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a b s t r a c t

Protein name extraction, one of the basic tasks in automatic extraction of information from biological
texts, remains challenging. In this paper, we explore the use of two different machine learning techniques
and present the results of the conducted experiments. In the first method, Bigram language model is used
to extract protein names. In the latter, we use an automatic rule learning method that can identify protein
names located in the biological texts. In both cases, we generalize protein names by using hierarchically
categorized syntactic token types.

We conducted our experiments on two different datasets. Our first method based on Bigram language
model achieved an F-score of 67.7% on the YAPEX dataset and 66.8% on the GENIA corpus. The developed
rule learning method obtained 61.8% F-score value on the YAPEX dataset and 61.0% on the GENIA corpus.
The results of the comparative experiments demonstrate that both techniques are applicable to the task
of automatic protein name extraction, a prerequisite for the large-scale processing of biomedical
literature.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

Biological knowledge, generated as a result of biological re-
search, is currently stored in scientific publications which can be
accessed via different knowledge sources storing vast amounts of
information – Medline being a prominent example. Knowledge
sources do not, however, feature a formal structure in which to ac-
cess stored information, thus rendering information search, retrie-
val and processing especially tedious and time-consuming. This
consequently results in a strong demand for automatized discovery
and extraction of information.

Our research focus is on protein name extraction from unstruc-
tured texts, a prerequisite for further information processing.
Though a basic task of automatic extraction of information from
biological texts, it remains challenging to perform. Information
extraction performed at different levels can be viewed as a layered
structure, which makes the different extraction tasks at different
layers interdependent. In other words, because the output of a task
on one layer becomes input to the next layer, the success of a for-
mer task impacts the success of a latter one. For example, accurate
location of protein names in a text will then affect the finding of
interactions between proteins [1].

Parallel to the continuous growth in the biological knowledge,
the number of protein names is rapidly increasing. New names,
however, are not necessarily recorded in terms of standard termi-
ll rights reserved.
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nology, thus complicating the information extraction process.
Moreover, authors often refer to already named proteins using
new variations, reflecting the fact that standards, rules or conven-
tions for naming proteins are not necessarily well-established. Be-
cause protein names are generally depictive, they include many
common words describing them, which cause difficulty in distin-
guishing protein name boundaries from the general language text.
Abbreviations are also frequently used, and the way in which these
are formed is yet another source of difficulty (e.g. ‘‘LRP6” for ‘‘Low
density lipoprotein Receptor-related Protein 6”, ‘‘IL5” for ‘‘Inter-
Leukin 5”, ‘‘Ran” for ‘‘RAs-related Nuclear protein”). Furthermore,
protein names may overlap with other biomedical terms; such as
genes, cell cultures or chemical compounds. To make things worse,
exploiting contextual information is not very helpful in the extrac-
tion process due to the fact that protein names are usually multi-
token and include symbols, common nouns, adjectives, adverbs,
and even conjunctions, which makes it difficult to distinguish them
from surrounding texts [2]. Zhou et al. [3] collected the reasons
causing the difficulty in protein name extraction task under five
main titles: descriptive naming conventions, conjunctions and dis-
junctions, non-standardized naming conventions, abbreviations,
and cascaded constructions.

Information extraction (IE) systems can be used as a solution for
automatic extraction of protein names from unstructured biologi-
cal texts. IE can be defined as the identification of selected types
of entities, relations, facts or events in a set of unstructured text
documents written in natural language. It is the process of analyz-
ing unstructured texts and extracting the necessary information
into a structured representation, or, simply put, the process of
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selective information structuring [4]. Considering all the IE systems
developed so far for protein name extraction, which we will sum-
marize in the following section, systems often rely on knowledge-
source based and rule-based approaches. Since both approaches
require (essentially manual) careful analysis of the biomedical do-
main, most systems require manual development of the resources
(i.e. dictionaries, rules etc.) by human experts. Furthermore, given
rapid changes in biomedical knowledge, keeping the resources
used by these systems up-to-date with the changes in the domain
is another issue which requires constant human intervention.
These issues also make it difficult to adapt the developed systems
to extract other entity types.

This paper describes the use of supervised learning strategy to
extract protein names from biological texts and presents the re-
sults of the conducted experiments. The principal goal is to develop
IE systems that learn to extract protein names from examples and
achieve acceptable extraction performance without using the re-
sources requiring manual effort and time. Our approach is to start
with a set of protein names collected from a training set, and gen-
eralize the initial set using a carefully designed strategy, while at
the same time trying to minimize reduction in accuracy. In order
to obtain accurate generalization and overcome the problem of
data sparseness, we propose using hierarchically categorized syn-
tactic token types. Many projects have so far used syntactic token
types/patterns based on the surface features of the constituents for
detecting protein names and their fragments. However, to the best
of our knowledge, ours is the first study exploiting a hierarchy of
syntactic token patterns. We have developed two novel methods
for the extraction task. The first method follows a probabilistic ap-
proach for protein name identification. More specifically, we
adapted the conceived hierarchy of syntactic token patterns con-
cept to Bigram language model in order to address the problem
of protein name extraction. In the second method, we developed
an automatic rule learning algorithm to find protein names located
in the biological texts. According to our rule generalization meth-
od, the learner first derives the unique match sequences, that is a
sequence of similarities and differences between two strings, from
the given protein names. The extraction rules are then generated
by generalizing the differences in the derived unique match se-
quences using the hierarchical syntactic token types.

The structure of the paper is as follows. The next section sum-
marizes the previous research done in this field. The following sec-
tion describes how we applied Bigram language model to protein
name extraction problem and employed rule learning for the task
of protein name identification. After presenting the studied meth-
ods, Section 4 shows the results of the experimental evaluation of
the study. Finally, in the last section we discuss our conclusions,
pointing towards future research.
2. Related work

In terms of information extraction from biological texts, namely
basic term identification to more complex relation extraction tasks,
many IE projects have focused on dictionary-based, rule-based,
machine learning, statistical, and hybrid approaches, each with
its advantages and disadvantages. Krauthammer and Nenadic [5]
have surveyed state-of-art approaches for addressing the protein
name identification problem in the context of term identification
in the biomedical literature.

