification of Query 11. The event sequence corresponding to the scenario is shown in the first row of the scenario drawing panel. The letters in the boxes on

the drawing panel (‘E’, ‘CC’, ‘DD’, ‘PP’, and ‘L’) denote enter, crossover, deposit, pickup, and leave event predicates, respectively.

E. S-aykol et al. / Engineering Applications of Artificial Intelligence 23 (2010) 331–345340
Query 11. List the segments from video 1 where two persons, one

with a bag, meet; then the person carrying a bag leaves the bag; the

other person takes the bag; and then both persons leave.
select
 segment
from
 1
where
 objectA = objdata(class=human),
objectB = objdata(class=non-human),
objectC = objdata(class=human) and
enter(objectA) enter(objectB)

enter(objectC)
crossover(objectA,objectC)

deposit(objectA,objectB)
pickup(objectC,objectB) leave(objectA)

leave(objectC)
Having specified the events by choosing the objects acting in the
event, the scenario is defined based on these events. The scenario
drawing panel can be considered a timeline, a widely used query-
specification technique for sequence-based data to model temporal
relations among events. In this panel, the events can be reordered
and time gap between events can be adjusted, which brings more
flexibility to scenario-based query specifications.
6. Performance experiments

We tested the retrieval performance of our scenario-based
query-processing system by evaluating the methods used in the
meta-data extraction process. First, we evaluated the performance
of the pixel-level algorithms. Next, we evaluated the object-
classification algorithms. The last set of experiments evaluated
our semantic annotation process. Since we utilize an SQL-based
querying language and use Prolog as our inference engine, the
accuracy of our system strictly depends on the peak performance
of the above three components.
The evaluation of these algorithms is non-trivial and sub-
jective. In Nascimento and Marques (2006), a discussion on the
performance evaluation of object-detection algorithms is given.
Among the standard measures, receiver operating characteristics
(ROC) analysis (Fawcett, 2006) is used to inspect the effect of a
single parameter to the classifier by plotting the true-positive-rate
(TPR) and false-positive-rate (FPR) values that are calculated
while keeping all the other parameters fixed. Since the algorithms
in our keyframe labeling technique yield binary outputs, a set of
points is plotted on ROC curves. To elaborate on this, our keyframe
labeling algorithm yields exact labels instead of label percentages
for keyframes. Hence, a set of points is plotted on ROC curves for
the rest of the tests. The points over the x¼ y line are considered
as good classification results, whereas the ones below are bad. The
best classifier is considered to be at point ð0;1Þ, which is the
farthest point to the x¼ y line.

The benchmark data sets provided by PETS 2006 and PETS
2007 were used as our ground truth for the performance
experiments, along with annotations that we performed manually
from a set of indoor monitoring videos captured by a static camera
at our university. We employed a fivefold cross-validation method
for the experimental evaluation.
6.1. Performance of the pixel-level processing

We employ motion-detection, color-feature, and shape-feature
extraction algorithms for the pixel-level processing techni-
ques. We adapted widely used background subtraction and
maintenance schemes for motion detection. For motion
tracking, we employed our inverted tracking scheme using
motion-history images. For color and shape features, we adapted
distance-weighted color and shape vectors, which are composed
of angular spans and distance span. Regarding representation and
classification, these two feature vectors are shown to be effective
through a wide range of performance experiments.

ARTICLE IN PRESS

E. S-aykol et al. / Engineering Applications of Artificial Intelligence 23 (2010) 331–345 341
Since ROC analysis requires ground truth evaluation for each
parameter setting, we focused on two parameters: a (the learning
constant, in Eqs. (3) and (5)) and t (the temporal duration of the
movement, in Eq. (6)). Two sets of experiments were carried out for
this analysis. In both of the experiments, the learning constant a
varies from 0.6 to 0.8 in increments of 0.05, yielding five points in
the ROC curve. The temporal duration constant t is set to 2 and 3.
The extracted regions are annotated manually, and correctly
detected pixels are considered as true (Nascimento and Marques,
2006). As shown in Fig. 9, the optimal values for the two crucial
pixel-level parameters are found to be 2 for t, and 0.7 for a, since
the points corresponding to t¼ 2 are closer to the ð0;1Þ point. The
point corresponding to t¼ 2, a¼ 0:7 is the farthest to the x¼ y line.
6.2. Performance of object classification

The object-classification algorithm that we used takes region
data as the input and yields classification values as percentages.
The maximum of these values is chosen as the class value for the
input region. Hence, our classification algorithm outputs three
classes: human, non-human, and object-group.

