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a b s t r a c t

Markov renewal processes with matrix-exponential semi-Markov kernels provide a
generic tool for modeling auto-correlated interarrival and service times in queueing
systems. In this paper, we study the steady-state actual waiting time distribution in an
infinite capacity single-server semi-Markov queuewith the auto-correlation in interarrival
and service timesmodeled byMarkov renewal processes withmatrix-exponential kernels.
Our approach is based on the equivalence between the waiting time distribution of this
semi-Markov queue and the output of a linear feedback interconnection system. The
unknown parameters of the latter system need to be determined through the solution of
a SDC (Spectral-Divide-and-Conquer) problem for which we propose to use the ordered
Schur decomposition. This approach leads us to a completely matrix-analytical algorithm
to calculate the steady-state waiting time which has a matrix-exponential distribution.
Besides its unifying structure, the proposed algorithm is easy to implement and is
computationally efficient and stable. We validate the effectiveness and the generality of
the proposed approach through numerical examples.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

In this paper, we study the steady-state waiting time in a single-server queue in which there is auto-correlation both in
interarrival and service times. We model such auto-correlations by using a Markov renewal process or sequence (denoted
by MRP) with finite state-space for both interarrivals and services with the associated semi-Markov kernels in matrix-
exponential form. In particular, we study the Lindley equation in continuous-time:

Wk+1 = (Wk + Bk − Ak)+ = max(0,Wk + Bk − Ak), k ≥ 0, (1)

where Ak (designating interarrival times) and Bk (designating service times) are Markov renewal processes and the
distribution of W = limk→∞Wk needs to be obtained algorithmically (when it exists), which is the scope of the current
paper. Above, for k ≥ 0, Ak and Bk are independent of each other and also of Wk. The case of cross-correlation between
Ak and Bk leads to dependent queues which are outside the scope of the current paper; see [3] for a review of the early
literature and [4,5] for more recent studies on this topic. The random variableW designates the steady-state waiting time
for the queueing system described in (1) which is known to be the semi-Markov queue or the SM/SM/1 queue in short [6].
We note that the Lindley equation (1) perfectly describes the queue waiting time in a queueing system with renewal-type
services using the first come first serve (FCFS) service discipline. However, the situation is different when the service times
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are of the more general Markov renewal type in which case the Lindley recurrence may come short of accommodating
different models based on how the service process behaves when the queue is empty [7]. In the current paper, we focus
on queues that are described solely by the Lindley equation (1) as in [6]. For the case of non-renewal service times, more
general models, for instance the ones discussed in [7], with more general descriptions than that of the recurrence (1), are
left for future research.
Queueing systems with arrivals governed by a semi-Markov process have been studied extensively since an SM/M/1

queue was first analyzed in [8]. On the other hand, [9] uses a matrix factorization method for the more general SM/G/1
queue. The Reference [10] studies the SM/PH/1 queue and introduces a non-linear matrix equation for calculating the
waiting time distribution. However, the proposed iterative techniques for solving the matrix equation are relatively slow
due to their linear convergence rates. The more general SM/SM/1 queue is studied in [6] by solvingWiener-Hopf equations,
and waiting times are found without having to find queue occupancy probabilities first. However, the method is based on
transform domain calculations and polynomial root finding; therefore it may not scale to large-scale problems. The work
in [4] is similar to ours in the sense of solving the semi-Markov queue described by the Lindley equation, and [4] also allows
dependence between interarrival and service times, but their models are relatively limited compared with ours and their
methods again rely on transform domain calculations. Recently, a spectral decomposition approach is proposed in [11] for
the SM/SM/1 queue using the calculation of eigenvalues and eigenvectors of a so-called couplingmatrix and potential use of
complex arithmetic. However, calculating eigenvectors is known to be error-prone, especially for closely located eigenvalues
or eigenvalues with multiplicity.
The alternative approach is the matrix-analytical approach pioneered by Neuts which does not rely on calculating

polynomial roots or eigenvectors. In the matrix-analytical approach, the queue occupancy is observed at certain embedded
epochs and a structured Markov chain (of M/G/1 or G/M/1 type) is constructed for the queue length, for instance for
the (B)MAP/G/1 queue [12,13]. The key to the matrix-analytical approach is the solution to a nonlinear matrix equation
which can be solved by quadratical convergence rate algorithms like the logarithmic reduction algorithm for [14] and the
iterative scheme of [15] for QBD (Quasi Birth and Death) type Markov chains, and the cyclic reduction algorithm of [16], the
invariant subspace approach of [17], and the technique proposed in [18] for M/G/1 type Markov chains. Once a solution for
this matrix equation is obtained, one can then find the queue length probabilities recursively [19]. Given the steady-state
queue length probabilities, the waiting time distribution and its moments can be obtained, although not in a very compact
form [2]. We refer the reader to [20] and [13] for an extensive treatment of the matrix-analytical approach. Studies related
to auto-correlated service times are less common and we now list a few from the existing literature. A MAP/MSP/1 queue is
studied in [7] using matrix-analytical techniques in terms of the queue length, but waiting time results are not given. The
Reference [21] studies a queue whose service speed changes according to an external environment governed by a Markov
process.
The goal of the current paper is to provide a computationally efficient and stable algorithmic method to compute the

actual waiting time distribution for the semi-Markov queue described by the Lindley recurrence (1). This problem is the
same as the one stated in [6]. The starting point of the current paper is the assumption of the semi-Markov kernels of
interarrival times and service times having matrix-exponential representations. A semi-Markov kernel (or kernel matrix)
denoted by F(t) is said to have a matrix-exponential (ME) representation if the kernel F(t) satisfies:

F(t) = VetTU + F , t ≥ 0, (2)

where F(t) is square of size n and T is of sizem. In this representation, n is the number of states andm is the number ofmodes
of the underlyingMRP. Throughout this paper, we call such processesMRP-ME. AnMRP-ME is a generalization of somewell-
known processes like phase-type (PH-type) [22] andME-type renewal processes [23], Markovian arrival process (MAP) [24],
rational arrival process (RAP) [25], and some batch arrival models, for instance the batch Poisson model. Assuming that nA
(nB) and mA (mB) denote the number of states and the number of modes of the underlying MRP-ME for interarrival times
(service times), our main result is that steady-state waiting time for the corresponding semi-Markov queue has a matrix-
exponential distribution with nAmB modes, and finding the coefficients of this distribution amounts to solving a particular
spectral-divide-and-conquer (SDC) problem applied to amatrix of size nAmB+nBmA. Similar results have also been obtained
in the discrete-time setting, but for renewal arrivals and services only in [26]. Given a matrix A, the SDC problem of interest
in this paper is finding an orthogonal matrix Q such that

Q TAQ =
[
A++ A+−
0 A−−

]
, (3)

where the eigenvalues of A++ are exactly the same as the eigenvalues of A with positive or zero real parts. The advantages
of the proposed approach are:

• The approach benefits from being purely matrix-analytical, as explained in [22,13], and the generality of the MRP-ME
model allows one to use a single unifying algorithm for different well-known queueing models. While doing so, we do
not need to construct the embedded Markov chain as in the matrix-analytical approach of Neuts and we directly obtain
the waiting time distribution and its moments using expressions that appear to be much simpler than the ones available
in the literature. However, we note that we do not give expressions for the queue length in our approach.
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• As the numerical engine, we propose to use the ordered Schur decomposition which is known to be the standard serial
algorithm for solving the SDC problem in the numerical linear algebra literature due to its well-established numerical
stability and computational efficiency [27]. The stability of the Schur decomposition approach stems from its ability
to avoid the calculation of all eigenvectors. We calculate only one single eigenvector for which we have a closed form
expression as opposed to numerically calculating all eigenvectors, as in [4]. All other steps of the proposed algorithm
are based on standard vector and matrix operations and are very easy to implement using a linear algebra package like
MATLAB.
• In the definition of the MRP-ME, we allow point masses at the origin, which allows us to model batch point processes as
well, with the same structure. This flexibility has the potential to reduce the need for separate algorithms for queueing
systems with batch arrivals or services.
• In case the interarrival and service MRP-MEs are renewal processes, i.e., nA = nB = 1, then the SDC problem is to apply
to a matrix of additive size mA + mB as opposed to multiplicative size, which is a significant advantage for this special
case.
• In the special case of nB = mA = 1, we propose a Householder transformation for the SDC problem which is computa-
tionally more efficient than ordered Schur decomposition.

The remainder of the paper is organized as follows. Section 2 provides preliminaries and notation used in the paper.
Section 3 describes theME distribution andMarkov renewal processeswithmatrix-exponential kernels and how they relate
to well-known stochastic models used in queueing literature. We introduce a state-space algebra for such distributions in
Section 4.Weprovide our results on the SM/SM/1queue in Section 5. In Section 6,wepresent ourmatrix-analytical algorithm
for the SM/SM/1 queue. Section 7 addresses a modified Lindley recurrence within the same framework. Section 8 provides
numerical examples to validate the effectiveness of the proposed approach. We conclude in the final section.

