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We consider the accuracy of surface integral equations for the solution of scattering and radiation
problems in electromagnetics. In numerical solutions, second-kind integral equations involving well-
tested identity operators are preferable for efficiency, because they produce diagonally-dominant matrix
equations that can be solved easily with iterative methods. However, the existence of the well-tested
identity operators leads to inaccurate results, especially when the equations are discretized with
low-order basis functions, such as the Rao–Wilton–Glisson functions. By performing a computational
experiment based on the nonradiating property of the tangential incident fields on arbitrary surfaces,
we show that the discretization error of the identity operator is a major error source that contaminates
the accuracy of the second-kind integral equations significantly.

© 2009 Elsevier B.V. All rights reserved.
0. Glossary

CFIE: Combined-field integral equation
CTF: Combined tangential formulation
EFIE: Electric-field integral equation
JMCFIE: Electric and magnetic current combined-field integral

equation
MFIE: Magnetic-field integral equation
MNMF: Modified normal Müller formulation
PEC: Perfect electric conductor
RMS: Root-mean square
RWG: Rao–Wilton–Glisson (functions)

1. Introduction

Surface integral equations are commonly used for the solution
of scattering and radiation problems in electromagnetics [1]. Equiv-
alent currents are defined on the surface of the object, and the
boundary conditions are used to derive a set of equations to solve
the equivalent currents and to calculate the scattered or radiated
electromagnetic fields. For a perfect electric conductor (PEC), the
electric-field integral equation (EFIE) and the magnetic-field inte-
gral equation (MFIE) can be derived by testing the boundary con-
ditions for the tangential electric and magnetic fields, respectively,
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on the surface of the object. For closed surfaces, EFIE and MFIE can
be combined to obtain a combined-field integral equation (CFIE),
which is free of the internal-resonance problem [2]. For dielectric
objects with homogeneous material properties, various formula-
tions can be obtained by testing the boundary conditions on the
two sides (i.e., inner and outer sides) of the surfaces and combin-
ing the equations properly. Among those formulations, the com-
bined tangential formulation (CTF) [3], the modified normal Müller
formulation (MNMF) [4], and the electric and magnetic current
combined-field integral equation (JMCFIE) [5] are preferable, due to
their stable solutions. CTF and MNMF are improved versions of the
well-known Poggio–Miller–Chang–Harrington–Wu–Tsai (PMCHWT)
[1] and normal Müller [6] formulations, respectively.

Surface formulations can be categorized into three groups, i.e.,
tangential, normal, and mixed formulations, depending on the test-
ing scheme used for the boundary conditions. In the tangential
formulations, such as EFIE and CTF, boundary conditions are tested
directly by sampling the tangential components of the electric and
magnetic fields on the surface. However, in the normal formula-
tions, such as MFIE and MNMF, fields are tested after they are
projected onto the surface by using the outward normal vector.
Finally, the mixed formulations, such as CFIE and JMCFIE, involve
both types of the testing schemes. Using a Galerkin method in
the discretization of the surface formulations, i.e., using the same
set of functions to expand the current densities and to test the
boundary conditions, the normal and mixed formulations contain
well-tested identity operators. Then, these formulations produce
well-conditioned matrix equations since the well-tested identity
operators lead to diagonally-dominant matrices. We note that the
existence of the identity operator alone is not sufficient for a well-
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conditioned matrix equation. Nevertheless, a small perturbation of
the identity operator with contributions from the other operators
leads to a well-conditioned system. On the other hand, the tangen-
tial formulations do not contain well-tested identity operators, and
their discretizations may lead to ill-conditioned matrix equations.

For all of tangential, normal, and mixed formulations consid-
ered in this paper, boundary conditions are always tested tangen-
tially on the surface either directly or by a projection using the
outward normal vector. In other words, only the tangential com-
ponents of the electric and magnetic fields are tested to derive
the integral equations. We note that there are also other integral-
equation formulations, which involve normal components of the
electric and magnetic fields on surfaces. Those formulations are
not considered in this work and they should not be confused with
the normal formulations presented in this paper.