There have been several attempts to develop dictionary-based
techniques [6–10] for finding protein names in biological texts.
Dictionary-based methods use existing protein databases in order
to locate protein occurrences in text. Tsuruoka and Tsujii [8,9] re-
ported F = 66.6% (F-score: harmonic average between accuracy and
coverage) on GENIA corpus [11] by using approximate string
searching techniques and expanding the dictionary in advance
with a probabilistic variant generator. Krauthammer et al. [6] re-
ported F = 75% (considering partial matches as correct) on a set
of two papers. With a decrease on the performance score, the pro-
posed system achieved F = 59.8% when only exact matches were
considered as correct. Although their system fully matched 94.6%
of the names marked by the evaluators and available in the BLAST
database, it was able to fully match only 4.4% of names marked by
the evaluators and not available in the database. The system at-
tempts to perform approximate string matching after converting
both dictionary entries and input texts into nucleotide sequence-
like strings, which can be then compared by BLAST [7], a DNA
and protein sequence comparison tool. More recently, Schuemie
et al. [10] combined information from existing gene and protein
databases and generated spelling variations according to rules for
automatic generation of a comprehensive dictionary. Because of
the name variations in referring to the same protein and the new
protein names not yet found in the dictionaries, dictionary-based
techniques are not totally effective on their own. Another major
drawback of the dictionary-based methods is the need for regular
dictionary updates.

Rule-based approaches [12–16] assume that protein names oc-
cur in texts in certain patterns and these patterns can be discov-
ered and expressed by a meta-language. Thus, they attempt to
locate new names by exploiting the determined patterns, or rules.
PROPER (PROtein Proper-noun phrase Extracting Rules) system
[12] achieved F = 96.7% on a set of 30 abstracts using simple lexical
patterns and orthographic features. Franzen et al. [13] introduced
the YAPEX system that combines lexical and syntactic knowledge,
heuristic rules and a document-local dynamic dictionary. The YA-
PEX system reached a recall of 61.0% and a precision of 62.0% on
a dataset which consists of 200 abstracts. Seki and Mostafa [16] re-
ported F = 63.7% on the same dataset using hand-crafted rules
based on surface clues reflecting the characteristics of protein
names and a protein name dictionary. The PASTA (Protein Active
Site Template Acquisition) system [14,15], a pipeline of processing
modules, performs protein name extraction in seven steps: text
preprocessing, terminological processing, syntactic and semantic
analysis, discourse interpretation, and template extraction. In the
experiments, the PASTA system achieved F = 85% on a set of 61 ab-
stracts. Though rule-based systems have demonstrated remarkable
performance and rules in such systems can be flexibly defined and
extended as needed, rule development and management is the
main issue in these systems, since manually analyzing biological
texts and crafting rules require high human expertise and are often
time-consuming. Moreover, domain specific rules constructed for a
domain can not be easily reused for a new domain.

Machine learning techniques are also widely used in order to
perform protein name extraction from texts. Bunescu et al. [17]
developed and evaluated several learning systems for locating pro-
tein names in Medline abstracts. They performed comparative
experiments on various systems: RAPIER [18], boosted wrapper
induction (BWI) [19], memory-based learning (MBL) [20], transfor-
mation-based learning (TBL) [21], support vector machines (SVMs)
[22], and maximum entropy (Max-Ent) [23]. The Max-Ent method
that uses a ‘‘dictionary tagger”, achieved the best result among the
others with F = 57.9% on the University of Texas, Austin dataset
which consists of 748 abstracts. Earlier studies [3,17,24–31] in
the IE community have shown that statistical techniques can be
of service in performing protein name extraction tasks. Hidden
Markov Models (HMMs), one of the successful statistical learning
techniques, have been applied to different IE tasks [3,24,27,30].
Several studies [25,26,28] have concentrated on the use of support
vector machines (SVMs). Seki and Mostafa [31] reported F = 63.3%
on the YAPEX dataset by employing a probabilistic model together
with the surface clues specified for identifying protein names with
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an emphasis on finding name boundaries. By avoiding deep lan-
guage analysis, they reduced both processing overhead and the
number of probabilistic parameters to be estimated. Machine
learning techniques, using training data for learning process, gen-
erate rules via generalization of examples instead of creating pat-
terns by hand. Statistical techniques are also relatively easy to
apply as long as appropriate models and training data are available.
However, in order to achieve good coverage both need a large
annotated corpus (as training data) whose preparation requires do-
main experts and is also time-consuming.

Hybrid methods [2,28,27,32–34] combining diverse approaches
and various resources are also applied to the protein name recog-
nition task. Yu et al. [32] combined pattern-recognition and knowl-
edge-based approaches to identify gene/protein terms in MEDLINE
abstracts. Tanabe and Wilbur [2] proposed ABGene system which
uses both statistical and knowledge-based strategies for finding
gene and protein names. They adapted the Brill tagger [35] to pro-
tein and gene name recognition problem. NLProt [28], a system
that combines a pre-processing dictionary and rule-based filtering
step with several separately trained support vector machines to
identify protein names in the MEDLINE abstracts, achieved
F = 75% on the YAPEX dataset. SemiCRF and DictHMM, two meth-
ods developed by Kou et al. [27], achieved levels of F = 66.1% and
F = 51% on the YAPEX dataset respectively.

In this paper, we propose two different learning methods. Both
methods utilize supervised learning strategy. Contrary to many of
the earlier studies, we did not use any resource requiring manual
effort and time (e.g. dictionaries, hand-coded filtering rules and
so on). Furthermore, we avoid deep syntactic/semantic analysis
in order to reduce processing overhead. We focus our efforts on
the pure learning performance of the extractors. The proposed
methods in the paper exploit hierarchy of syntactic token patterns,
a concept no previous study has examined, to generalize protein
names accurately and address the problem of data sparseness.
Moreover, we propose novel methods for both rule-learning and
Bigram calculation.

3. Methods

3.1. Hierarchical syntactic token types

In spite of the irregularities and the lack of common standards,
and all the problems stated above, protein names exhibit a degree
Table 1
Hierarchically categorized syntactic token types.