2. Preliminaries and notation

We use uppercase (lowercase) letters to denote matrices (vectors or scalars). We use g(·) to denote a density; gX denotes
the density of the randomvariable X .We use F(·) to denote a semi-Markov kernel (matrix) andG(·) its kernel densitymatrix.
I and e denote the identity matrix and a columnmatrix of ones of appropriates sizes, respectively. Let A = {Aij} be an n×m
matrix. Then the vectorized form of A is denoted by vec(A):

vec(A) = (A11, A12, . . . , A1m, A21, A22, . . . , Anm) . (4)

The adjoint of a matrix is defined through A−1 = adj(A)/ det(A). Given a p × q matrix B, the Kronecker product of the
matrices A and B is denoted by A⊗ B and the size of A⊗ B is np×mq. We also have (A⊗ B)(C ⊗ D) = AC ⊗ BD. AT denotes
A transposed and the matrix A is orthogonal if ATA = I . For a given real, non-symmetric, and square matrix A and a region
D of the complex plane, we will need to find an orthogonal matrix Q such that

Q TAQ =
[
ADD ADD̄

0 AD̄D̄

]
, (5)

where the eigenvalues of ADD are exactly the same as the eigenvalues of A in D . This problem is called the ordinary SDC
problem [28]. A real square matrix A of size n can be transformed via an orthogonal transformation U into the so-called
real Schur form by writing UTAU = R where R is quasi-upper triangular, which means that the matrix R has either 1-by-1
or 2-by-2 diagonal blocks on the diagonal corresponding to the real and complex eigenvalues, respectively, of the matrix
A [29]. By reordering the blocks by orthogonal transformations, the eigenvalues are made to appear in any order and one
can obtain a matrix Q such that the identity (3) is satisfied and the matrices ADD and AD̄D̄ are quasi-upper triangular
and the eigenvalues of ADD are the same as those of A in D [30,31]. This form is called the ordered Schur form and the
operation to obtain this form is called the ordered Schur decomposition. We note that obtaining the real Schur form is
known to be backward stable and has a complexity of O(n3) [30]. On the other hand, for the computation of the Jordan form
that requires calculation of all eigenvectors, there are no results of guaranteed backward stability and the complexity of this
decomposition ismuch higher than that of the Schur decomposition [32,33]. For this reason, the Reference [32] recommends
not to use the Jordan decomposition whenever it is possible and use instead the more reliable Schur form, which we do in
the current paper. We note that this view is also shared by [27] in which the standard serial algorithm for the SDC problem
is proposed to be the ordered Schur decomposition due to its well-established numerical stability. The ordered Schur form
implementations are available in various platforms in LAPACK [34], OCTAVE [35], MATLAB 7.0 [36], and as a public add-on
to MATLAB [31]. Although there are other proposed algorithms for the decomposition given by (5) (see [28] for an elaborate
discussion of various SDC-solvers), we will focus on the ordered Schur decomposition approach for obtaining numerical
results for this paper.
Of particular interest to the current paper is whenD is taken as the closed right-half plane C+ = {c ∈ C : Re(c) ≥ 0}.

We also define the complementary set C− = {c ∈ C : Re(c) < 0}. In the problems studied in this paper, the matrix of
interest, say A, turns out to have a single eigenvalue at the origin, and we now attempt to show how to calculate the desired
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ordered Schur decomposition of A in an example scenario where

A =

 −1 −1 −1/3 −5/3
−1/3 −1/3 0 −1/3
1/7 3/7 2/7 1/7
0 0 −1/3 −2/3

 .
Note that A has a single eigenvalue at the origin with a left null vector xL = (−1, 3, 0, 1) and a right null vector
xR = (−3, 2,−2, 1)T such that xLA = 0, AxR = 0. MATLAB uses finite precision arithmetic to find the eigenvalues of
A as −1.0107 + j1.0967 × 10−1, −1.0107 − j1.0967 × 10−1, −1.3341 × 10−16, and 3.0715 × 10−1. Although the actual
eigenvalue at the origin should be included inC+, there is the risk of counting it inC− since the real part of the corresponding
numerical eigenvalue is negative. The solutionwe propose is to use theMATLAB function schur.m that calculates the Schur
decomposition of a matrix without any specific ordering of eigenvalues [36]. In particular, we use the following MATLAB
command

[Q1, T1] = schur(A+ xR ∗ xL/(xL ∗ xR))

so as to produce Q T1 (A+
xRxL
xLxR
)Q1 =

T1 =


−1.0107 −1.5310 −1.2190 1.2455

7.8565× 10−3 −1.0107 −3.7428× 10−1 5.2642× 10−1

0 0 1.0000 −5.2959× 10−1

0 0 0 3.0715× 10−1

 .
Note that with the rank-1 update on the matrix A, the single eigenvalue at the origin is moved to λ = 1 which then has
no risk of being counted in C−. We then use the MATLAB function ordschur.m for ordering purposes with respect to
a specific region, whether it be the right-half plane (rhp) or the left-half plane (lhp) (see [36]). In particular, we use the
MATLAB command

[Q, T] = ordschur(Q1, T1 ,′ rhp′)

that generates Q TAQ =
−1.1102× 10−16 −1.7964× 10−1 4.2371× 10−1 −8.8190× 10−1

−8.3267× 10−17 3.0715× 10−1 3.9948× 10−1 −8.7693× 10−1

2.7756× 10−16 2.2204× 10−16 −1.0107 1.4242
−2.7756× 10−16 −1.6653× 10−16 −8.4459× 10−3 −1.0107

 .
Note that this particular form of the MATLAB function ordschur.m was able to move the eigenvalues with positive real
parts and the one at the origin to the north-west corner of the final Schur form, which is the decomposition (5) sought in this
paper. Also note how the complex eigenvalue cases can be handled relatively easily with real arithmetic within the Schur
decomposition framework.
One important special case arises when the matrix A has no eigenvalues in the open right-half plane and only the single

eigenvalue at zero should be placed in the north-west corner of the reduced form. We do not need to find the Schur form
of the matrix A in this case for solving the SDC problem for Awith respect to the complex regionD = C+. For this purpose,
let xR be a right null vector of A. Let e1 be a column vector of zeros except for a one as its first entry. Then we define

u = xR − ‖xR‖2e1, Q = I −
2uuT

uTu
. (6)

Note that Q is a Householder matrix and is orthogonal, symmetric, and moreover Q TAQ = QAQ being in the form of (5)
with a scalar zero substituting for ADD in (5) which is the desired reduced form; see [29] for details.
Let x(t) be a vector function of the indeterminate variable t ∈ (−∞,+∞). The one-sided Laplace transform of x(t)

is given by x∗(s) =
∫
+∞

0− e−tsx(t)dt . Note that we use the ∗ notation for Laplace transforms throughout this paper. The
Dirac delta function δ(t) is a commonly used tool in engineering and it satisfies

∫
+ε

−ε
δ(t) = 1,∀ε > 0. We can also use∫ 0+

0− δ(t) = 1 to refer to the same identity. We note that existence of Dirac delta functions in probability density func-
tions is indicative of a probability mass at the origin. The degree of a polynomial n∗(s) in the indeterminate s is denoted
by deg(n∗). A transform is said to be rational if x∗(s) = n∗(s)

d∗(s) , for some polynomials n
∗(s) and d∗(s). The rational transform

x∗(s) is strictly proper if deg(n∗) < deg(d∗) and is proper if deg(n∗) = deg(d∗). The latter case implies a constant term in
the transform and is indicative of a Dirac delta function in the original domain. The poles of the rational function x∗(s) are
the roots of the denominator polynomial d∗(s). Any strictly proper rational function x∗(s) can additively be decomposed as
x∗(s) = x∗

−
(s)+ x∗

+
(s), where the poles of x∗

−
(s) and x∗

+
(s) reside in C− and C+, respectively. Moreover, this decomposition

is unique. Throughout this paper, a rational transform x∗(s) is said to be stable if all its poles lie in the open right-half plane
(C−) and is anti-stable if all its poles lie in C+.
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A linear time-invariant dynamical system with p inputs and q outputs is represented by the following set of ordinary
differential equations for t ≥ 0 [37]:

d
dt
x(t) = x(t)T + u(t)V , (7)

y(t) = x(t)H + u(t)D, (8)

where u(t) =
(
u1(t), . . . , up(t)

)
and y(t) =

(
y1(t), . . . , yq(t)

)
denote the input and output vectors, respectively, and

x(t) = (x1(t), . . . , xm(t)) is called the state vector and its components are called the state variables, or simply the states.
Thematrices V , T ,H , andD in the Eqs. (7) and (8) are realmatrices of suitable sizes. Considering zero initial state, the transfer
matrix G∗(s) between the input and output vectors is written as [37]:

y∗(s) = u∗(s)G∗(s) = u∗(s)
(
V (sI − T )−1H + D

)
, (9)

where u∗(s) and y∗(s) are the Laplace transforms of the input and output vectors, respectively. The equations of the form
(7) and (8) are said to constitute a state-space representation or realization of the given linear time-invariant system with
transfer matrix G∗(s) = {gij(s)}, 1 ≤ i ≤ p, 1 ≤ j ≤ q if (9) holds [37]. The number of states (i.e., m) is referred to as the
order of the state-space representation. This representation is said to beminimal if one cannot satisfy the identity (9) with a
smaller order. Using similarity transformations, one can obtain infinitely many representations, whereas realization theory
dealswith finding state-space descriptions of linear systems and the properties of these descriptions [37]. Note that the poles

of g∗ij (s), 1 ≤ i ≤ p, 1 ≤ j ≤ q are contained in the eigenvalues of T [37]. In otherwords, if g
∗

ij (s) =
n∗ij(s)

d∗ij(s)
, 1 ≤ i ≤ p, 1 ≤ j ≤ q

for polynomials n∗ij(s) and d
∗

ij(s), then d
∗

ij(s) is a factor of det(sI − T ) [37]. It is also clear that d
∗

ij(−s) is a factor of det(sI + T ).