Depending on the use of the identity operator, the normal
and mixed formulations, i.e., MFIE, MNMF, CFIE, and JMCFIE, are
second-kind integral equations, while EFIE is a first-kind integral
equation. CTF is somewhat in between, because it contains an
identity operator, even though the identity operator is not well
tested. Nevertheless, CTF is closer to the category of first-kind
integral equations since it does not lead to diagonally-dominant
and well-conditioned matrices. For the efficiency of the solutions,
second-kind integral equations are preferable, especially when
problems involve large objects discretized with large numbers of
unknowns [7].

In addition to the conditioning of the matrix equations, the
identity operator plays a key role in the accuracy of the solutions.
Recent investigations on PEC objects show that the scattered fields
obtained with MFIE and CFIE are significantly inaccurate in com-
parison to those obtained with EFIE [8,9]. Inaccuracy of MFIE and
CFIE becomes obvious, especially when they are discretized with
low-order basis functions, such as the Rao–Wilton–Glisson (RWG)
functions [10] defined on planar triangles. It was also shown that
the accuracy of MFIE and CFIE can be improved to the levels
of EFIE by employing more appropriate discretizations, especially
with higher-order basis functions, instead of the RWG functions
[11–17]. Similar observations have been made for the solution of
dielectric objects [3]. Finally, recent studies show that the regular-
ization of the identity operator improves the accuracy of MFIE [9,
18].

In this paper, we show that the identity operator is truly a ma-
jor error source in surface formulations that are discretized with
low-order basis functions. We demonstrate the inaccuracy problem
by setting up a computational experiment based on the nonra-
diating property of the tangential incident fields on an arbitrary
surface. Incident fields, which are analytically defined in a contin-
uous space, are discretized and expanded in a series of RWG func-
tions by using two methods, i.e., an expansion employing the iden-
tity operator and an expansion employing directly-tested integro-
differential operators. We show that the first method involving
well-tested identity operators is significantly inaccurate compared
to the second method. The two discretization methods are related
to the solutions of electromagnetics problems with second-kind
and first-kind integral equations, respectively, in which the total
currents are expanded in a series of basis functions.

2. Surface integral equations

For the surface formulations of scattering and radiation prob-
lems, three different operators can be defined as

T {X}(r) = ik

∫
dr′

[
X(r′) + 1

k2
∇′ · X(r′)∇

]
g(r, r′), (1)
S

K{X}(r) =
∫
S

dr′ X(r′) × ∇′ g(r, r′), (2)

I{X}(r) = X(r), (3)

where S is the closed surface of a three-dimensional object with
an arbitrary shape. In (1)–(3), X is either the equivalent elec-
tric current ( J ) or the equivalent magnetic current (M) on the
surface, k = ω

√
με is the wavenumber, and g(r, r′) denotes the

homogeneous-space Green’s function defined as

g(r, r′) = exp (ikR)

4π R

(
R = |r − r′|) (4)

in phasor notation with the e−iωt convention. The operator K is
commonly separated into principle-value and limit parts as

K{X}(r) = K P V {X}(r) − Ωi(r)

4π
I ×n{X}(r), (5)

where 0 � Ωi(r) � 4π is the internal solid angle, which is nonzero
when the observation point r is on the surface [19]. In addition,
I ×n{X}(r) = n̂ × X(r), where n̂ is the outward normal vector.

Using the equivalent surface currents, i.e.,

J (r) = I ×n{H}(r) = n̂ × H(r), (6)

M(r) = −I ×n{E}(r) = −n̂ × E(r), (7)

scattered (or radiated) electric and magnetic fields can be calcu-
lated as

Esca(r) = ηT { J }(r) − K P V {M}(r) + Ωi(r)

4π
I ×n{M}(r), (8)

H sca(r) = 1

η
T {M}(r) + K P V { J }(r) − Ωi(r)

4π
I ×n{ J }(r), (9)

where η = √
μ/ε is the wave impedance. For PEC objects, the tan-

gential component of the total electric field vanishes on the surface
(M = 0). Then, using the boundary conditions for the tangential
electric and magnetic fields, we obtain EFIE and MFIE as

t̂ · ηT { J }(r) = −t̂ · E inc(r) (10)

and

n̂ × K P V { J }(r) − Ωo(r)