Class Token type Pattern

Single Roman Numeral I|II|III|IV|V|VI|VII|V
Single Number [0–9]+
Single Single Letter [a–zA–Z]
Single Greek Letter alpha|beta|gamma
Abbreviation Very Long Abbreviation [a–zA–Z] + ([A–Z][a
Abbreviation Long Abbreviation [a–zA–Z] + ([A–Z][a
Abbreviation Abbreviation [a–zA–Z] + ([A–Z][a
Abbreviation Short Abbreviation [a–zA–Z] + ([A–Z][a
Abbreviation Very Short Abbreviation [a–zA–Z] + ([A–Z][a
Delimiter Frequent [. ( ) – /]
Delimiter Rare [: { } < >]
Delimiter Very Rare [% = ; , +]
Regular Long Frequent Type-1 [a–zA–Z] + (ase|gen
Regular Frequent Type-1 [a–zA–Z] + (ase|gen
Regular Frequent Type-2 [a–zA–Z] + (in)
Regular Frequent Type-3 [a–zA–Z] + (al|um|
Regular Lower Case [a–z][a–z’]+
Regular Long Proper Case [A–Z][a–z’]+
Regular Proper Case [A–Z][a–z’]+
Regular Short Proper Case [A–Z][a–z’]+
Other Other No specific pattern
of regularity that becomes a basis for generalization. Protein
names are almost always depictive. That is, the majority of the
phrases used to name proteins include words reflecting the char-
acteristics of the named protein (function, localization, physical
properties etc.). Names are also constructed using a combination
or abbreviation of such characteristics and often consist of multi-
ple words [13]. The regularities observed in the syntactic struc-
ture of the words appear in protein names are also useful for
detecting them.

Two important criteria that determine the efficacy and the suc-
cess of a protein name extractor are (1) the ability to recognize un-
seen protein names, and (2) the ability to precisely distinguish
protein names from non-protein names. Both criteria require accu-
rate generalization of the known protein names. Generalizing
means to recognize the parts susceptible of being changed in
new protein names, and represent them with generic placeholders
[17]. In our study, we generalize protein names by using hierarchi-
cally categorized syntactic token types. In addition to accurate gen-
eralization, using hierarchically categorized syntactic token types
will help overcome data sparseness problem that occurs because
of the diversity of the language constructs and the insufficiency
of the input data. When we consider all possible language con-
structs, it is not possible to observe most of the sequences during
training of the language model.

We determine a two level hierarchy of useful syntactic token
types for representing the protein names. Prior to assigning appro-
priate hierarchical token types to tokens, the input text is seg-
mented in sentences and tokenized. We followed the standard
tokenization method which uses white-space and punctuation
characters as delimiters except that we removed the apostrophe
symbol (’) from our delimiter set as we use the symbol in our token
type patterns.

Table 1 shows our hierarchy with token types and their
patterns as well as the priority of the token types; the list or-
der is the priority order of the tokens. 21 syntactic token types
in Table 1 are categorized under the following five main
classes:

� Single: The tokens in this class are usually used to diversify a
protein name. Single Letter (e.g. ‘‘A”, ‘‘B”), Number (e.g. ‘‘1”,
‘‘2”), Roman Numeral (e.g. ‘‘I”, ‘‘V”) and Greek Letter (e.g.
‘‘alpha”, ‘‘beta”) are the token types that are classified under this
class.
Length

III|IX|X|XI|XII|XIII|XIV|XV|XVI|XVII|XVIII No restrictions
No restrictions
1

|delta|epsilon|theta|kappa|lambda|sigma|mu No restrictions
–z]� | [0–9]+) ([a–zA–Z] + | [0–9] + | [’])� Length > 12
–z]� | [0–9]+) ([a–zA–Z] + | [0–9] + | [’])� Length > 7; length < 13
–z]� | [0–9]+) ([a–zA–Z] + | [0–9] + | [’])� Length > 3; length < 7
–z]� | [0–9]+) ([a–zA–Z] + | [0–9] + | [’])� Length = 3
–z]� | [0–9]+) ([a–zA–Z] + | [0–9] + | [’])� Length = 2

No restrictions
No restrictions
No restrictions

) Length > 8
) Length < 9

No restrictions
ide) No restrictions

No restrictions
Length > 9
Length > 3; length < 10
Length<4
No restrictions
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� Abbreviation: The tokens in this class are abbreviations, which
consist of both alphabetic and numeric characters. There are five
token types under this class, they are classified according to their
length: Very Long Abbreviation (e.g. ‘‘KKLSMYGVDLHKAKDL”),
Long Abbreviation (e.g. ‘‘AcAFYHSK5OEQ”), Abbreviation (e.g.
‘‘CIN85”), Short Abbreviation (e.g. ‘‘AMP”), and Very Short Abbre-
viation (e.g. ‘‘AD”).

� Delimiter: According to their frequency in the protein names,
there are three types of delimiters under this class: Frequent
(e.g. ‘‘-”, ‘‘/”), Rare (e.g. ‘‘:”, ‘‘<”), Very Rare (e.g. ‘‘%”, ‘‘=”).

� Regular: This class is the broadest class in our hierarchy and
includes the tokens containing alphabetic characters only. The
criteria used for classifying word types under this class are
length, case and frequency. There are eight word types sorted
under it: Frequent Type-1 (tokens suffixed with ‘‘ase” or ‘‘gen”
and have less than nine characters, e.g. ‘‘kinase”), Long Frequent
Type-1 (tokens suffixed with ‘‘ase” or ‘‘gen” and have more than
eight characters, e.g. ‘‘acetyltransferase”), Frequent Type-2
(tokens suffixed with ‘‘in”, e.g. ‘‘actin”), Frequent Type-3 (tokens
suffixed with ‘‘al”, ‘‘um” or ‘‘ide”, e.g. ‘‘antiserum”), Lower Case
(not of Frequent Types and consists of all lowercase letters,
e.g. ‘‘chemokine”), Proper Case (not of Frequent Types, only first
letter is uppercase and have length restrictions, e.g. ‘‘Aca-
demic”), Short Proper Case (not of Frequent Types, only first let-
ter is uppercase and have length restrictions, e.g. ‘‘Ala”), and
Long Proper Case (not of Frequent Types, only first letter is
uppercase and have length restrictions, e.g. ‘‘Accordingly”).

� Other: This class contains the tokens that cannot be grouped into
the above classes.