3. Processes with matrix-exponential structure

We first define a random variable of matrix-exponential (ME) type. A non-negative random variable X is of ME type if its
distribution function is of the form{

d, if t = 0
1+ vetTu, if t > 0

where, for m ≥ 1, v is a 1 × m row vector, T is a m × m matrix, and u is a m × 1 column vector, all with real entries. The
parameter d is the probability mass at zero. Note that d = 1 + vu. The corresponding density function g(t) is then of the
form

g(t) = vetTh+ dδ(t),

where h = Tu. AnME distribution is characterizedwith the quadruple (v, T , h, d) although d can be derived from the others.
The moments of the ME-type random variable X are easily written as

E[X i] = (−1)i+1i!vT−(i+1)h, i > 0. (10)

An ME-type renewal process is one with ME-type inter-renewal times. Next, we extend this definition to a Markov renewal
process whose characterization is given in [8]. We define, for each k ∈ N, a random variable Xk taking values in a finite set
E = {1, 2, . . . , n} and a random variable Tk taking values in R+ = [0,∞) such that 0 = T0 ≤ T1 ≤ T2 ≤ · · ·. The stochastic
process (X, T ) = {Xk, Tk; k ∈ N} is said to be a Markov renewal process (MRP) with state space E provided that

P{Xk+1 = j, Tk+1 − Tk ≤ t|X0, . . . , Xk; T0, . . . , Tk} = P{Xk+1 = j, Tk+1 − Tk ≤ t|Xk},

for all k ∈ N, 1 ≤ j ≤ n, and t ∈ R+. The marginal process Xk of the MRP is called the modulating chain and i ∈ E is called a
state. On the other hand, the other marginal process∆k, k ∈ N defined by∆k = Tk+1 − Tk is called the modulated process.
In this study, we focus our attention to the time-homogeneous case for which the probability

Fij(t) = P{Xk+1 = j,∆k ≤ t|Xk = i}

is independent of the customer number k. The matrix F(t) = {Fij(t)} is then called the semi-Markov kernel of the MRP. For
each pair 1 ≤ i, j ≤ n, the function Fij(t) has all the properties of a distribution function except that the quantities defined
by Fij = limt→∞ Fij(t) are not necessarily one, but instead satisfy

Fij ≥ 0,
n∑
j=1

Fij = 1.

We note that Fij = P{Xn+1 = j|Xn = i) is the state transition probability from state i to j and we assume F = {Fij} is
irreducible. Let π be the stationary solution of this discrete-time Markov chain (DTMC) such that

πF = π, πe = 1. (11)
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We also note that the quantity

Fij(t)/Fij = P{∆k ≤ t|Xk+1 = j, Xk = i} (12)

is the sojourn time distribution in state iwhen the next state is j. A rich sub-case of the MRP is when the kernel F(t) takes a
matrix-exponential form, i.e.,

F(t) = VetTU + F , t ≥ 0, (13)

and equals zero elsewhere. Here, T is square and of sizem and all its eigenvalues have negative real parts. Moreover, V and
U are n×m andm× n, respectively. We call an MRP with a matrix-exponential kernel an MRP-ME. We also define a kernel
density (matrix) G(t), t ≥ 0 by differentiating F(t)with respect to t:

G(t) =
d
dt
F(t) = VetTTU + (F + V U)δ(t), (14)

= VetTH + Dδ(t), t ≥ 0 (15)

where δ(t) is the Dirac delta function and H = TU and D = F +VU . We also define the Laplace transform G∗(s) of the kernel
density matrix:

G∗(s) =
∫
∞

0−
e−tsG(t)dt = V (sI − T )−1H + D. (16)

An MRP-ME is then characterized by the quadruple (V , T ,H,D). In general, one uses the sojourn times of the MRP,
i.e., ∆k, k ∈ N, to model interarrival or service times in queueing systems. We note that the moments of the sojourn times
satisfy

E[∆ik] = (−1)
i+1i!πVT−(i+1)He, i > 0. (17)

It is clear that a phase-type process is an ME-type renewal process, which is clearly an MRP-ME with one state but with
multiple modes (or phases). On the other hand, the well-knownMarkovian arrival process (MAP) is characterized with two
square matrices D0 and D1 with D0 having negative diagonal elements and non-negative off-diagonal elements, D1 being
non-negative, and D = D0 + D1 being an irreducible infinitesimal generator [13]. It is not difficult to show that this MAP is
an MRP-ME with a kernel F(t) = (eD0t − I)D−10 D1 and is therefore characterized by the quadruple (I,D0,D1, 0) [2]. If the
above model is used to describe a service process, then we refer to that as a Markovian service process (MSP). The rational
arrival process (RAP) introduced in [25] can again be viewed as an MRP-ME characterized by the quadruple (I,D0,D1, 0)
similar to a MAP but the matrices D0 and D1 do not necessarily possess the probabilistic interpretation available for MAPs.
With an MRP-ME, it is also possible to model point processes with batch arrivals. For example, the quadruple

(p,−λ, λ, (1 − p)) provides an MRP-ME characterization of a batch Poisson process with batch arrival rate λ and
geometrically distributed batch sizes with mean 1/p. Other batch size distributions are also possible to characterize with
MRP-MEs. Consider a batch Poisson process with batch arrival rate λ and batch size S associated with a finite support
probability generating function h∗S (z) =

∑N
i=1 hiz

i for some integer N > 0. It is not difficult to show that the kernel density
matrix is of the form

G(t) =


1
0
...
0
0

 e−λt [λh1 λh̄2 0 · · · 0
]
+



0 0 0 0 · · · 0
h2
h̄2

0
h̄3
h̄2

0 · · · 0

...
...

. . .
. . .

. . .
...

hN−1
h̄N−1

0 · · · · · · 0
h̄N
h̄N−1

1 0 · · · · · · 0 0


δ(t),

where h̄k =
∑N
i=k hi, 2 ≤ k ≤ N .

The Batch Markovian Arrival Process (BMAP) is a generalization of the MAP which allows batch arrivals [38]. One can
also useMRP-MEs to characterize BMAPs. For example, a BMAPwith finite batch sizes is characterized with squarematrices
Di, 0 ≤ i ≤ N withD0 having negative diagonal elements and non-negative off-diagonal elements,Di, 0 ≤ i ≤ N being non-
negative, and D =

∑N
i=0 Di being an irreducible infinitesimal generator [38]. A Batch Markov Modulated Poisson Process

(BMMPP) is a BMAP with diagonal Di, i ≥ 1 [39]. We further assume that DN is invertible. As an extension of the batch
Poisson process, one can show that a BMMPP is an MRP-ME with a kernel density matrix

G(t) =


I
0
...
0
0

 eD0t [D1 D̄2 0 · · · 0
]
+


0 0 0 0 · · · 0

D2D̄−12 0 D̄3D̄−12 0 · · · 0
...

...
. . .

. . .
. . .

...

DN−1D̄−1N−1 0 · · · · · · 0 D̄N D̄−1N−1
I 0 · · · · · · 0 0

 δ(t),
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Fig. 1. Cascade interconnection diagram of the two linear systems of differential equations SA and SB to characterize E = A+ B.

where D̄k =
∑N
i=k Di, 2 ≤ k ≤ N . Note that D̄k, 2 ≤ k ≤ N is invertible due to the invertibility of DN . More general BMAPs

and their MRP-ME representations are left for future work.

4. State-space algebra for ME-type random variables

In this section, we will introduce a state-space algebra for ME-type random variables. Let the random variable A be of
ME-type characterized with the quadruple (vA, TA, hA, dA). We then define a linear time-invariant system SA for t ≥ 0 with
the following state-space representation

SA :
d
dt
xA(t) = xA(t)TA + uA(t)vA,

yA(t) = xA(t)hA + uA(t)dA,

where xA(t), uA(t), and yA(t) are the state, input, and the output of the system SA. It is clear that the density of the random
variable A (denoted by gA(t)) can be viewed as the output of SA when the input uA(t) = δ(t) and the initial value xA(0−) = 0.
Let B be another ME-type random variable characterized with the quadruple (vB, TB, hB, dB) and let A and B be independent.
We can now define another linear time-invariant system SB with the following state-space representation

SB :
d
dt
xB(t) = xB(t)TB + uB(t)vB,

yB(t) = xB(t)hB + uB(t)dB,

where xB(t), uB(t), and yB(t) being the state, input, and the output of the system SB. We are now interested in the
characterization of E = A + B which should involve cascading the two systems SA and SB such that the output yB(t) of the
system SB is connected to the input uA(t) of the system SA and uB(t) = δ(t). While doing so, we employ the initial conditions
xA(0−) = 0 and xB(0−) = 0. This situation is depicted in Fig. 1 in which the density of E (denoted by gE(t)) should be taken
as the output of the cascaded system. Rewriting the differential equations for t ≥ 0 for the cascaded system, we obtain

d
dt

[
xA(t) xB(t)

]
=
[
xA(t) xB(t)

] [ TA 0
hBvA TB

]
︸ ︷︷ ︸

TE

+
[
dBvA vB

]︸ ︷︷ ︸
vE

δ(t),

gE(t) =
[
xA(t) xB(t)

] [ hA
hBdA

]
︸ ︷︷ ︸
hE

+δ(t) dAdB︸︷︷︸
dE

,

from which we conclude that the distribution of E is of ME-type characterized with the quadruple (vE, TE, hE, dE).
Now, we are interested in the characterization of a random variable C defined through C = (B − A)+. Note that the +

operator is key to analyzing queueing systems. We will use state-space algebra to show that the distribution of C is of ME-
type and we will present a method to find the characterizing quadruple for C . For this purpose, we first need the following
theorem.