4π
I{ J }(r) = −n̂ × H inc(r), (11)

respectively, where Ωo(r) is the external solid angle at the ob-
servation point r ∈ S , t̂ is any tangential vector on the surface,
and E inc(r) and H inc(r) are the incident electric and magnetic
fields produced by the external sources. We note that the bound-
ary conditions for the electric and magnetic fields are tested via
the tangential (t̂) and normal (n̂) unit vectors, respectively, to ob-
tain stable solutions using a Galerkin scheme. Otherwise, the re-
sulting matrix equations are extremely ill-conditioned and cannot
be solved iteratively. Consequently, EFIE and MFIE are tangential
and normal formulations, respectively. For closed surfaces, EFIE and
MFIE can be combined linearly to obtain a mixed formulation, i.e.,
CFIE, which is free of the internal-resonance problem. Both MFIE
and CFIE are second-kind integral equations, which produce better-
conditioned matrix equations, compared to those obtained with
the first-kind EFIE [20].

For dielectric objects, boundary conditions are used on both
sides of the surfaces to derive two sets of equations for the in-
ner and outer problems. Then, the inner and outer equations can
be combined in different ways to obtain various formulations for
the solution of the equivalent electric and magnetic currents on
the surfaces. Among infinitely many possibilities, CTF, MNMF, and
JMCFIE are natural extensions of EFIE, MFIE, and CFIE, respectively,
for dielectric objects [3–5]. All three formulations are free of the
internal-resonance problem. Similar to MFIE and CFIE, MNMF and
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JMCFIE are second-kind integral equations, and they produce well-
conditioned matrix equations. Dielectric formulations are derived
in Appendix A.

In surface formulations of closed objects, equivalent surface cur-
rents can be decomposed as

J (r) = n̂ × H(r) = n̂ × H inc(r) + n̂ × H sca(r), (12)

M(r) = −n̂ × E(r) = −n̂ × E inc(r) − n̂ × Esca(r), (13)

where { J inc(r), M inc(r)} = {n̂ × H inc(r),−n̂ × E inc(r)} do not radi-
ate outside the surface [21,22], i.e.,

ηT
{

J inc}(r) − K P V
{

M inc}(r) + Ωi(r)

4π
I ×n{

M inc}(r) = 0, (14)

1

η
T

{
M inc}(r) + K P V

{
J inc}(r) − Ωi(r)

4π
I ×n{

J inc}(r) = 0. (15)

For PEC surfaces,

M inc(r) = −n̂ × E inc(r) = n̂ × Esca(r). (16)

Rearranging the terms in (14)–(15), one can obtain[
T −η−1 K P V

ηK P V T

]
·
[

n̂ × H inc

−n̂ × E inc

]
(r)

= −Ωi(r)

4π

[
η−1 E inc(r)
ηH inc(r)

]
. (17)

The decomposition in (12)–(13) is useful for accurate solutions of
low-contrast dielectric problems [22]. In this study, we use the
same decomposition and the nonradiating property of { J inc(r),

M inc(r)} to determine the error caused by the discretization of the
integro-differential and identity operators.

3. Discretization of the surface integral equations

For numerical solutions of surface integral equations, equivalent
currents are expanded in a series of basis functions bn(r), i.e.,

J (r) =
N∑

n=1

xnbn(r), (18)

M(r) =
N∑

n=1

ynbn(r). (19)

Testing the integral equations using a set of functions tm(r), ma-
trix equations are constructed and solved to calculate the unknown
coefficients xn and/or yn . We consider a Galerkin scheme and use
the same set of RWG functions as the basis and testing functions.
For example, EFIE and MFIE in (10) and (11) can be discretized as

N∑
n=1

xnη

∫
Sm

dr tm(r) · T {bn}(r) = −
∫
Sm

dr tm(r) · E inc(r) (20)

and

N∑
n=1

xn

∫
Sm

dr tm(r) · n̂ × K P V {bn}(r)

−
N∑

n=1

xn
1

4π

∫
Sm

dr Ωo(r)tm(r) · I{bn}(r)