3.2. Bigram language model for protein names

In this first method, we use a Bigram language model, a special
case of N-gram which is used in various areas of statistical natural
language processing, along with the hierarchically categorized syn-
tactic word types in order to identify protein names. Statistical lan-
guage models date back to Shannon’s work on information theory
[36]. One of the basic aims of the statistical language models is to
predict the probability of the next word, given the previous word
sequence: Pðwi j w1; . . . wi�1Þ. Given a Bigram language model, it
is straightforward to compute the probability of a word sequence
as follows:

Pðw1;w2; . . . ;wi�1;wiÞ ¼ Pðw1Þ Pðw2 j w1Þ . . . Pðwi j wi�1Þ ð1Þ

We used a modified version of Eq. (1) in order to apply the Bigram
language model to the problem. Given a token wi, Psingle(wi) denotes
the unigram probability of token wi being a single-word protein
name, Pfirst(wi) denotes the unigram probability of token wi being
the first word in a protein name, Plast(wi) denotes the unigram prob-
ability of token wi being the last word in a protein name, and the
conditional probability Pinðwi j wi�1Þ represents the Bigram proba-
bility of the fragment hwi�1;wii being a constituent in a protein
name. After defining the unigram and Bigram probabilities, our Bi-
gram language model calculates the likelihood of a given token se-
quence hw1;w2; . . . ;wi�1;wii being a protein name as in Eq. (2).

PprotðW 1;w2;. . .;wi�1;wiÞ¼
PsingleðwiÞ if i¼1
PfirstðwiÞ Pinðw2 jw1 .. .Pinðwi jwi�1 PlastðwÞ if i>1

�

ð2Þ

Our first modification on Eq. (1) is calculating the unigram probabil-
ities in three different categories according to their positions: (1) sin-
gle for the single-word protein names, (2) first for the words in the first
position in a multiple-word protein name, and (3) last for the words in
the last position in a multiple-word protein name. The second modi-
fication is adding a new factor, the unigram probability of the last to-
ken being the last word in a protein name, to Eq. (1). The modification
is based on the observation that the rightmost words of the protein
names exhibits considerable degree of regularity and carry important
information for extraction purposes. For example, the number of un-
ique words appears in the last position in the protein names tagged in
the YAPEX corpus is 1101. This number is 175 for the words in the first
position, and 150 for the words in middle positions, 258 for the words
preceding a protein name and 287 for the words following a protein
name. Moreover, about half of the words appear in the last position
can be grouped into Single class in our hierarchy.

As stated in Section 2, our system uses a hierarchy of syntactic
token patterns to generalize the tokens and reduce the influence of
the data sparseness problem. In the absence of a token probability
(Psingle, Pfirst, Plast, Pin), our system looks for a good substitute for the
token probability to put into Eq. (2). Token type probabilities P(ti)
and token class probabilities P(ci) are added to the model to substi-
tute the token probabilities P(wi). We simply substitute the token
probability by the type probability, if the type probability is avail-
able. Otherwise, we use the token class probability for the substi-
tution. Eqs. (3)–(5) describes how our model assigns the unigram
probabilities in the absence of the token probabilities.

PsingleðwiÞ ¼
PsingleðtiÞ if PsingleðtiÞ available
PsingleðciÞ if PsingleðtiÞ not available

�
ð3Þ

PfirstðwiÞ ¼
PfirstðtiÞ if PfirstðtiÞ available
PfirstðciÞ if PfirstðtiÞ not available

�
ð4Þ

PlastðwiÞ ¼
PlastðtiÞ if PlastðtiÞ available
PlastðciÞ if PlastðtiÞ not available

�
ð5Þ

Here, ti denotes token type of word wi, and ci denotes hierarchical
class of word wi. There are two alternatives for substituting the uni-
gram probabilities: either type probabilities or class probabilities.
On the other hand, there are eight alternatives for substituting
the Bigram probabilities. Eq. (6) describes how our model assigns
the Bigram probabilities under different conditions in the absence
of the token Bigram probabilities.

If ðPinðti j wi�1Þ is availableÞ PinðWi j wi�1Þ ¼ Pinðti j wi�1Þ
else If ðPinðwi j ti�1Þ is availableÞ Pinðwi j wi�1Þ ¼ Pinðwi j ti�1Þ
else If ðPinðci j wi�1Þ is availableÞ Pinðwi j wi�1Þ ¼ Pinðci j wi�1Þ
else If ðPinðwi j ci�1Þ is availableÞ Pinðwi j wi�1Þ ¼ Pinðwi j ci�1Þ
else If ðPinðti j ti�1Þ is availableÞ Pinðwi j wi�1Þ ¼ Pinðti j ti�1Þ
else If ðPinðci j ti�1Þ is availableÞ Pinðwi j wi�1Þ ¼ Pinðci j ti�1Þ
else If ðPinðti j ci�1Þ is availableÞ Pinðwi j wi�1Þ ¼ Pinðti j ci�1Þ
else Pinðwi j wi�1Þ ¼ Pinðci j ci�1Þ

ð6Þ

After learning the necessary model parameters, a probability
estimate is produced for every possible fragment in the test data.
We use sliding window technique to determine the fragments
and Eq. (2) to calculate the fragment probabilities. A fragment in
a sliding window is a sequence of words starting from the first
word of the sliding window. Because the sliding window size
parameter determines the set of candidate fragments, it has also
affect on system’s ability to identify protein names. In our experi-
ments, we use the maximum protein name length in the training
set as the sliding window size. Fragments whose probability esti-
mates exceeding two threshold values are considered as possible
protein names. The first threshold value (T1) is used to eliminate
the weak estimates. After selecting a candidate fragment available
in a sliding window, our algorithm compares its probability esti-
mate with this threshold value which is the same value for all frag-
ments. If it passes the first threshold, it is compared with the
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second threshold value. The second threshold value (T2) is used to
remove the length bias of selection. Because of the nature of Eq. (2),
long fragments are more disadvantageous than short ones. We at-
tempt to avoid this bias by adding a length (number of tokens)
parameter to the equation T2 ¼ s‘, where T2 is calculated for a can-
didate fragment. In the equation, ‘ denotes the candidate fragment
length, and s denotes a system set parameter for the cutoff value.
The value of s is greater than T1, and this means that the shorter
candidate fragments must satisfy more strict restrictions induced
by T2. If there are candidate fragments whose probability estimates
exceed both of the thresholds, the longest one is selected as a pro-
tein name from the sliding window. Conversely, if none of the frag-
ments exceeds the threshold values, the algorithm does not extract
any protein name from that sliding window.