Theorem 1. Let X and Y be two independent non-negative random variables with ME-type distributions and their densities have
rational Laplace transforms

g∗X (s) = dX +
n∗X (s)
d∗X (s)

, deg(n∗X ) < deg(d
∗

X ) (18)

and

g∗Y (s) = dY +
n∗Y (s)
d∗Y (s)

, deg(n∗Y ) < deg(d
∗

Y ) (19)

respectively. Then there exists a polynomial u∗(s) of degree deg(d∗Y ) with u
∗(0) = 0 so that the random variable defined by Z =

(X − Y )+ has an ME-type density with Laplace transform g∗Z (s) of the form

g∗Z (s) = g
∗

X (s)g
∗

Y (−s)−
u∗(s)
d∗Y (−s)

. (20)
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Fig. 2. Cascade interconnection diagram of the two linear systems of differential equations S̄A and SB to characterize C = (B− A)+ .

Conversely, if one can find a polynomial u∗(s) with degree deg(d∗Y ) satisfying u
∗(0) = 0 and the right-hand side of (20) having

all its poles in the open left-half plane, then the identity (20) holds and gives the expression for the Laplace transform of the density
of the random variable Z.

Proof. Consider double-sided Laplace transforms [40] and recall that right-sided densities g(t), i.e., g(t) = 0, t < 0 pos-
sess stable Laplace transforms, i.e., their poles are in the open left-half plane. On the other hand, left-sided densities g(t),
i.e., g(t) = 0, t > 0, have anti-stable Laplace transforms, i.e., their poles are in the open right-half plane. Note that the
density of the random variable Z1 = X − Y denoted by gZ1(t) is double-sided and it has the two-sided Laplace transform

g∗Z1(s) = g
∗

X (s)g
∗

Y (−s) (21)

but the strictly proper part of gZ1 can be decomposed into its stable and anti-stable components in the following uniqueway:

g∗Z1(s) = dXdY +
u∗1(s)
d∗X (s)

+
u∗2(s)
d∗Y (−s)

, (22)

where deg(u∗1) < deg(d
∗

X ) and deg(u
∗

2) < deg(d
∗

Y ). Note that the+ operator removes the left side of a double-sided density
and places all the corresponding probability mass at t = 0. Therefore, in the transform domain

g∗Z (s) = dXdY +
u∗1(s)
d∗X (s)

+
u∗2(0)
d∗Y (0)

= g∗X (s)g
∗

Y (−s)−
u∗2(s)
d∗Y (−s)

+
u∗2(0)
d∗Y (0)

= g∗X (s)g
∗

Y (−s)−
u∗(s)
d∗Y (−s)

(23)

where

u∗(s) = u∗2(s)−
u∗2(0)d

∗

Y (−s)
d∗Y (0)

. (24)

Evaluating the identity (23) at s = 0 and noting that d∗Y (0) cannot be zero, we show that u
∗(0) = 0 and this concludes the if

part of the proof. The only if part can be proved by observing the unique spectral decomposition of a rational function into
its stable and anti-stable parts and tracing back the proof of the if part. �

Let us go back to our problem of characterizing the random variable C = (B − A)+. For this purpose, we now define a
linear time-invariant system S̄A for t ≥ 0 with the following state-space representation

S̄A :
d
dt
xA(t) = −xA(t)TA + uA(t)vA,

yA(t) = −xA(t)hA + uA(t)dA.

Consider the depicted cascade connection diagram in Fig. 2 where xA(0−) = x0 and we define gC (t) = yA(t)+ d0δ(t). If the
initial condition x0 and the external input parameter d0 are chosen such that g∗C (s) becomes stable and g

∗

C (0) = 1, then g
∗

C (s)
gives the Laplace transform of the density of the random variable C . It is not difficult to see this by writing the transform
g∗C (s) and showing that the associated expression is of the form (20).

Now, let us study the steady-state Lindley equationW D
= (W + B − A)+ where the equality is to show that both sides

have the same distribution. Also assume a solution exists to this equation. Consider the depicted feedback interconnection
diagram in Fig. 3. If the initial condition x0 and the external input parameter d0 are chosen so that g∗W (s) is stable and
g∗W (0) = 1, then g

∗

W (s) gives the Laplace transform of the density of the random variableW . For a proof, see [41] which also
provides a matrix-analytical procedure to find x0 and d0 and the ME characterization of the random variableW .
In all cases above, we have used state-space algebra to solve certain applied probability and queueing problems where

the related random variables are ME-distributed. In the next section, we will use state-space algebra to study the waiting
time of the semi-Markov queue when the interarrival and service times are MRP-ME distributed.
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Fig. 3. Feedback interconnection diagram of the two linear systems of differential equations S̄A and SB to characterize the random variableW satisfying
W D
= (W + B− A)+ .

5. The single-server semi-Markov queue

We study the semi-Markov queue governed by the Lindley recurrence given in (1), where Bk and Ak denote the service
time of customer k and the interarrival times between customers k and k+1, respectively, andWk denotes the kth customer’s
waiting time in the queue. We assume, in this study, that the individual processes Ak and Bk are both auto-correlated and
we use the MRP-ME process to model auto-correlation in interarrival and service times. We use the sojourn times of an
MRP-ME to model the processes Ak and Bk, i.e., (XAk , T

A
k ) and (X

B
k , T

B
k ) are the two Markov renewal processes with state

spaces EA = {1, 2, . . . , nA} and EB = {1, 2, . . . , nB}, respectively, describing the interarrival and service times. Let GA and
G∗A denote the kernel density matrix and its Laplace transform, respectively, for the MRP-ME underlying the arrival process:

GA(t) = VAetTAHA + DAδ(t), G∗A(s) = VA(sI − TA)
−1HA + DA. (25)

We note that the MRP-ME process has nA states and the matrix TA is square of sizemA. Let FA = −VAT−1A HA + DA which is a
DTMC with FAe = e. Let πA be the steady-state vector of the modulating process XAk so that πA satisfies

πAFA = πA, πAe = 1. (26)

Similarly, letGB andG∗B denote the kernel densitymatrix and its Laplace transform, respectively, for theMRP-ME thatmodels
the service times:

GB(t) = VBetTBHB + DBδ(t), G∗B(s) = VB(sI − TB)
−1HB + DB. (27)

We assume the service MRP-ME process has nB states and thematrix TB is square of sizemB. Let FB = −VBT−1B HB+DB which
is also a DTMC with FBe = e. Also let πB be the steady-state vector of the modulating process XBk so that πB satisfies

πBFB = πB, πBe = 1. (28)

We also assume that these two state-space representations are irreducible. The queue described by the evolution equation
(1) with theMRP-ME interarrival and service times described above is referred to as the semi-Markov queue. Using (17), we
can write the mean interarrival time E[Ak] = E[A] = πAVAT−2A HAe and the mean service time E[Bk] = E[B] = πBVBT

−2
B HBe.

We assume, throughout this paper, that the load ρ defined ρ = E[B]/E[A] is strictly less than one. Therefore,Wk → W as
k→∞ in distribution, whereW is called the steady-state waiting time with density gW (t). The Laplace transform of gW (t)
is denoted by g∗W (s). In this paper, our goal is to calculate gW (t), t ≥ 0.
We’re now ready to study the steady-state solution of Lindley’s equation (1). For this purpose, we define for i = 1, . . . , nA

and j = 1, . . . , nB:

GW ,ij(t) =
d
dt
lim
k→∞

P{Wk ≤ t, XAk = i, X
B
k = j},

=
d
dt
P{W ≤ t, XA = i, XB = j}, (29)

and

g̃W (t) = vec({GW ,ij(t)}). (30)

In our analysis, the following Laplace transforms are crucial:

G∗W ,ij(s) =
∫
∞

0−
e−stGW ,ij(t)dt, g̃∗W (s) = vec({G

∗

W ,ij(s)}). (31)

From Lindley’s equation (1) and Theorem 1, we note the existence of polynomials u∗klij(s), k, i = 1, . . . , nA, l, j = 1, . . . , nB
with u∗klij(0) = 0 such that the following hold:

G∗W ,ij(s) =
nA∑
k=1

nB∑
l=1

G∗W ,kl(s)G
∗

A,ki(−s)G
∗

B,lj(s)−
nA∑
k=1

nB∑
l=1

u∗klij(s)

d∗A,ki(−s)
, (32)
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where d∗A,ki(−s) is the denominator of G
∗

A,ki(−s) and its degree is the same as that of u
∗

klij(s). This identity can be shown to
reduce to the existence of polynomials u∗ij(s) with degree mA and u

∗

ij(0) = 0 such that the second term on the right-hand
side of (32) can be simplified as in