= −
∫
Sm

dr tm(r) · n̂ × H inc(r), (21)

respectively, where Sm is the spatial support of the mth RWG func-
tion for m = 1,2, . . . , N .
Using a Galerkin scheme, the T operator is well-tested when it
is directly tested with tm(r) [3], and EFIE involves a well-tested T
operator, i.e.,

Tmn =
∫
Sm

dr tm(r) · T {bn}(r)

= ik

∫
Sm

dr tm(r) ·
∫
Sn

dr′ bn(r)g(r, r′)

− i

k

∫
Sm

dr tm(r) ·
∫
Sn

dr′ ∇′ · bn(r)∇g(r, r′). (22)

Using the divergence-conforming RWG functions, the hyper-sin-
gularity in the second term of (22) is eliminated by moving the
differential operator onto the testing function [10], i.e.,

Tmn = ik

∫
Sm

dr tm(r) ·
∫
Sn

dr′ bn(r)g(r, r′)

+ i

k

∫
Sm

dr ∇ · tm(r)

∫
Sn

dr′ ∇′ · bn(r)g(r, r′). (23)

As opposed to the T operator, the K operator is well-tested with
n̂ × tm(r) [3].1 MFIE involves well-tested K and identity operators,
i.e.,

K ×n
mn =

∫
Sm

dr tm(r) · n̂ × K P V {bn}(r)

− 1

4π

∫
Sm

dr Ωo(r)tm(r) · I{bn}(r)

=
∫
Sm

dr tm(r) · n̂ ×
∫

Sn,P V

dr′ b(r′) × ∇′ g(r, r′)

− 1

2

∫
Sm

dr tm(r) · bn(r)

= K ×n
mn,P V − 1

2
Imn (24)

since Ωo(r) = 1/2 on planar surfaces. The value of Imn in (24) is
nonzero for overlapping testing and basis functions, and it typi-
cally has a large value for m = n. This is why the matrix equations
obtained with MFIE and CFIE are diagonally dominant and easy to
solve iteratively.

CTF, which is a tangential formulation for dielectric objects, in-
volves well-tested T operators, similar to EFIE. In addition, CTF
contains weakly-tested K and identity operators, i.e.,

Kmn,P V =
∫
Sm

dr tm(r) · K P V {bn}(r), (25)

I×n
mn =

∫
Sm

dr tm(r) · n̂ × bn(r). (26)

We note that I×n
mn ≈ 0 for m = n, and CTF is “practically” a first-kind

integral equation, even though it involves the identity operator.
Similar to MFIE, MNMF contains well-tested K and identity opera-
tors. Besides, this formulation involves weakly-tested T operators,
i.e.,

T ×n
mn =

∫
Sm

dr tm(r) · n̂ × T {bn}(r). (27)

1 Testing with n̂× tm(r) is equivalent to testing with tm(r) after a projection onto
the surface by using n̂, i.e., tm(r) · n̂×.
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In general, conditioning and accuracy properties of the tangential
formulations, i.e., EFIE and CTF, are determined by the well-tested
T operator. Using a Galerkin scheme and divergence-conforming
RWG functions, the directly-tested T operator has a weakly-
singular kernel [23]. This leads to ill-conditioned matrix equations,
but very accurate results, provided that the condition number of
the matrix is not too large to deteriorate the accuracy of the so-
lutions. On the other hand, the normal and mixed formulations,
namely, MFIE, MNMF, CFIE, and JMCFIE, are dominated by the well-
tested identity operators. This is preferable in terms of efficiency
since diagonally-dominant matrix equations are well-conditioned
and easy to solve iteratively. However, as demonstrated in the next
section, discretization of the identity operator involves a large er-
ror, which significantly contaminates the accuracy of the results.

4. Discretization error due to the identity operator

Using the RWG functions on planar triangles, discretization of
the well-tested identity operator is trivial. The integral

Imn =
∫
Sm

dr tm(r) · bn(r) (28)

does not contain any singularity and it can be evaluated accurately
(even exactly, if desired) by using a low-order Gaussian quadra-
ture rule. On the other hand, the identity operator behaves like an
operator with a highly-singular kernel [9,23]. This alternative in-
terpretation can be understood when (28) is rewritten as a double
integral over the testing and basis functions as

Imn =
∫
Sm

dr tm(r) ·
∫
Sn

dr′ δ(r, r′)bn(r), (29)

where δ(r, r′) is a Dirac delta function as the kernel of the opera-
tor. Therefore, the discretization of the identity operator may cause
an unexpectedly large error, even though the discretization itself,
i.e., the expression in (28), involves very small or no error.