Both T1 and s parameters have influence on the performance of
the extraction task. In order to obtain the optimum values for these
parameters, a hold-out set is used. After the unigram and Bigram
probabilities are learnt from the training set, the optimum values
for T1 and s are acquired using the hold-out set. The optimum val-
ues for T1 and s are the values that produces maximum F-score for
the hold-out set.

An example case is provided in Fig. 1 in order to make the con-
cept clearer. In the figure, an excerpt from the YAPEX corpora [13],
and the possible fragment probabilities for the window starting
from token ‘‘AIRK2” are shown. After calculating the fragment
probabilities, our algorithm starts to compare each fragment prob-
ability to the threshold values. For instance, Pprot(‘‘AIRK2”) is com-
pared to T1(= 0.0005) and T2(= s = 0.09) values. On the other hand,
Pprot(‘‘AIRK2”, ‘‘kinase”) is compared to T1(= 0.0005) and
T2(= s2 = 0.0081) values.

3.3. Learning rules for protein name extraction

In our second method, we developed an automatic rule learning
algorithm. The success of the rule learning depends on how well it
recognizes the regularities among the target elements to be ex-
tracted. One of the main performance measures in information
extraction is ‘‘recall” which is the percentage of correct names that
are found. Because recall is directly related to the learner’s gener-
alization ability, rule generalization is one of the critical functions
in the system.

Our rule generalization method is based on specific generaliza-
tion of strings as described in [37]. In order to generalize two
strings, a unique match sequence of those strings is obtained,
and the differences in the unique match sequence are replaced
by variables to get a generalized form of the strings. A unique
match sequence can be described as a sequence of similarities
(substrings occurring in both strings) and differences (substrings
differing between strings) between two strings. A unique match
sequence can occur either once or not at all for any given two
strings. To meet these criteria, the notion of unique match se-
quence has two necessary conditions: (1) a symbol cannot occur
in any difference, if it occurs in a similarity, and (2) a symbol can-
not occur in the second constituent of any difference if the same
symbol is found in the first constituent of a difference. The exam-
… and AIRK2 kinase b

Possible Fragment Probabilities  
(Sliding-Window Size = 4, T1 = 0.0005, τ = 0.09):   
− Pprot(“AIRK2”) = Psingle(“AIRK2”) 
− Pprot(“AIRK2”, “kinase”) = Pfirst(“AIRK2”) Pin(“kinase” | “AIRK2”) Pla

− Pprot(“AIRK2” , “kinase” , “ bind”) = Pfirst(“AIRK2”) Pin(“kinase” | “AI
− Pprot(“AIRK2” , “kinase” , “bind” , “one”) = Pfirst(“AIRK2”) Pin(“kinase

Fig. 1. An example c
ples provided below will clarify the unique match sequence
concept.

� UMS(e, e) ? SIM(e)
� UMS(ab,ab) ? SIM(ab)
� UMS(bc, ef) ? DIFF(bc, ef)
� UMS(abcb, dbebf) ? DIFF (a, d) SIM(b) DIFF (c, e) SIM(b) DIFF

(e, f)
� UMS(abb, cdb) ? Ø
� UMS(ab, ba) ? Ø

As evident from the examples, the unique match sequence of two
empty strings is a sequence of a single similarity which is an empty
string. Moreover, the unique match sequence of two identical
strings is a sequence of a single similarity which is equal to that
string. The unique match sequence of two totally different strings
is a sequence of a single difference.

In this work, we propose the use of hierarchical syntactic token
types in the generalization process of protein names using the un-
ique match sequence concept. According to our rule generalization
method, the learner first generates the unique match sequence of
two given protein names. The differences in a unique match se-
quence are generalized using the hierarchical syntactic token types
described above. A difference in a unique match sequence can be
replaced with one of the following four variables by our generaliza-
tion method.

� Type variable: A difference in a unique match sequence is gener-
alized as a type variable, if the two constituents of the difference
are the same token type. A type variable is the name of a syntac-
tic token type. For example, the difference DIFF(1,3) is general-
ized as the type variable Number since the token types of 1
and 3 are numbers. A type variable represents all tokens of that
type, and it can be replaced with any token of that type.

� Class variable: If the constituents of a difference are not the same
token type but the same token class, the difference is general-
ized as a class variable. A class variable is the name of a syntactic
token class. For example, the difference DIFF(1,B) is generalized
as the class variable Single since 1 and B are not the same type
but they are in Single class. A class variable represents all the
tokens in that class.

� Optional variable: A difference in a unique match sequence is
replaced with an optional variable, if one of the constituents in
the difference is empty string. For example, the difference
DIFF(B,e) is generalized as Opt(B) variable which represents B
or empty string.

� AnyToken variable: This operation replaces a difference in a
unique match sequence with an unrestricted variable AnyToken,
if any of the above conditions are not satisfied. Unrestricted vari-
ables are used to represent any token.

In order to make the rule generalization concept clearer, an
example rule generation is given in Fig. 2. In the example, a gener-
alized rule is learnt from two protein name instances: ‘‘presenilin-
1” and ‘‘galectin-3”. First, the unique match sequence of these two
ind one another…

st(“kinase”) 
RK2”) Pin(“bind” | “kinase”) Plast(“bind”) 
” | “AIRK2”) Pin(“bind” | “ kinase”) Pin(“one” | “ bind”) Plast(“one”) 

ase for filtering.
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protein names is found. In order to obtain the generalized rule, our
learner starts to perform the generalization operations on the dif-
ferences in the order of their specificity. Because the constituents
of the first difference are of the same token type, the learner re-
places the difference element in the unique match sequence with
the token type variable of type Frequent Type-2. After generalizing
the first difference, the learner substitutes the second difference
element in the unique match sequence with the token type vari-
able Number. In the example, the generalized rule states that a to-
ken with type Frequent Type-2 followed by the token ‘‘–” and a
token with type Number forms a protein name. In the example,
some of the new protein names recognizable by the generalized
rule are also shown: ‘‘caveolin-1”, ‘‘thrombospondin-1”, ‘‘interleu-
kin-3”, and ‘‘interleukin-12”.