G∗W ,ij(s) =
nA∑
k=1

nB∑
l=1

G∗W ,kl(s)G
∗

A,ki(−s)G
∗

B,lj(s)−
u∗ij(s)

det(sI + TA)
, (33)

since d∗A,ki(−s) is a factor of det(sI+TA) for all k, i. Conversely, if one can find polynomials u
∗

ij(s)with degreemA and u
∗

ij(0) = 0
such that (33) holds where the right-hand side of (33) is free of the closed right-half plane poles, i.e., all poles in the open
left-half plane, then the identity (33) completely describes G∗W ,ij(s)which is what we want to find. The identity (33) can also
be put into the following vector form:

g̃∗W (s) = g̃
∗

W (s)
(
InA ⊗ G

∗

B(s)
) (
G∗A(−s)⊗ InB

)
−

ũ∗(s)
det(sI + TA)

, (34)

where ũ∗(s) = vec
(
{u∗ij(s)}

)
. Our goal is then to find ũ∗(s)with ũ∗(0) = 0 such that identity (34) holds for a stable transform

vector g̃∗W (s). However, the identity (34) does not directly lend itself to a computational procedure for finding the unknown
polynomials and, even so, doing the calculations in the transform domain is cumbersome and ill-conditioned, and addition-
ally one needs to perform transform inversion in the end to calculate g̃W (t). In order to avoid transform domain calculations
for finding ũ∗(s), we first introduce the following linear system of differential equations defined for t ≥ 0 (denoted by S̄eA)
associated with the interarrival times in state-space form but with non-zero initial states for t ≥ 0:

S̄eA :
d
dt
xA(t) = −xA(t)T̃A + uA(t)ṼA, xA(0−) = x0, (35)

yA(t) = −xA(t)H̃A + uA(t)D̃A, (36)

where

ṼA = VA ⊗ InB , T̃A = TA ⊗ InB , H̃A = HA ⊗ InB , D̃A = DA ⊗ InB . (37)

In the linear system above, xA(t) is the system state with a non-zero initial value x0 which is of size 1 × mAnB. Next,
consider another linear system of differential equations (denoted by SeB) associated with the service times in state-space
form for t ≥ 0:

SeB :
d
dt
xB(t) = xB(t)T̃B + uB(t)ṼB, xB(0−) = 0, (38)

yB(t) = xB(t)H̃B + uB(t)D̃B, (39)

where

ṼB = InA ⊗ VB, T̃B = InA ⊗ TB, H̃B = InA ⊗ HB, D̃B = InA ⊗ DB. (40)

In the linear system above, xB(t) is the system statewith a zero initial value xB(0−) = 0.We interconnect these two systems,
for reasons to be made clear later, through the following feedback configuration:

uA(t) = yB(t) =: uF (t), uB(t) = yA(t)+ d0δ(t) =: yF (t), (41)

where the subscript F is used to refer to the feedback configuration and d0 is an unknown vector of size nA. This situation
corresponds to the same feedback interconnection diagram in Fig. 3, but S̄A and SB are replaced with S̄eA and S

e
B, respectively.

The system parameters x0 and d0 are not known yet but they are to be determined. We now obtain an expression for the
Laplace transform y∗F (s) of the output vector yF (t). Note from (36) and (41) that

y∗F (s) = −x
∗

A(s)H̃A + u
∗

F (s)D̃A + d0.

Also note from (35) and the derivative rule for Laplace transforms that

x∗A(s) =
(
u∗F (s)ṼA + x0

)
(sI + T̃A)−1.

Consequently,

y∗F (s) = −
(
u∗F (s)ṼA + x0

)
(sI + T̃A)−1H̃A + u∗F (s)D̃A + d0,

= u∗F (s)
(
−ṼA(sI + T̃A)−1H̃A + D̃A

)
−

(
x0(sI + T̃A)−1H̃A − d0

)
. (42)

From (38) and (39), we know that

u∗F (s) = y
∗

F (s)
(
ṼB(sI − T̃B)−1H̃B + D̃B

)
,
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from which (42) simplifies to

y∗F (s) = y
∗

F (s)
(
InA ⊗ G

∗

B(s)
) (
G∗A(−s)⊗ InB

)
−

(
x0(sI + T̃A)−1H̃A − d0

)
. (43)

Note the similarity in the identities (43) and (34) with. If we obtain x0 and d0 such that the following two conditions are
satisfied:

y∗F (s) is stable, (44)

y∗F (0) = π̃ = πA ⊗ πB, (45)

then (43) provides an equivalent expression to (33) and (34) with the choice of ũ∗(s) = x0 adj(sI + T̃A)H̃A − d0 det(sI + T̃A).
Therefore, in case one has x0 and d0 such that the output of the feedback system y∗F (s) satisfies the two conditions given
above, then it is true that

y∗F (s) = g̃
∗

W (s). (46)

The next section describes a matrix-analytical method to find g̃W (t) without using any transform domain calculations, but
instead uses the transform identities (33) or (43) only for validating the proposed algorithmic method.

6. Matrix-analytical method for the semi-Markov queue

In this section, we present a matrix-analytical method for solving for the steady-state waiting time distribution through
the calculation of the vector g̃W (t). For this purpose, we obtain a state-space representation for the feedback configuration
F given through (41). We first write the vector input uF (t) in terms of the individual states xA(t) and xB(t) of the systems S̄eA
and SeB, respectively:

uF (t) = xB(t)H̃B + uB(t)D̃B,

= xB(t)H̃B +
(
−xA(t)H̃A + uA(t)D̃A + d0δ(t)

)
D̃B,

=

(
−xA(t)H̃AD̃B + xB(t)H̃B + d0D̃Bδ(t)

)
D̃AB, (47)

where

D̃AB = (I − D̃AD̃B)−1. (48)

Similarly, the output vector yF (t) is written in terms of the individual states xA(t) and xB(t) as follows:

yF (t) = −xA(t)H̃A + uA(t)D̃A + d0δ(t),

= −xA(t)H̃A +
(
xB(t)H̃B + uB(t)D̃B

)
D̃A + d0δ(t)

=

(
−xA(t)H̃A + xB(t)H̃BD̃A + d0δ(t)

)
D̃BA, (49)

where

D̃BA = (I − D̃BD̃A)−1. (50)

By substituting (47) in the state equation (35), one can easily show that

d
dt
xA(t) = xA(t)(−T̃A − H̃AD̃BD̃ABṼA)+ xB(t)H̃BD̃ABṼA + d0D̃BD̃ABṼAδ(t). (51)

On the other hand, insertion of (49) in the state equation (38) leads to the following modified state equations for xB(t):

d
dt
xB(t) = −xA(t)H̃AD̃BAṼB + xB(t)(T̃B + H̃BD̃AD̃BAṼB)+ d0D̃BAṼBδ(t). (52)

Combining the differential equations (51) and (52) we obtain

d
dt
xF (t) =

d
dt

[
xA(t) xB(t)

]
= xF (t)TF + d0VFδ(t), (53)

with the initial value

xF (0−) = (x0, 0), (54)

and the matrices TF and VF are defined as

TF =
[
−T̃A − H̃AD̃BD̃ABṼA −H̃AD̃BAṼB

H̃BD̃ABṼA T̃B + H̃BD̃AD̃BAṼB

]
(55)
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and

VF =
[
D̃BD̃ABṼA D̃BAṼB

]
. (56)

Integrating the state equation (53) from 0− to 0+ (or simply 0), we obtain the following state equation

d
dt
xF (t) = xF (t)TF , xF (0) = (x0, 0)+ d0VF , (57)

and the output equation

yF (t) = xF (t)HF + d0D̃BAδ(t), (58)

where

HF =
[
−H̃AD̃BA
H̃BD̃AD̃BA

]
. (59)

We note that the matrix TF has nBmA − 1 eigenvalues with positive real parts, one eigenvalue at the origin, and nAmB
eigenvalues with negative real parts [42]. We now provide the following theorem regarding the left and right null vectors
of the matrix TF .

Theorem 2. The left and right null vectors of the matrix TF , denoted by xL and xR, respectively, are explicitly given as:

xL =
[
−π̃ ṼAT̃−1A π̃ ṼBT̃−1B

]
, xR =

[
T̃−1A H̃Ae
T̃−1B H̃Be

]
. (60)

Proof. Let F̃A = FA ⊗ InB and F̃B = InA ⊗ FB. We note that

π̃ F̃A = (πA ⊗ πB)(FA ⊗ I),
= (πAFA)⊗ πB,
= πA ⊗ πB,

= π̃ .

Similarly, one can show π̃ F̃B = π̃ .Now, we first show that xL is a left null vector of TF . For this purpose, we suitably partition
TF = (TF ,1, TF ,2), where TF ,1 and TF ,2 have nBmA and nAmB columns, respectively. We then write

xLTF ,1 = π̃ ṼA + π̃ ṼAT̃−1A H̃A︸ ︷︷ ︸
D̃A−F̃A

D̃BD̃ABṼA + π̃ ṼBT̃−1B H̃B︸ ︷︷ ︸
D̃B−F̃B

D̃ABṼA,

= π̃ ṼA + π̃ D̃AD̃BD̃ABṼA − π̃ D̃BD̃ABṼA + π̃ D̃BD̃ABṼA − π̃ D̃ABṼA,
= π̃(I + (D̃AD̃B − I)D̃AB)ṼA
= 0.