To present the excessive error due to the discretization of the
identity operator, we consider the expansion of nonradiating cur-
rents { J inc(r), M inc(r)} in a series of RWG functions, i.e.,

J inc(r) = n̂ × H inc(r) =
N∑

n=1

xinc
n bn(r), (30)

M inc(r) = −n̂ × E inc(r) =
N∑

n=1

yinc
n bn(r). (31)

For an arbitrary surface, unknown coefficients xinc
n and yinc

n can be
calculated by using two different methods:

(i) The equality in (17) is discretized and solved. Similar to tan-
gential formulations, we project and test the equation on the
surface via a set of testing functions tm(r) to obtain a 2N ×2N
matrix equation, i.e.,[

T̄ −η−1 K̄ P V

η K̄ P V T̄

]
·
[

xinc

yinc

]
= −1

2

[
η−1einc

ηhinc

]
, (32)

where

T̄ [m,n] = Tmn =
∫
Sm

dr tm(r) · T {bn}(r), (33)

K̄ P V [m,n] = Kmn,P V =
∫
Sm

dr tm(r) · K P V {bn}(r), (34)

hinc[m] =
∫
S

dr tm(r) · H inc(r), (35)
m

einc[m] =
∫
Sm

dr tm(r) · E inc(r), (36)

xinc[m] = xinc
m , yinc[m] = yinc

m (37)

for m,n = 1,2, . . . , N . We note that this method does not in-
volve any (well-tested) identity operator.

(ii) We consider an identity equation in the form of[
I 0
0 I

]
·
[

n̂ × H inc

−n̂ × E inc

]
=

[
n̂ × H inc

−n̂ × E inc

]
, (38)

where the nonradiating currents on the left-hand side are ex-
panded in a series of basis functions. Discretization of (38)
leads to a 2N × 2N matrix equation, i.e.,[

Ī 0
0 Ī

]
·
[

xinc

yinc

]
=

[
hinc×n

−einc×n

]
, (39)

where

Ī [m,n] = Imn =
∫
Sm

dr tm(r) · bn(r), (40)

hinc×n[m] =
∫
Sm

dr tm(r) · n̂ × H inc(r), (41)

einc×n[m] =
∫
Sm

dr tm(r) · n̂ × E inc(r) (42)

for m,n = 1,2, . . . , N . Clearly, this second method is remark-
ably simpler than the first one, as it does not involve the
discretization of any integro-differential operator.

We perform experiments on two different geometries: a sphere
with a radius of 0.5λ and a cube with edges of 0.5λ. Both objects
are illuminated by a plane wave propagating in the −x-direction
with the electric field polarized in the y-direction. Amplitude of
the plane wave is unity. Nonradiating currents { J inc(r), M inc(r)}
are expanded in a series of RWG functions on the objects using
the two methods described above, i.e., using directly-tested K and
T operators and using the identity operator. Expansion coefficients
are calculated and used to compute the radiated fields in the far
zone. We define the far-zone electric field on the x–y plane as

E∞[p] = lim
r→∞

{
r
√∣∣Eθ (r, θ,φp)

∣∣2 + ∣∣Eφ(r, θ,φp)
∣∣2

}
, (43)

where Eθ and Eφ are the θ and φ components of the radiated elec-
tric field, θ = π/2, and φp = (p − 1)π/180 for p = 1,2, . . . ,360.
Then, the root-mean square (RMS) of the far-zone field is calcu-
lated as

RMS
{

E∞} =

√√√√√ 1

360

360∑
p=1

(
E∞[p])2

. (44)

Since the expanded currents { J inc(r), M inc(r)} should not radiate,
the RMS value in (44) directly corresponds to the error in the cal-
culations. Using the RWG functions defined on planar triangles, we
compute the far-zone fields analytically; hence, the error is only
due to the discretization of the currents.