In this evaluation, we computed two types of classification
accuracies: standard classification accuracy (SCA) and frame-based

classification accuracy (FCA). The former is the percentage of
correctly classified objects for each class type, and the latter is the
frame-weighted percentage of classification accuracy for each
0 0.2 0.4 0.6 0.8
0

0.2

0.4

0.6

0.8

1

0.80.8

0.87
0.85
0.8

0.65
0.70.7

0.77

0.67

2
3

1

Fig. 9. ROC curve/analysis of pixel-level algorithms. The learning constant a varies

from 0.6 to 0.8 in increments of 0.05. ~ denotes a test configuration when t is set

to 2, whereas ’ denotes a test configuration when t is set to 3.

Object Classification Acc

0.971

0.667

0.973

0.793

0.000

0.200

0.400

0.600

0.800

1.000

1.200

human non-human
Class Labe

C
la

ss
ifi

ca
tio

n
A

cc
ur

ac
y

Fig. 10. Object classificati
object classified correctly. To elaborate on these definitions,
Eqs. (9) and (10) are given for the human class type as follows:

Let CCH denote the set of correctly classified humans, and jCCHj

denote its cardinality. The SCA for the human class type is
formulated as

SCAH ¼
jCCHj

jHj
; ð9Þ

where H is the set of objects of human class type.
Let FH denote the set of frames where at least one human is

present, and FCCH denote the set of frames where at least one
human is classified correctly. The FCA for the human class type is
formulated as

FCAH ¼
jFCCHj

jFHj
: ð10Þ

Fig. 10 presents the results of the object-classification analysis.
Since the number of frames (i.e., keyframes) that an object is
classified correctly was taken into consideration, the frame-based
accuracy analysis gives better results. The lowest accuracy
improvement in the frame-based analysis is for the human class
type; many people enter and leave the scene, and in most cases,
they are classified correctly. Frame-based classification accuracies
for the other two object classes improved significantly when
compared to standard accuracies.

6.3. Performance of semantic annotation

To evaluate the performance of our semantic annotation process,
the detection of each manually annotated event type is inspected.
Since both scenario-based and inverse queries are processed by our
inference engine, the retrieval accuracy can be evaluated by the
performance of the event-detection mechanism. To be more realistic,
the percentage of the frames in which the events are correctly
identified is used to judge the accuracy of the event annotation
instead of just counting the correctly identified event types. This
analysis is similar to the frame-weighted classification accuracy
above, and the results are presented in Fig. 11.

As shown in Fig. 11, similar event types are grouped together to
simplify the analysis. The accuracy is very high for enter/leave,
move, and approach/depart events because they can be detected
directly from region extraction. Since we incorporate the number
of frames in which an event is identified into the accuracy value,
multi-object event types have lower accuracy values than the
other event types. This is simply because regions detected as
uracy Analysis

0.846
0.927

obj-group
l

standard
classification
accuracy
frame-based
classification
accuracy

on accuracy analysis.

ARTICLE IN PRESS

Semantic Annotation Accuracy

0.98

0.86

1.00 1.00

0.63
0.67

0.00

0.20

0.40

0.60

0.80

1.00

1.20

enter/leaves top/stop-and-go move (8 directions) approach/depart deposit/pickup crossover/move-
together

Event Type

A
cc

ur
ac

y

Fig. 11. Semantic annotation accuracy analysis.

E. S-aykol et al. / Engineering Applications of Artificial Intelligence 23 (2010) 331–345342
object-groups cannot be split into single objects in the frames
they are detected.