Above, the last step is based on the definition of D̃AB in (48). Similarly,

xLTF ,2 = π̃ ṼAT̃−1A H̃A︸ ︷︷ ︸
D̃A−F̃A

D̃BAṼA + π̃ ṼB + π̃ ṼBT̃−1B H̃B︸ ︷︷ ︸
D̃B−F̃B

D̃AD̃BAṼB,

= π̃ ṼB + π̃ D̃AD̃BAṼB − π̃ D̃BAṼB + π̃ D̃BD̃AD̃BAṼB − π̃ D̃AD̃BAṼB
= π̃(I + (D̃BD̃A − I)D̃BA)ṼB
= 0.

We therefore conclude that xLTF = 0, i.e., xL is a left null vector of TF . Next, we show that xR is a right null vector of TF . First
note that

F̃Ae = (FA ⊗ I)(e⊗ e),
= (FAe)⊗ e,
= e⊗ e,
= e.

Similarly, one can show F̃Be = e. We then suitably partition TF = (T TF ,a, T
T
F ,b)

T where TF ,a and TF ,b have nBmA and nAmB rows,
respectively. We then observe

(I − D̃BD̃A)D̃B = D̃B(I − D̃AD̃B)
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and pre-multiplying the above equality by (I − D̃BD̃A)−1 and post-multiplying it by (I − D̃AD̃B)−1, we obtain

D̃BD̃AB = D̃BAD̃B.

Similarly, one can show

D̃ABD̃A = D̃AD̃BA.

Using above equalities, we write

TF ,axR = −H̃Ae− H̃AD̃BD̃AB ṼAT̃−1A H̃A︸ ︷︷ ︸
D̃A−F̃A

e− H̃AD̃BA ṼBT̃−1B H̃B︸ ︷︷ ︸
D̃B−F̃B

e,

= −H̃Ae− H̃A D̃BD̃AB︸ ︷︷ ︸
D̃BAD̃B

D̃Ae+ H̃A D̃BD̃AB︸ ︷︷ ︸
D̃BAD̃B

e− H̃AD̃BAD̃Be+ H̃AD̃BAe,

= −H̃A(I + D̃BA(D̃BD̃A − I))e,
= 0.

Similarly,

TF ,bxR = H̃Be+ H̃BD̃AB ṼAT̃−1A H̃A︸ ︷︷ ︸
D̃A−F̃A

e+ H̃BD̃AD̃BA ṼBT̃−1B H̃B︸ ︷︷ ︸
D̃B−F̃B

e,

= H̃Be− H̃BD̃ABe+ H̃BD̃ABD̃Ae− H̃BD̃AD̃BAe+ H̃BD̃AD̃BAD̃Be,
= H̃B(I − D̃AB + D̃ABD̃A︸ ︷︷ ︸

D̃AD̃BA

−D̃AD̃BA + D̃A D̃BAD̃B︸ ︷︷ ︸
D̃BD̃AB

)e,

= H̃B(I − (I − D̃AD̃B)D̃AB)e,
= 0.

We therefore show that xR is a right null vector of TF , which concludes the proof. �

However, for computational efficiency, we should use the identity (A⊗ B)−1 = (A−1 ⊗ B−1) for calculating the left and
right null vectors from (60). Therefore, the expressions in (60) can be simplified to

xL =
[
−πAVAT−1A ⊗ πB πA ⊗ πBVBT−1B

]
, xR =

[
T−1A HAe⊗ e
e⊗ T−1B HBe

]
. (61)

Now let QF be an orthogonal matrix such that

Q TF TFQF =
[
TF ,++ TF ,+−
0 TF ,−−

]
, (62)

where the eigenvalues of the matrix TF ,++ and TF ,−− have non-negative and negative real parts, and they are of size nBmA
and nAmB, respectively. In our numerical studies, we use the ordered Schur form-based method described in Section 2 for
obtaining the form (62). In the special case of nBmA = 1, there is only one eigenvalue of TF with a non-negative real part,
and we use the Householder method, also described in Section 2, and in particular the transformation given in (6). Once the
decomposition (62) is obtained, we then define the following transformation

x̃F (t) = xF (t)QF , (63)

and partition

x̃F (t) =
(
x̃F ,+(t), x̃F ,−(t)

)
(64)

appropriately so that the row vectors x̃F ,+(t) and x̃F ,−(t) are of size nBmA and nAmB, respectively. From (57) and (62), we
first obtain

d
dt
x̃F ,+(t) = x̃F ,+(t)TF ,++ (65)

but since all the eigenvalues of TF ,++ have non-negative real parts, the only condition for the analyticity of y∗F (s) in the closed
right-half plane is

x̃F ,+(0) = 0. (66)
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Partitioning QF as in (62)

QF =
[
QF ,++ QF ,+−
QF ,−+ QF ,−−

]
, (67)

and defining

QF ,+ =
[
QF ,++
QF ,−+

]
, QF ,− =

[
QF ,+−
QF ,−−

]
, (68)

the condition (66) can be reduced to a linear matrix equation in the unknowns x0 and d0:

x̃F ,+(0) = xF (0)QF ,+,
= ((x0, 0)+ d0VF )QF ,+,

= x0QF ,++ + d0VFQF ,+ = 0. (69)

The equation (69) ensures that the condition (44) is satisfied. In order to express the condition (45) as a linear matrix
equation, we first write x̃F (t) as

x̃F ,−(t) = x̃F ,−(0)etTF ,−−

=
(
x0QF ,+− + d0VFQF ,−

)
etTF ,−− .

Finally, the expression for the output vector yF (t) in (58) can further be simplified to

yF (t) =
(
x0QF ,+− + d0VFQF ,−

)
et TF ,−−Q TF ,−HF + d0D̃BA δ(t) (70)

Noting that
∫
∞

0− yF (t) = π̃ for condition (45), we obtain another linear matrix equation in x0 and d0 so that condition (45) is
satisfied:

π̃ = −x0QF ,+−T−1F ,−−Q
T
F ,−HF + d0

(
−VFQF ,−T−1F ,−−Q

T
F ,−HF + D̃BA

)
. (71)

Combination of (69) and (71) give (mA + nA)nB equations with (mA + nA)nB unknowns. Recall that x0 is of size nBmA and d0
is of size nAnB. Solving for x0 and d0 from (69) and (71) leads us to a matrix-exponential waiting time distribution:

yF (t) = g̃W (t) = vetTH + dδ(t) (72)

where

v := x0QF ,+− + d0VFQF ,− (73)

T := TF ,−− (74)

H := Q TF ,−HF (75)

d := d0D̃BA. (76)

Note that the density of the steady-state waiting time is written as

gW (t) = g̃W (t)e = vetTHe+ deδ(t), (77)

from which one can find the ith moment of the waiting time as follows:

E[W i] = (−1)i+1i!vT−(i+1)He. (78)

We provide the overall algorithm in Table 1. We emphasize that the proposed algorithm relies on only an ordered Schur
decomposition of a matrix in addition to ordinary vector-matrix operations and therefore it is matrix-analytical and simple
to implement using linear algebra software packages.

7. Modified Lindley recurrence

In this section, we study a modified Lindley recurrence relation:

Sk+1 = (Sk − Ak)+ + Bk+1, k ≥ 0, (79)

where Ak and Bk are MRP-ME distributed and are defined as in Section 5 with the limiting distribution S. Note that the
relation holds Sk = Wk + Bk andWk and Sk denote the workload just before, and respectively right after, the arrival instant
of customer k [43]. In queueing systems of interest to the current paper, W corresponds to the steady-state waiting time
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Table 1
Algorithm to find gW (t) given the pair of quadruples (VA, TA,HA,DA) and (VB, TB,HB,DB) characterizing the MRP-MEs for interarrival and service times,
respectively.

1. Find the steady-state vectors πA and πB using (26) and (28), respectively.
2. Let π̃ = πA ⊗ πB .
3. Obtain ṼA , T̃A , H̃A , and D̃A by (37).
4. Obtain ṼB , T̃B , H̃B , and D̃B by (40).
5. Construct D̃AB and D̃BA by (48) and (50).
6. Construct the matrices TF , VF , and HF by using (55), (56) and (59), respectively.
7. Find an orthogonal matrix QF so as to obtain the ordered Schur form of TF where ordering is done as in (62).
8. Partition the matrix QF as in (67) and (68).
9. Solve for x0 and d0 using the linear equations (69) and (71).
10. Define v, T , H , and d by (73), (74), (75) and (76).
11. Write gW (t) = vetTHe+ de δ(t).

whereas S represents a customer’s sojourn time [43]. Assume we want to find the distribution of S directly. It is not difficult
to show for this case that if one can find x0 and d0 such that the following two conditions are satisfied

u∗F (s) is stable, (80)

u∗F (0) = π̃ = πA ⊗ πB, (81)

then

uF (t) = g̃S(t),

as opposed to the two conditions (44), (45), and the identity (72) that we proved for the ordinary Lindley recurrence (1).
Above, g̃S(t) is defined as in (30) withW replaced with S. Compared with the algorithmic approach of the previous section,
the first linear equation (69) remains intact but the second linear equation (71) needs to be replaced with

π̃ = −x0QF ,+−T−1F ,−−Q
T
F ,−H̄F + d0

(
−VFQF ,−T−1F ,−−Q

T
F ,−H̄F + D̃BD̃AB

)
, (82)

where

H̄F =
[
−H̃AD̃BD̃AB
H̃BD̃AB

]
. (83)

Solving these two Eqs. (69) and (82) for x0 and d0, it is easy to show that

gS(t) = g̃S(t)e = vetTH̄e+ d̄eδ(t), (84)

where v and T are defined in (73) and (74), respectively, and

H̄ = Q TF ,−H̄F , d̄ = d0D̃BD̃AB.