We validate each generalized rule on the training set in order to
give their confidence factors. At the end of the confidence evalua-
tion, each rule is assigned a confidence factor. The confidence fac-
tor of a given rule shows how well the rule classifies positive and
negative instances. Our main resource for assigning a confidence
factor to a rule is the result of applying that rule to the training
set. Rule confidence factor is the degree, which the rule gives the
correct result across individual instances (both positive and nega-
tive). In other words, the confidence factor of a rule is the percent-
age of correctly extracted names as a result of applying that rule to
the training set. If the confidence factor of the generalized rule ex-
ceeds a certain threshold value, the learner puts the generalized
rule into the final rule-set. Otherwise, the rule learnt by generaliza-
tion is discarded. Furthermore, confidence factors are also used to
determine the rule priorities. The generated rules are ordered
according to their confidence factors and applied in that order dur-
ing the test.

In order to make a full use of the training data and improve the
algorithm’s extraction performance by further rule refinement, po-
sitive examples (i.e. protein names) that are uncovered by the
learnt rule-set are added to the rule-set and each rule in the
rule-set is associated with a set of exceptions. Normally, the result-
ing rule-set at the end of the rule generation step covers all of the
positive instances in the training data. However, there may be
some positive instances in the training data that are uncovered
by the resulting rule-set after rule filtering step because the rules
below the threshold are eliminated after this step. The problem
in this particular case is that the extractor would miss a protein
name in the test data, even if the missed protein name occurs in
the training data, because the final rule-set generated at the end
of the training does not cover that protein name. We address this
issue by adding the uncovered positive examples to the final
rule-set. The second problem is that of efficient utilization of the
negative examples (i.e. non-protein names) in the training data,
though they are used in confidence factor calculation. If it is not
a 100% confident rule, a rule in the final rule-set may cover some
negative instances in the training data. This leads to recognition
of an incorrect protein name during the test, even if that name is
marked as a non-protein name in the training data. This issue is
solved by associating each rule in the final rule-set with a set of
exceptions. During confidence factor calculation, every negative in-
• Seed Protein Name Instances:
“presenilin – 1”,  “galectin – 3” 

• Unique Match Sequence:  DIFF(presenilin, galectin) SIM(-) DIFF(1,3) 
• Generalize: DIFF(presenilin, galectin)    Frequent Type-2 
• Generalize: DIFF(1, 3)    Number 
• Generalized Rule: Frequent Type-2 SIM(-)  Number
• Recognizable Protein Names:

“caveolin – 1”, “thrombospondin – 1”, “interleukin – 3”, “interleukin – 12” 

Fig. 2. An example rule generation.
stance recognized by the candidate rule is put into that rule’s
exception set. If any of the names in a rule’s exception set are rec-
ognized by that rule during the test, the recognized names are just
ignored and not extracted.
4. Experimental evaluation

4.1. Corpora and methodology

In order to evaluate the performance and the behavior of the
proposed methods under different conditions, we conducted a
set of experiments. The main objective of the experimentation is
to analyze the performance and behavior of our methods on differ-
ent datasets, and with different threshold values. We also compare
our methods to several other studies. Moreover, we investigated
the impact of using hierarchical token types and the other novelty
we proposed on the extraction process.

We conducted our experiments on two different datasets. The
first one, the YAPEX corpora [13], contains two mutually exclusive
collections of biological abstracts. The training (reference) collec-
tion contains 1745 annotated protein names, and the total number
of the annotated protein names in the test set is 1966. We recorded
performance scores on this dataset both with and without cross
validation for comparison purposes. The second dataset used for
evaluation of the proposed methods is the GENIA corpus [11]
which contains 2000 labeled abstracts. We performed 10-fold cross
validation on the GENIA dataset to evaluate the developed
methods.

We measured precision, recall, and F-score; as is commonly
done in the Message Understanding Conference (MUC) evalua-
tions. Precision is the fraction of correct outcomes divided by the
number of all outcomes. For instance, precision value for the pro-
tein name extraction task is the percentage of extracted protein
names that are correct. On the other hand, recall is analogous to
sensitivity in binary classification. Recall can be defined as the frac-
tion of correct outcomes divided by the total number of possible
correct answers. The F-score, harmonic mean of precision and re-
call, provides a method for combining precision and recall scores
into a single value.

Franzen et al. [13] defines several notions of correctness. The
most common two are ‘‘strict mode” and ‘‘sloppy mode”. In strict
mode, two protein names are not considered a match unless they
consist of the same character sequence in the same position in
the text. In the latter approach, partial matches are also considered
correct. In order not to over-estimate the performance, we used the
strict mode which is the most conservative approach to determine
the truth-value of the matching in our experiments.
4.2. Results and discussion

4.2.1. Comparison of methods
Table 2 shows the quantitative results of the experiments

performed. Our Bigram method reached F = 67.7% on the YAPEX
dataset and F = 66.8% on the GENIA dataset without relying on
hand-crafted rules, dictionaries, and deep language processing.
With a lower F-score performance, the developed rule learning
algorithm reached F = 61.8% on the YAPEX dataset and F = 61.0%
on the GENIA dataset. Compared to the YAPEX system, both of
the developed methods produced better results in terms of F-score.

Tsuruoka and Tsujii [8,9] reported F = 66.6% on GENIA corpus by
using approximate string searching techniques for discovery, a
probabilistic variant generator for dictionary expansion and a na-
ive Bayes classifier for filtering. Using less resource, Bigram pro-
duced better results on the same dataset. Krauthammer et al. [6]
reported F = 75% (considering partial matches as correct) on a set



Table 2
Quantitative results of the experiments performed.