If an event is detected in at least one frame during its occurrence
period, the scenario-based querying and retrieval process is still be
effective. This observation is also true for inverse querying because
the event is retrieved if it is detected in even a single frame within
the querying interval. Since we utilize Prolog as the inference
engine in the querying process, the query processor will retrieve
what is extracted as meta-data. However, depending on the
accuracy of the meta-data extraction process, there might be
events that cannot be retrieved since they are not extracted as
meta-data either (see Fig. 11). It can be concluded that the
performance of scenario-based querying and retrieval is at least
as high as the performance of the semantic annotation process.

Our meta-data extraction scheme supports a wide range of event
predicates, and provides external predicate definition in terms of the
existing predicates. This capability is provided not only to increase the
expressive power of the query language but also to make the querying
mechanism tailorable for specific video surveillance applications.
Undoubtedly, there can be events that cannot be specified using our
event predicates, but in our opinion, we have covered an adequate set
of events that can be considered as abnormal situations in most of the
video surveillance applications.
7. Comparison to related work

Query effectiveness relies on the meta-data extraction process.
The background maintenance scheme we employ is similar to that
of VSAM (Collins et al., 2000) with an improvement that the
extracted background is also used for object tracking. We employ
a strategy of moving-object counting similar to the one presented
in Kim and Hwang (2002a), extended with a keyframe detection
scheme to provide an effective storage for predicates.

The event predicates extracted in our data model are generic in
the video-surveillance domain and generally supported by
existing systems (e.g., Lyons et al., 2000; Stringa and Regazzoni,
1998; Brodsky et al., 2001). Object-based querying is also
implemented in most of the existing systems (e.g., Kim and
Hwang, 2002a; Hampapur et al., 2005) to some extent. The
queries based on color are considered in some systems (e.g.,
Stringa and Regazzoni, 2000, 1998; Regazzoni et al., 1998);
however, the existing query models are not rich enough to
support low-level features about the objects. We extract object-
based low-level features and provide a scenario-based querying
scheme for complex querying, also including color and shape
descriptors of the objects (e.g., Queries 5 and 6).

Our query model supports scenario-based querying, which
allows temporal ordering of event predicates, as well as of object
information, based on low-level feature descriptors and direc-
tional predicates. An inverse-querying scheme is also provided to
help the offline inspection process. In addition, view-based
querying is available, which augments the query expressiveness
of our model. Hence, one of the main differences between our
querying mechanism and that of MILS (Hampapur et al., 2005) is
that we provide mechanisms for defining specialized queries in a
more expressive manner (e.g., Queries 7–10).

Our query-specification scheme is based on VSQL, which
provides an intuitive way of expressing logical predicates. In
VidMAP (Shet et al., 2005), the authors provide high-level rules for
a couple of query types. In contrast, we provide low-level feature
descriptions and directional predicates, as well as temporal
information about events to enrich the supported query types.
Our query-processing system also supports view-based querying.
Compared to the existing systems, the proposed scenario-based
query-processing approach provides support for a wide range of
query types and facilitates after-the-fact analysis.
8. Conclusion

We propose a scenario-based query-processing system for
video surveillance archives, which provides a mechanism for
effective offline inspection. A scenario-based query is specified as
a sequence of event-based subqueries that can be enriched with
object-based low-level features and directional predicates. With
the help of the proposed inverted tracking technique, the system
provides support for view-based query handling using a fixed
view-based representation of the content. Our system also
provides support for inverse querying as a specialized tool for

ARTICLE IN PRESS

E. S-aykol et al. / Engineering Applications of Artificial Intelligence 23 (2010) 331–345 343
after-the-fact activity analysis. We developed Video Surveillance
Query Language, which is specialized for scenario-based querying.
We present a rule-based query-processing module to provide not
only an efficient processing mechanism for scenario-based
querying, but also a flexible medium for external predicate
definition, which allows the system to be tailored to various
domains. We also present a visual query interface to facilitate the
query specification process.

The performance of our scenario-based querying system was
evaluated through a set of experiments. Since the performance of
the overall querying scheme strictly depends on the meta-data
extraction process, we also carried out experiments on these
pixel-level and region-level methods. It was shown through these
experiments that the querying support of our system is highly
effective and has expressive power in offline inspection.