Alternatively, one can find the distribution of W and then, respectively, that of S using the identity Sk = Wk + Bk but a
method is still required to obtain a minimal state-space representation for Sk. We believe that the method proposed above
can be used for this purpose.

8. Numerical experiments

Numerical experimentation of a queuing systemwhen the arrival and service processes have ME distributions is already
carried out in [41]. In the current paper, we will study an MX/ME/1 queue, a PH/MRP/1 queue, a MAP/PH/1 queue, and a
priority queue involving auto-correlated service times, to validate the generality and effectiveness of the proposed approach.
The implementations of the proposed algorithms are in MATLAB 7.0, which is run on an Intel Core2Duo T7200Windows XP
notebook with 2 GB of RAM.

8.1. Example 1: MX/ME/1 queue

We study the batchMX/D/1 queue example from [1]. The inter-batch times are exponential with parameter λ. The batch
size S has a probability generating function denoted by h∗S (z) which equals h

∗

S (z) =
∑
∞

i=1 hiz
i. We fix h1 = 0.25, h2 = 0.5,

h3 = 0.25, and hi = 0, i > 3 as in [1]. The service time is deterministic with rate µ and we fix µ to 1/5. The parameter
ρ gives the utilization of the queue such that ρ = E[S]λ/µ = 10λ. As described in Section 3, the arrival process A is an
MRP-ME described by the quadruple

TA = −λ, VA =

[1
0
0

]
, HA = λ

[
h1 h2 + h3 0

]
, DA =

 0 0 0
h2

h2 + h3
0

h3
h2 + h3

1 0 0

 .
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Note that we have nA = 3 states and mA = 1 modes. Since the service time is deterministic, it is not of ME type, but
we can approximate it by an Erlang-k distribution which is of phase type, or use an approximation to g∗B (s) = e

−s/µ. The
Reference [1] proposes an approximation based on continued fractions of varying orders; the particular one with order two
is given as

g∗B (s) ≈
6− 2s/µ

6+ 4s/µ+ s2/µ2
. (85)

In case we employ this particular approximation, we can obtain an MRP-ME characterization for the service process B via
the MATLAB function tf2ss.m:

[TB, HB, VB, DB] = tf2ss(
[
0 −2/µ 6

]
,
[
1/µ2 4/µ 6

]
)

which produces

TB =
[
−0.8 −0.24
1 0

]
, HB =

[
1
0

]
, VB =

[
−0.40 0.24

]
, DB = 0.

We note that the tf2ss function generates a state-space representation out of a proper rational transfer function. We
now illustrate the ordered Schur decomposition part of the proposed algorithm for this particular example using MATLAB
commands. For this purpose, we first fix ρ = 0.4. Note thatmA = 1, nA = 3,mB = 2, and nB = 1. We find TF using (55) as:

.04 .004 −.0024 .012 −.0072 0 0
1 −.8 −.24 0 0 0 0
0 1 0 0 0 0 0
0 −.2667 .16 −.8 −.24 −.1333 .08
0 0 0 1 0 0 0
0 −.4 .24 0 0 −.8 −.24
0 0 0 0 0 1 0

 .

Recall that the matrix TF has nBmA − 1 = 0 eigenvalues with positive real parts, one eigenvalue at the origin, and nAmB = 6
eigenvalues with negative real parts. Since there are no eigenvalues of TF with positive real parts, we can use the method
described in Section 2 and in particular the expression (6). For this purpose, a right null vector of TF can be found using
(61) as xR = (−1, 0,−4.1667, 0,−4.1667, 0,−4.1667)T with ‖xR‖2 = 7.2858. Next, by (6), u = (−8.2858, 0,−4.1667, 0,
−4.1667, 0,−4.1667)T. By defining the symmetric and orthogonal Householder matrix QF = I − 2uuT

uTu
as in (6), we obtain

Q TF TFQF =

0 −.5724 .0031 −.5735 .0037 −.5719 .0028
0 −.8000 −.7429 0 −.5029 0 −.5029
0 .7101 .0129 −.2944 .0156 −.2876 .0115
0 −.2667 .1600 −.8000 −.2400 −.1333 .0800
0 −.2899 .0129 .7056 .0156 −.2876 .0115
0 −.4000 .2400 0 0 −.8000 −.2400
0 −.2899 .0129 −.2944 .0156 .7124 .0115

 ,

which gives the desired decomposition of (62) with the scalar TF ,++ = 0. Note that we only use matrix vector algebra,
without even the need for Schur decomposition for theMX/ME/1 queue. Among the existing approaches, Reference [1] relies
on transforms, root finding, and transform inversion (similar to [44,12])which is very different to themethod described here.
We now present our results for the MX/D/1 queue for varying ρ with the deterministic service time approximated

by continued fractions, as in (85), and also by E10 and E500 distributions, where Ek denotes the Erlang-k distribution.
All three approximations use the proposed algorithm and the results are compared against the exact and approximate
(using continued fractions) results presented in [1] in Table 2. The proposed algorithm using continued fractions for
approximation of the deterministic service time is in perfect accordance (up to six digits) with the results presented
in [1] validating accuracy. The Erlangian approximations for the deterministic service time are not as accurate, despite
using very high order Erlangian distributions. We also observe that we are able to solve large-scale problems without
encountering any computational difficulty. While claiming so, recall that the MX/E500/1 problem is large-scale since its
solution involves the Schur decomposition of a square matrix of size 1501. We do not give a timing comparison among
alternative approaches because there are various alternatives for root finding and transform inversion which were left
unspecified in the References [44,1,12]. However,we present the timing results (excludingmoment computations) in Table 3
for the Schur decomposition and the Householder approach for this specific problem for various values of ρ for the same
MX/E500/1 system. Our results show that CPU times are insensitive to system load ρ whereas the Householder approach
introduced significant gains for this special case. However, note that the Householder approach only works for the special
casemAnB = 1.
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Table 2
The probability mass at zero, mean waiting time, and second moment of the waiting time for the MX /D/1 queue and its approximants as a function of ρ
obtained as in [1] and by the proposed algorithm.

ρ Measure Results of [1] Proposed algorithm
Exact Cont. Frac. MX/E10/1 MX/E500/1 Cont. Frac.

0.4 P(W = 0) .3 .3 .3 .3 .3
E[W ] 6.8750 6.8750 7.0417 6.8783 6.8750
E[W 2] 103.9931 103.9931 113.0139 104.1702 103.9931

0.6 P(W = 0) .2 .2 .2 .2 .2
E[W ] 11.5625 11.5625 11.9375 11.5700 11.5625
E[W 2] 285.7422 285.7422 311.2734 286.2424 285.7422

0.9 P(W = 0) .05 .05 .05 .05 .05
E[W ] 53.7500 53.7500 56.0000 53.7950 53.7500
E[W 2] 5876.5625 5876.5625 6410.0625 5887.0047 5876.5625

Table 3
CPU times for solving theMX/E500/1 queue using Householder transformations and Schur decomposition for various values of ρ.

ρ CPU time (s)
Householder approach Schur decomposition

0.9 16.8 76.2
0.99 16.7 75.4
0.999 16.6 76.0

8.2. Example 2: PH/MRP/1 queue

In this numerical example, the interarrival time distributions are assumed to be of phase-type and in particular hyper-
exponential with balanced means, as defined in [45]. We fix the squared coefficient of variation to 16 and the mean
interarrival time to 1/ρ. The service times alternate between 0.5 and 1.5 in a deterministic fashion with amean service time
of one leading to a system load of ρ. Although service times are not of MRP type, we propose to use the continued fractions
method of [1] for approximating deterministic service times. For this purpose, let (V1, T1,H1,D1) and (V2, T2,H2,D2) be
MRP-ME characterizations obtained via continued fraction approximations to deterministic service times of 0.5 and 1.5,
respectively. Then, we have an MRP-ME characterization of service times:

TB =
[
T1 0
0 T2

]
, VB =

[
V1 0
0 V2

]
, HB =

[
0 H1
H2 0

]
, DB =

[
0 D1
D2 0

]
.

In particular, we use the second-order continued fraction approximation as given in (85) and the advanced fifth-order
approximation to g∗B (s) = e

−s/µ (see [1]):

g∗B (s) ≈
5(3024− 1344s/µ+ 252(s/µ)2 − 24(s/µ)3 + (s/µ)4)

15120+ 8400s/µ+ 2100(s/µ)2 + 300(s/µ)3 + 25(s/µ)4 + (s/µ)5
. (86)

We compare our results utilizing two different continued fraction approximations against simulations in Table 4 with 99%
confidence intervals. Our results clearly show that the fifth-order approximationmatches very well with simulation results,
whereas the second-order approximation also fared well, especially for higher system loads.