Corpus Cross validation Precision (%) Recall (%) F-score (%)

Bigram YAPEX Yes 67.5 67.9 67.7
Bigram YAPEX No 63.3 71.8 67.3
Bigram GENIA Yes 61.4 73.2 66.8
Rule YAPEX Yes 64.4 59.4 61.8
Rule YAPEX No 63.1 60.1 61.6
Rule GENIA Yes 60.0 62.1 61.0
YAPEX YAPEX No 62.0 59.9 61.0

‘‘Bigram” denotes our first method based on Bigram language model, and ‘‘Rule”
denotes the developed rule learning method. The last row contains the performance
values for the YAPEX project and cited from the project homepage (Protein halt i
text, http://www.sics.se/humle/project/prothalt). The performance scores on the
YAPEX dataset are recorded both with and without 10-fold cross validation,
whereas the performance scores on the GENIA dataset are recorded only with 10-
fold cross validation. We use the standard formula for precision, recall, and F-score
calculation: precision = (true positives)/(true positives + false positives); recall =
(true positives)/(true positives + false negatives); F-score = (2 � precision � recall)/
(precision + recall).
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of two papers. When only exact matches were considered as cor-
rect, their system achieved F = 59.8%. Moreover, the reported per-
formance scores are based on a very small dataset. In terms of
the amount of the resources used the most similar previous work
is the method developed by Seki and Mostafa [31]. They reported
F = 63.3% on the YAPEX dataset by employing a probabilistic model
together with the surface clues specified for identifying protein
names with an emphasis on finding name boundaries. Though they
used a number of basic heuristic rules, their method does not rely
on dictionaries, part-of-speech (POS) taggers and/or syntactic pars-
ers. The two other methods that we can compare on the same data-
sets are SemiCRF and DictHMM, two learning methods for protein
name recognition proposed by Kou et al. [27]. Using dictionaries
with CRF-like learning methods and additionally utilizing POS tags,
SemiCRF achieved F = 66.1% on the YAPEX dataset and F = 72.3% on
the GENIA dataset. While SemiCRF produced better results on the
GENIA dataset, Bigram achieved better performance on the YAPEX
dataset with respect to F-score. Moreover, Bigram’s high recall per-
formance is noteworthy. On both datasets, Bigram has higher recall
score. Our rule learning algorithm, on the other hand, produced
lower scores on both datasets. Their novel system, DictHMM,
reached F = 51% on the YAPEX dataset and F = 54.7% on the GENIA
dataset. DictHMM combines a dictionary with an HMM to perform
name matching. Compared to DictHMM, the developed Bigram and
rule learning methods produced better results in terms of F-score.
Though DictHMM has low F-score performance, it emphasizes re-
call over precision. However, Bigram has a higher recall score on
both datasets. The best published result on the YAPEX dataset be-
longs to the NLProt system [28]. NLProt reached F = 75% on the YA-
PEX dataset and F = 71% on the GENIA dataset. NLProt combines a
pre-processing dictionary and rule-based filtering step with sev-
eral separately trained support vector machines. The utilization
of several dictionaries (dictionary of protein names, dictionary of
chemical compounds, etc.) and hand-tailored filtering rules has
an impact on the performance difference between NLProt and
our methods. According to their results, leaving out only the dictio-
nary yields 3% loss on NLProt’s F-score.
Table 3
Performence values for Bigram method with different token type sets (T1 � 0.0005, s = 0.0

Set Number of token/class types H

Base types 11 Token types N
Base types with hierarchy 11 Token types + 5 token classes Y
All types 21 Token types N
All types with hierarchy 21 Token types + 5 token classes Y
Exploiting only hierarchical token types, our Bigram method
achieved a better performance than many other techniques with
respect to F-score. The primary advantage of using less resource
is the decrease in the processing overhead and, therefore, faster
extraction speed, which is especially important for the extraction
of protein names from large number of biomedical documents.
Furthermore, the method does not suffer from the drawbacks typ-
ical for dictionary-based systems and systems using hand-crafted
rules. For instance, there is no need for regular dictionary updates.
The methods adaptability to the other bio-entity extraction tasks is
also easier for not using hand-crafted rules.

The developed rule learning method is also effective for protein
name extraction and achieved better performance than some of the
previous work. However, its performance is behind the developed
Bigram method in terms of F-score. Particularly, the difference in
the recall rates is very obvious, though both methods use the same
concept for generalization. This is due to the small number of vari-
ables defined for generalization. The granularity level of the learnt
rules affects the performance of the rule learning systems. While
over-specific rules may cause low recall, over-general rules cause
low precision. This issue could be addressed by adding more com-
prehensive variables. The increase in the number and the flexibility
of the variables used for the rule construction would improve the
expressiveness of the rules, and thus result in better performance.

4.2.2. Hierarchy usage
We investigated the effects of using hierarchical token types for

generalization by testing the Bigram method on the YAPEX dataset
with different token type sets. The performance values obtained for
different token type sets are shown in Table 3. The first set contains
11 base token types (Single Letter, Number, Roman Numeral, Greek
Letter, Short Abbreviation, Long Abbreviation, Delimiter, Regular-
Frequent Type, Regular-Lowercase, Regular-Proper, Other) from
our original set and does not have a hierarchy. The second set con-
tains five core classes in addition to the same token types in the
first set and has a hierarchical relation between them as in our ori-
ginal set. The third set contains all 21 token types available in the
original set but does not have a hierarchy; and the last set is the
original set with a hierarchy. As seen from Table 3, hierarchy usage
has significantly contributed to the recall rate. The F-score value
improved from 21.2% to 62.3% on the sets that consist of base token
types. Moreover, we observed even more performance improve-
ment on the sets that consists of all token types introduced in Sec-
tion 3.1. The obtained improvement is 45.2% in the F-score values.
Another notable impact is the relatively small decrease in the pre-
cision rates. The decrease is inversely proportional to the broad-
ness of the token type set. It is more considerable when the
number of token types is small. For instance, the precision decrease
is only 1.4% when we add a hierarchy level to original type set. On
the other hand, the decrease in the precision becomes more signif-
icant for the base type set. Overall, the results show that hierarchy
usage improved the performance of the extraction process.

4.2.3. Smoothing
We employed two novel ideas to achieve better performance in

the Bigram method: (1) modification of the standard Bigram calcu-
lation method, and (2) the use of hierarchically categorized
9).

ierarchy Precision (%) Recall (%) F-score (%)

o 63.8 12.7 21.2
es 56.8 68.9 62.3
o 64.7 13.3 22.1
es 63.3 71.8 67.3

http://www.sics.se/humle/project/prothalt


Table 4
Performence values for Bigram method with different calculation methods and different smoothing schemes (T1 � 0.0005, s = 0.09).