To further increase the capabilities and the expressive power of
our query-processing system, we are planning to implement the
negation operator for scenario-based query results and for
variables in the query-specification process. There might be
specific uses for this negation operator for the inspectors. In the
query-specification interface, we are planning to include a natural
language parser that can learn domain-specific keywords a priori.
This will simplify the query-specification process and enrich the
semantic quality of the results.
Appendix A. Grammar for Video Surveillance Querying Language (VSQL)
/* main query string */

oquery4 :¼ select otarget4 from orange4 ½where oquery� condition4 � ‘;’
otarget4 :¼ segments j /* retrieve video sequences/intervals */
frames j /* retrieve frames for event queries */
events j /* inverse querying w.r.t. events */
objects j /* inverse querying w.r.t. objects */
most� popular� path j most� abnormal� region j /* view-based queries */
oobjectlist4 /* retrieve object(s) */
oobjectlist4 :¼ ½oobjectlist4 ‘,’� oobjlabel4
orange4 :¼ all j ovideolist4
ovideolist4 :¼ ½ovideolist4 ‘,’� ovid4
oquery� condition4 :¼ ½oobject� assignment� list4 and� oscenario4 j oinverse� condition4
oobject� assignment� list4 :¼ ½oobject� assignment� list4‘,’� oobject� assignment4
oobjectassignment4 :¼ oobjlabel4oobjoperator4 oobjcondition4
oscenario4 :¼ ½oscenario4 ½otimegap4 � � oevent� condition4
oevent� condition4 :¼ osingle� object� event� condition4 j omulti� object� event� condition4
oinverse� condition4 :¼ inverse ‘(’ ointvalue4 ‘,’ ointvalue4 ‘)’

/* event query conditions */
osingle� object� event� condition4 :¼ osingle� object� event� label4 ‘(’ oobjlabel4 ‘)’

osingle� object� event� label4 :¼ enter j leave j stop j stop� and� go j move� odirection4
omulti� object� event� condition4 :¼ omulti� object� event� label4
‘(’ omulti� object� condition4 ‘)’

omulti� object� event� label4 :¼ crossover j deposit j pickup j move� together j approach j depart

omulti� object� condition4 :¼ oobjlabel4 ‘,’ oobjlabel4 ½ ‘,’ odirection4 �
odirection4 :¼ west j east j north j south j northeast j southeast j northwest j southwest
/* object conditions */
oobjcondition4 :¼ objdata ‘(’ oobjdesclist4 ‘)’

oobjdesclist4 :¼ ½oobjdesclist4 ‘,’� oobjdesc4
oobjdesc4 :¼ oclassdesc4 j ocolordesc4 j oshapedesc4
oclassdesc4 :¼ class ‘¼ ’ oclassvalue4
ocolordesc4 :¼ color ‘¼ ’ ocolorlabel4
oshapedesc4 :¼ shape ‘¼ ’ oshapelabel4
ocolorlabel4 :¼ red j green j blue j yellow j white j black j orange j violet

oshapelabel4 :¼ box j cone j cylinder j sphere

oclassvalue4 :¼ human j non� human j object� group
/* primitive types */
ointvalue4 :¼ ð1� 9Þð0� 9Þ�

ovid4 :¼ ointvalue4
otimegap4 :¼ ointvalue4
oobjlabel4 :¼ ða� zÞðA� Za� z0� 9Þ�

oobjoperator4 :¼ ‘¼ ’ j ‘‘!=’’

ARTICLE IN PRESS

E. S-aykol et al. / Engineering Applications of Artificial Intelligence 23 (2010) 331–345344
Appendix B. Conjunction and disjunction examples

Assume the results of two scenario-based queries are as follows:

R1 ¼ fð1; f½50;325�; ½447;740�gÞ; ð3; f½25;285�; ½780;940�gÞg

and

R2 ¼ fð1; f½200;475�; ½520;700�gÞ; ð2; f½120;340�gÞg:

If we apply the conjunction and disjunction algorithms in Figs. 6 and 7 to obtain RC ¼ R14R2 and RD ¼ R13R2,

RC ¼ fð1;R1;14R2;1Þg:

Since ½447;740� � ½520;700�,

R1;14R2;1 ¼ f½447;740�g:

Hence,

RC ¼ fð1; f½447;740�gÞg

and

RD ¼ fð1; f½50;325�; ½447;740�; ½200;475�gÞ; ð3; f½25;285�; ½780;940�gÞ; ð2; f½120;340�gÞg:
Appendix C. Sample facts-base

A snapshot of the facts-base for a sample video is given to clarify the understanding of the object information and corresponding event
information. An example fact denoting our interval extension notation (fact at line 4). This section shows the extraction of a deposit event
such that an object enters the scene, then split occurs and one object, classified as human, continued its motion, whereas the other object
stopped.
/* object information facts */
1
 object-info(1, obj001, human, blue, box, 12, 5).
2
 object-info(1, obj001, human, blue, box, 13, 6).
3
 object-info(1, obj001, human, blue, box, 14, 6).
4
 object-info(1, obj002, non-human, white, box, [14,17], 6).
5
 object-info(1, obj001, human, blue, box, 15, 7).
6
 object-info(1, obj001, human, blue, box, 16, 8).
/* event information facts */
7
 event-info(1, enter, 12, 5).
8
 event-info(1, enter, 14, 6).
9
 event-info(1, deposit, 15, 7).
10
 event-info(1, stop, 16, 6).
11
 event-info(1, leave, 17, 8).
/* scenario-based meta-data */
12
 enter(1, obj001, 12, 5).
13
 move-east(1, obj001, 13, 6).
14
 enter(1, obj002, 14, 6).
15
 move-east(1, obj001, 15, 7).
16
 deposit(1, obj001, obj002, west, 15, 6).
17
 move-east(1, obj001, 16, 8).
18
 stop(1, obj002, 16, 6).
19
 leave(1, obj001, 17, 8).
...
References

Bobick, A., Davis, J., 2001. The recognition of human movement using temporal

templates. IEEE Transactions on Pattern Analysis and Machine Intelligence 23

(3), 257–267.

Bogomolov, Y., Dror, G., Lapchev, S., Rivlin, E., Rudzsky, M., 2003. Classification of

moving targets based on motion and appearance. In: Proceedings of the British

Machine Vision Conference, vol. 2, pp. 429–438.

Brodsky, T., Cohen, R., Cohen-Solal, E., Gutta, S., Lyons, D., Philomin, V., Trajkovic, M.,

2001. Visual surveillance in retail stores and in the home. In: Video-Based

Surveillance Systems Computer Vision and Distributed Processing. Kluwer

Academic Publishers, Dordrecth, pp. 51–65.
Collins, R., Lipton, A., Kanade, T., Fujiyoshi, H., Duggins, D., Tsin, Y., Tolliver, D.,
Enomoto, N., Hasegawa, O., Burt, P., Wixson, L., 2000. A system for video
surveillance and monitoring. Technical Report CMU-RI-TR-00-12, Carnegie
Mellon University, The Robotics Institute, 2000.

Dönderler, M., Ulusoy, Ö., Güdükbay, U., 2004. Rule-based spatio-temporal query
processing for video databases. VLDB Journal 13 (3), 86–103.

Duong, T., Bui, H., Phung, D., Venkatesh, S., 2005. Activity recognition
and abnormality detection with the switching hidden semi-markov
model. In: IEEE Conference on Computer Vision and Pattern Recognition, pp.
838–845.

Duque, D., Santos, H., Cortez, P., 2006. The OBSERVER: an intelligent and automated
video surveillance system. In: Campilho, A., Kamel, M. (Eds.), Lecture
Notes in Computer Science, vol. 4141. Proceedings of the International

ARTICLE IN PRESS

E. S-aykol et al. / Engineering Applications of Artificial Intelligence 23 (2010) 331–345 345
Conference on Image Analysis and Recognition (ICIAR). Springer, Berlin, 2006,
pp. 898–909.