8.3. Example 3: MAP/PH/1 queue

We consider correlated arrivals in the current example. We study the statistical multiplexing of N voice sources with
silence detection so that each voice source is modeled as a two-state Interrupted Poisson Process (IPP) with mean off time
and the mean on time set to 650 ms and 353 ms, respectively. The mean number of packets generated by each voice source
in an on period is set to 22 and the packet sizes are such that voice peak rate in the on state is 32 Kbps. Although packet
sizes are fixed, we model them by the E20 distribution with the same mean. On the other hand, the multiplexer’s service
rate is 10 times each voice source’s peak rate. In Table 5, we report the probability that an arriving customer finds the queue
empty (P(W = 0)), the mean waiting time in the queue, and the CPU time needed for the voice multiplexing example as a
function of the number of voice sources N using the Schur decomposition approach proposed in this paper and the matrix
geometric approach outlined in [2] that also derives explicit waiting time expressions for the underlying MAP/PH/1 queue.
We also note that we employ the quadratically convergent iterations proposed in [15] with the stopping criterion parameter
set to 10−10 for finding the associated rate matrix in the MAP/PH/1 queue. All the values we calculate are identical up to six
significant digits, so we report them once. We also provide the CPU times needed in the proposed algorithm and the matrix
geometric approach of [2] which are calculated from the average of ten runs and using the MATLAB function cputime.
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Table 4
The probability mass at zero, mean waiting time, and second moment of the waiting time for Example 2 obtained via simulations and the proposed
algorithm employing second- and fifth-order continued fraction approximations.

ρ Measure Simulation Analytical (85) Analytical (86)

0.4 P(W = 0) 2.7652e−1± 1.1574e−4 2.7657e−1 2.7652e−1
E[W ] 1.3923± 8.2056e−4 1.3948 1.3923
E[W 2] 4.7089± 6.0796e−3 4.7257 4.7085

0.6 P(W = 0) 6.6718e−2± 8.8818e−5 6.6514e−2 6.6725e−2
E[W ] 7.7044± 1.2339e−2 7.6973 7.7041
E[W 2] 1.2310e+2± 5.6697e−1 1.2306e+2 1.2309e+2

0.9 P(W = 0) 8.7953e−3± 4.2561e−5 8.5337e−3 8.7989e−3
E[W ] 7.0944e+1± 5.1958e−1 7.0868e+1 7.0892e+1
E[W 2] 1.0120e+4± 1.7221e+2 1.0093e+4 1.0096e+4

0.99 P(W = 0) 8.1912e−4± 2.1858e−5 7.8787e−4 8.1888e−4
E[W ] 7.8732e+2± 4.4213e+1 7.9160e+2 7.9162e+2
E[W 2] 1.2290e+6± 1.9252e+5 1.2538e+6 1.2538e+6

Table 5
The probability mass at zero, mean waiting time, and the second moment of the waiting time for the MAP/E20/1 queue as a function of N obtained by the
matrix geometric approach utilized in [2] and our proposed algorithm.

N ρ CPU time (s) P(W = 0) E[W ] (s) E[W 2] (s2)
[2] Our algorithm

8 .2816 0.40 0.19 6.541755e−1 5.009202e−4 1.275616e−6
12 .4223 1.50 0.57 5.138854e−1 1.021375e−3 4.857179e−6
16 .5631 3.57 1.08 3.748969e−1 2.558805e−3 4.006403e−5
20 .7039 7.14 1.97 2.406161e−1 9.194948e−3 4.989104e−4
24 .8447 13.01 3.27 1.171852e−1 4.383876e−2 7.208806e−3
26 .9151 17.77 4.02 6.139214e−2 1.201707e−1 4.096586e−2
28 .9854 26.25 4.94 1.005555e−2 1.004764 2.145297

The results are indicative of similar computational complexities of the two approaches, although we are led to believe that
the proposed approach is slightly better than the method utilizing the matrix geometric approach presented in [2] when
one uses MATLAB. However, the real advantage in using the proposed approach is that the expression for the waiting time
distribution is matrix-exponential and all related moments can be derived algorithmically. Moreover, the algorithm applies
to many other queueing systems as well. In the matrix geometric approach, it is the steady-state queue length probabilities
that have a relatively simple expression (i.e., matrix geometric). On the other hand, it is generally relatively difficult to
calculate the waiting times and their moments out of the steady-state queue length probabilities in this approach. As an
example, Heindl was able to derive the first two moments for a MAP/PH/1 queue in [2] which were already cumbersome.

8.4. Example 4: Non-preemptive strict priority queue

We assume a non-preemptive strict priority scheduling system with two infinite-capacity queues, namely the high and
low priority queues, with Poisson arrivals and exponential service times. The arrival rate to the high priority (low priority)
queue is λh (λl) and the service rate of the high priority (low priority) queue isµh (µl).We define ρh = λh/µh and ρl = λl/µl
and we assume ρh + ρl < 1. In this system, high priority jobs have non-preemptive priority over low priority jobs. That is,
a high priority job can move ahead of all low priority jobs waiting in the queue for service, but low priority jobs in service
are not interrupted by high priority jobs. We are interested in the waiting time distribution for low priority jobs. We note
that the mean waiting time for low priority jobs, denoted by E[Wl], is well-known for this system and is given by [46]:

E[Wl] =
λh/µ

2
h + λl/µ

2
l

(1− ρh)(1− ρh − ρl)
. (87)

Let us now focus on the low priority queue whose service process is governed by the queue occupancy for the high priority
queue. For the sake of convenience, let us make the assumption that the high priority queue is of size K . In this case, it is not
difficult to show that when the low priority queue is not empty, the service process is modeled with a Markovian service
process. To see this, let the pair (i(t), j(t)) denote the state of the service process at time t , where i(t) = 0, 1, . . . , K denotes
the number of high priority jobs waiting in the high priority queue or in service, and j(t) = 0 designates a low priority job
in service and j(t) = 1 otherwise, all at time t . Note that, the state (0, 0) is never visited. From state (i, 0), 1 ≤ i < K ,
we will move to state (i + 1, 0) with rate λh and from state (i, 0), 1 < i ≤ K , we move to state (i − 1, 0) with rate µh.
When in state (1, 0), we transit to state (0, 1) with rate µh. On the other hand, we transit to state (i + 1, 1) with rate λh
from state (i, 1), 0 ≤ i < K . Finally, we transit from state (i, 1), 0 < i ≤ K to state (i, 0) with rate µl with a service
completion and also from state (0, 1) to the same state with rate µl with a service completion. Obviously, this description
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Table 6
E[Wl] obtained using the formula in (87) and the proposed algorithm as a function ρl , ρh , and K , for µh = µl = 1.

K ρh ρl E[Wl]
Formula (87) Proposed algorithm

10 0.2 0.7 11.25 10.8345
0.799 1.2487e+3 1.2482e+3
0.79999 1.25e+5 1.2411e+5

100 0.2 0.7 11.25 10.8343
0.799 1.2487e+3 1.2483e+3
0.79999 1.25e+5 1.25e+5

10 0.8 0.1 45 11.8852
0.199 4.9950e+3 119.5920
0.19999 5e+5 125.1572

100 0.8 0.1 45 24.4364
0.199 4.9950e+3 4.9743e+3
0.19999 5e+5 4.9989e+5

completes the characterization of the Markovian service process of the low priority queue unless the low priority queue
is empty. We obtain the distribution of Wl and in particular E[Wl], assuming that the Lindley equation (1) is satisfied for
Poisson arrivals and for MSP departures as characterized above, irrespective of the low priority queue status. We compare
our findings against the ones obtained using the formula given in (87). It is clear that these two values should match as
K → ∞ and ρh + ρl → 1. The reason for the latter is that, in this case, the probability that the low priority queue is zero
approaches to zero and the low priority waiting time is then well governed by the Lindley equation (1). However, in general
Bk in the Lindley equation (1) will be dependent on whether the low priority queue is empty or not. We fix µh = µl = 1
and the E[Wl] results are presented in Table 6 as a function ρl, ρh, and K . Our findings verify our conjecture. In this example,
we not only validate our proposed algorithm for Markovian service processes in a certain asymptotic regime, but we also
emphasize the importance of the service model with auto-correlated service times when the queue is empty.

9. Conclusions

In this paper, we introduce a stochastic model, namely the MRP-ME, which is a Markov renewal process with a matrix-
exponential kernel. This model is a superset of the well-known phase-type andmatrix-exponential-type renewal processes,
as well as the more general Markovian and rational arrival processes. An MRP-ME is also general enough to model batch
arrivals (or services) as demonstrated in the numerical example involving the MX/ME/1 queue. We study the steady-state
waiting time in a semi-Markov queue with infinite-capacity in which the interarrivals and services are both modeled with
MRP-MEs. Without having to solve for the steady-state queue lengths by matrix geometric techniques, we introduce an
algorithm that directly finds the waiting time distribution which is in matrix-exponential form. The algorithm to obtain the
parameters of the matrix-exponential form is relatively easy to implement and the numerical engine relies on the ordered
Schur decompositionwhose various stable and efficient implementations exist in the literature. The numerical exampleswe
present lead us to believe that the proposed algorithm is a promising candidate for awide range ofMarkov renewal queueing
problems. As future work, we list the possibility of allowing inter-dependence between arrivals and services, finite capacity
queues, more general service models of Markov renewal type, and the study of relationship between the proposed model
and the existing batch arrival and service models.
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