Bigram calculation method Smoothing Precision (%) Recall (%) F-score (%)

Eq. (1) No smoothing 17.3 15.3 16.2
Eq. (1) Good-turing 16.9 16.5 16.7
Eq. (1) Hierarchical token types 31.8 48.8 38.5
Eq. (2) No smoothing 64.7 13.3 22.1
Eq. (2) Good-turing 62.7 15.7 25.1
Eq. (2) Hierarchical token types 63.3 71.8 67.3

The first three rows contain the performance values obtained by using standard Bigram calculation method described in Eq. (1) and the last three shows the performance
values obtained by using modified calculation method described in Eq. (2). We investigated the schemes where no smoothing performed on the observed probabilities (‘‘No
smoothing”), good-turing [38] method employed for probability estimation (‘‘Good-Turing”), and hierarchically categorized syntactic token types used (‘‘Hierarchical Token
Types”).
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syntactic token types to overcome the data sparseness problem. In
order to evaluate the contribution of the former, we compared our
modified version to the standard Bigram calculation method de-
scribed in Eq. (1). Moreover, we performed comparative experi-
ments on different smoothing schemes to see the effect of
hierarchy usage to remedy the data sparseness problem. Table 4
shows the results of the comparison. Our smoothing scheme based
on the hierarchical token types outperformed the others. More-
over, the modified Bigram version proposed in this paper obviously
improve over the standard version.

4.2.4. Threshold factor
The threshold factors also have an impact on the performance of

our extraction methods. The Bigram method automatically finds
threshold values (T1 and s) by testing the obtained model on a
hold-out set. However, it is also possible to manually set these val-
ues and adjust the performance tradeoff between precision and re-
call. Fig. 3 shows the performance of the Bigram method on the
YAPEX dataset as the threshold parameter ‘‘s” changes and ‘‘T1”
stays constant. T1 value is set to 0.0 in Fig. 3(a), while it is set to
0.0005 in Fig. 3(b). As expected, the recall value decreases with
the increase in threshold in both graphs. In contrast, the precision
value is directly proportional with the threshold value; the preci-
sion increases parallel to the increase in the threshold value. We
observe a drastic change in the performance between s = 0.0 and
s = 0.1 values in Fig. 3(a). Normally, one would expect a high recall
value and a low precision value where s value is set to 0.0. How-
ever, both precision and recall scores are very low at s = 0.0 in
Fig. 3(a). This is due to the fact that the longest fragment, among
the all candidate fragments whose probability estimate exceed
the threshold value, is selected as a protein name. Because, T1 is
constantly set to 0.0 in Fig. 3(a), the longest fragments in the slid-
ing windows were selected as protein names without any restric-
tion where s = 0.0, which caused a lot of errors. In a different
scheme, Fig. 3(b), where s is set to a non-zero value, the extractor
exhibits the normal behavior (high recall, low precision at s = 0.0).

Fig. 4 shows the performance of the Bigram method on the YA-
PEX dataset as the threshold parameter ‘‘T1” changes and ‘‘s” stays
constant. s value is set to 0.0 in Fig. 4 (a) and 0.09 in Fig. 4(b). A
Fig. 3. The performance of Bigram method on the YAPE
similar trend as in Fig. 3 is also observed in this figure: the recall
value decreases with the increase in threshold and the precision in-
creases parallel to the increase in the threshold value. Another sim-
ilarity is the very low precision and recall scores obtained at
T1 = 0.0 in Fig. 4(a). Moreover, we observe a drastic change in the
performance between T1 = 0.0 and T1 = 0.0005 values in Fig. 4(a).
The reason for such behavior is the same as discussed in Fig. 3.

On the other hand, automatic rule learning method has a user-
set threshold parameter. Fig. 5 shows the performance of auto-
matic rule learning method on the YAPEX dataset as the threshold
parameter changes. The optimum value for the threshold parame-
ter is found to be 0.48, where the acquired F-score value is maxi-
mized, through experimentation. We observe the same trend in
Fig. 5; the recall value decreases and the precision value increases
with the increase in threshold. Another notable observation is the
drop in the recall rate where the threshold parameter is 0.49. This
behavior is caused by the elimination of a general rule whose true
positive (TP) returns are more than its false positive (FP) returns.
More importantly, the number of TPs recognized by this rule has
a prominent share in the total number of TPs recognized by the
rule-set. Therefore the elimination of this rule leads to a consider-
able decrease in the total number of TPs, which also causes the
drop in the recall rate. This situation is a result of the small number
of variables defined for generalization. The transition would be
smoother if the learnt rules were fine-grained enough.
5. Conclusions and future work

In this paper, we present two different learning approaches for
identifying protein names in biomedical texts. Our first method
follows a probabilistic approach and uses Bigram language model.
The second method is an automatic rule learning method for pro-
tein name extraction. This method aims to learn rules automati-
cally to recognize the protein name patterns and generalize these
patterns by processing similarities and differences between them.

Compared to previous work, the proposed methods exploit a
two-level hierarchy of useful syntactic token types for representing
the protein names instead of using a simple list of token types. In
X dataset as the threshold parameter ‘‘s” changes.



Fig. 4. The performance of Bigram method on the YAPEX dataset as the threshold parameter ‘‘T1” changes.

Fig. 5. The performance of automatic rule learning method on the YAPEX dataset as
the threshold parameter changes.
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the first approach, we use the hierarchy to generalize the tokens
and reduce the influence of the data sparseness problem. In the lat-
ter one, we use the hierarchy for rule generalization. The results
show that using a hierarchy improved the performance of the
extraction process and the impact of the hierarchy usage is directly
proportional to the broadness of the token type set.

We performed several experiments on different datasets to
evaluate the performance of our methods. We compared the per-
formance of the proposed approaches with previous methods.
The comparison results indicate that our suggested methods can
be used for protein name identification task effectively. Avoiding
deep syntactic/semantic analysis, the proposed methods reduce
processing overhead. They also achieve adaptability which is an-
other major advantage. Thus, the proposed techniques can be ap-
plied to other bio-entities such as gene names.

Our future work will be carried out in several directions. First,
we believe that extending the token type set would provide further
increase in the generalization capability, since the results show
that using hierarchically categorized syntactic word types posi-
tively affects the extraction performance. Moreover, defining new
generalization variables would have a positive impact on the gen-
eralization performance of our rule learning method. Currently, we
generate the base rules and generalize them just one step and scan
the entire rule space. Adding some more steps to the generalization
process and employing a search mechanism during rule generation
would improve the efficiency of rule construction.
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