Durak, N., Yazıcı, A., George, R., 2007. Online surveillance video archive system. In:
Cham, T.-J., et al. (Eds.), Lecture Notes in Computer Science (LNCS), vol. 4351.
Proceedings of the 13th International Multimedia Modeling Conference (MMM
2007), Part I. Springer, Singapore, pp. 376–385.

Elgammal, A., Harwood, D., Davis, L., 1999. Non-parametric model for background
subtraction. In: Proceedings of the International Conference on Computer
Vision and Pattern Recognition, Workshop on Motion, Ft. Collins, CO, USA.

Fawcett, T., 2006. An introduction to ROC analysis. Pattern Recognition Letters 27,
861–874.

Gutchess, D., Trajkovic, M., Cohen-Solal, E., Lyons, D., Jain, A., 2001. A background
model initialization algorithm for video surveillance. In: Proceedings of the
International Conference on Computer Vision, Vancouver, Canada, pp. 733–740.

Hamid, R., Johnson, A., Batta, S., Bobick, A., Isbell, C., Coleman, G., 2005. Detection
and explanation of anomalous activities: representing activities as bags of
event n-grams. In: Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pp. 1031–1038.

Hampapur, A., Brown, L., Connell, J., Lu, M., Merkl, H., Pankanti, S., Senior, A., Shu, C.,
Tian, Y., 2005. Multi-scale tracking for smart video surveillance. IEEE Signal
Processing Magazine 22 (2), 38–51.

Haritaŏglu, _I., Harwood, D., Davis, L., 2000. W4: Real-time surveillance of people
and their activities. IEEE Transactions on Pattern Analysis and Machine
Intelligence 22 (8), 809–830.

Hu, W., Tan, T., Wang, L., Maybank, S., 2004. A survey on visual surveillance of
object motion and behaviors. IEEE Transactions on Systems, Man, and
Cybernetics, Part C—Applications and Reviews 34 (3), 334–352.

Jain, A., Vailaya, A., 1996. Image retrieval using color and shape. Pattern
Recognition 29 (8), 1233–1244.

Kim, C., Hwang, J., 2002a. Fast and automatic video object segmentation and
tracking for content-based applications. IEEE Transactions on Circuits and
Systems for Video Technology 12 (2), 122–129.

Kim, C., Hwang, J., 2002b. Object-based video abstraction for video surveillance
systems. IEEE Transactions on Circuits and Systems for Video Technology 12
(12), 1128–1138.

Kim, K., Chalidabhongse, T., Harwood, D., Davis, L., 2005. Real-time foreground/
background segmentation using codebook model. Real-time Imaging 11 (3),
172–185.

Li, L., Huang, W., Gu, I., Tian, Q., 2003. Foreground object detection from videos
containing complex background. In: Proceedings of the ACM International
Conference on Multimedia. ACM Press, Berkeley, CA, USA, pp. 2–10.

Lyons, D., Brodsky, T., Cohen-Solal, E., Elgammal, A., 2000. Video content analysis
for surveillance applications. In: Proceedings of the Philips Digital Video
Technologies Workshop, 2000.

Nascimento, J., Marques, J., 2006. Performance evaluation of object detection algorithms
for video surveillance. IEEE Transactions on Multimedia 8 (4), 761–774.

Ninth IEEE International Workshop on Performance Evaluation of Tracking and
Surveillance (PETS 2006), New York, June 2006. Benchmark Data /http://
www.cvg.rdg.ac.uk/PETS2006/data.htmlS.
Paschos, G., Valavanis, F.P., 1999. A color texture based visual monitoring system
for automated surveillance. IEEE Transactions on Systems, Man, and Cyber-
netics, Part C—Applications and Reviews 29 (2), 298–307.

Regazzoni, C., Sacchi, C., Stringa, E., 1998. Remote detection of abandoned objects
in unattended railway stations by using a DS/CDMA video surveillance system.
In: Regazzoni, C., Fabri, G., Vernezza, G. (Eds.), Advanced Video-Based
Surveillance System. Kluwer, Boston, MA, pp. 165–178.

Regazzoni, C., Ramesh, V., Foresti, G., 2001. Scanning the issue/technology: special
issue on video communications, processing, and understanding third genera-
tion surveillance systems. Proceedings of the IEEE 89 (10), 1355–1367.

Rivlin, E., Rudzsky, M., Goldenberg, R., Bogomolov, U., Lepchev, S., 2002. A real-time
system for classification of moving objects. In: Proceedings of the International
Conference on Pattern Recognition, vol. 3, pp. 688–691.

S-aykol, E., Sinop, A., Güdükbay, U., Ulusoy, Ö, C- etin, E., 2004. Content-based
retrieval of historical Ottoman documents stored as textual images. IEEE
Transactions on Image Processing 13 (3), 314–325.

S-aykol, E., Güdükbay, U., Ulusoy, Ö., 2005a. A database model for querying visual
surveillance by integrating semantic and low-level features. In: Candan, K.,
Celentano, A. (Eds.), Lecture Notes in Computer Science, vol. 4457. Proceedings
of 11th International Workshop on Multimedia Information Systems (MIS’05).
Sorrento, Italy, 2005, pp. 163–176.

S-aykol, E., Güdükbay, U., Ulusoy, Ö., 2005b. A histogram-based approach for object-
based query-by-shape-and-color in multimedia databases. Image and Vision
Computing 23 (13), 1170–1180.

Shet, V., Harwood, D., Davis, L., 2005. Vidmap: video monitoring of activity with
prolog. In: Proceedings of the IEEE International Conference on Advanced
Video and Signal based Surveillance, pp. 224–229.

Stringa, E., Regazzoni, C., 1998. Content-based retrieval and real time detection
from video sequences acquired by surveillance systems. In: Proceedings of the
International Conference on Image Processing ICIP, pp. 138–142.

Stringa, E., Regazzoni, C., 2000. Real-time video-shot detection for
scene surveillance applications. IEEE Transactions on Image Processing 9 (1),
69–79.

Swain, M., Ballard, D., 1991. Color indexing. International Journal of Computer
Vision 7 (1), 11–32.

Tenth IEEE International Workshop on Performance Evaluation of Tracking and
Surveillance (PETS 2007), Rio de Janeiro, Brazil, October 2007 /http://www.
pets2007.netS.

Thirde, D., Borg, M., Valentin, V., Barthelemy, L., Aguilera, J., Fernandez, G.,
Ferryman, J., Bremond, F., Thonnat, M., Kampel, M., 2006. People and vehicle
tracking for visual surveillance. In: Proceedings of the Sixth IEEE International
Workshop on Visual Surveillance, pp. 169–176.

Xiang, T., Gong, S., 2006. Beyond tracking: modelling activity and understanding
behaviour. International Journal of Computer Vision 67 (1), 21–51.

Xiang, T., Gong, S., 2008. Incremental and adaptive abnormal behaviour detection.
Computer Vision and Image Understanding 111 (1), 59–73.

Zhong, H., Shi, J., Visontai, M., 2004. Detecting unusual activity in video. In:
Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pp. 819–826.

http://www.cvg.rdg.ac.uk/PETS2006/data.html
http://www.cvg.rdg.ac.uk/PETS2006/data.html
http://www.pets2007.net
http://www.pets2007.net

	Scenario-based query processing for video-surveillance archives
	Introduction
	Related work
	Data model
	Extraction of moving regions
	Tracking moving regions
	Classification of objects
	Annotation of events
	Single object annotation
	Multi-object annotation

	Meta-data extraction

	Query model
	Query expression and processing
	Scenario-based querying
	Event-based querying
	External predicate definition
	Object-based querying
	Complex querying
	Inverse querying
	View-based querying

	Visual query specification
	Performance experiments
	Performance of the pixel-level processing
	Performance of object classification
	Performance of semantic annotation

	Comparison to related work
	Conclusion
	Grammar for Video Surveillance Querying Language (VSQL)
	Conjunction and disjunction examples
	Sample facts-base
	References