Figs. 1(a) and 1(b) present the RMS of the far-zone field for
the sphere and the cube problems, respectively, as a function of
the mesh size. In both cases, we observe that the RMS value de-
creases as the triangulation becomes finer. However, there exists a
significant discrepancy between the results obtained with the two
discretization methods. Given a mesh size, the RMS value is consis-
tently smaller with the first method using the integro-differential
operators K and T compared to the second method using the
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(a)

(b)

Fig. 1. RMS of the far-zone electric field due to nonradiating currents
{ J inc(r), M inc(r)} expanded on the surface of (a) a sphere with a radius of 0.5λ

and (b) a cube with 0.5λ edges. Both surfaces are illuminated by a plane wave with
unit amplitude propagating in free space.

well-tested identity operator. In other words, the discretization of
the well-tested identity operator generates larger error compared
to the discretization of the directly-tested K and T operators, even
when we use the same set of RWG functions.

5. Accuracy of surface formulations

Normal and mixed surface formulations involving well-tested
identity operators, such as MFIE, CFIE, MNMF, and JMCFIE, are
noticeably and consistently more inaccurate than the tangential
formulations, such as EFIE and CTF. This is mostly due to the ex-
cessive inaccuracy caused by the low-order discretization of the
identity operator, as demonstrated in Section 4. As an example,
Fig. 2 presents the results of a scattering problem involving a PEC
sphere of radius 0.5λ located in free space. The sphere is illu-
minated by a plane wave propagating in the −x-direction with
the electric field polarized in the y-direction having an amplitude
of unity. The problem is discretized with various mesh sizes and
solved with EFIE and CFIE, which is obtained by the combination
of EFIE and MFIE as 0.2 × EFIE + 0.8 × MFIE. Solving for the to-
tal electric current, the scattered electric field is calculated in the
far zone on the x–y plane at r = (r, θ,φ) = (∞,π/2, φp), where
Fig. 2. Error in the electric field scattered from a PEC sphere with a radius of 0.5λ

illuminated by a plane wave propagating in free space.

Fig. 3. Error in the electric field scattered from a dielectric sphere with a radius of
0.5λ and a relative permittivity of 2.0 and illuminated by a plane wave propagating
in free space.

φp = (p − 1)π/180 for p = 1,2, . . . ,360. Computational values are
compared with the analytical results obtained via a Mie-series so-
lution. A normalized error is defined as

� = RMS{E∞
a − E∞

c }
RMS{E∞

a } , (45)

where E∞
c and E∞

a are arrays containing the computational and
analytical values of the far-zone electric field, respectively. Fig. 2
shows that CFIE, which contains a well-tested identity operator, is
significantly more inaccurate than EFIE.

Fig. 3 presents the results of a scattering problem involving a
dielectric sphere with a radius of 0.5λ and a relative permittiv-
ity of 2.0 located in free space. Similar to the previous example,
the sphere is illuminated by a plane wave propagating in the −x-
direction with the electric field polarized in the y-direction. The
problem is solved with CTF and JMCFIE, and the normalized error
in (45) is calculated for various mesh sizes. Fig. 3 shows that CTF is
more accurate than JMCFIE, similar to the higher accuracy of EFIE
as compared to CFIE.

Finally, we consider the solution of a radiation problem involv-
ing a PEC cube with edges of 0.5λ. A Hertzian dipole oriented in



Ö. Ergül, L. Gürel / Computer Physics Communications 180 (2009) 1746–1752 1751
Fig. 4. Error in the electric field radiated by a Hertzian dipole located at the center
of a PEC cube with edges of 0.5λ.

the z-direction is located at the center of the cube. Ideally, the ra-
diated field should be zero due to the shielding provided by the
conducting cube. Therefore, the nonzero computational fields out-
side the cube correspond to the error. We calculate the radiated
electric field in the far zone on the x–y plane at r = (∞,π/2, φp),
where φp = (p − 1)π/180 for p = 1,2, . . . ,360. To normalize the
error, we divide the RMS of the total electric field with the RMS of
the incident field, i.e.,

� = RMS{E∞
tot}

RMS{E∞
inc}

, (46)

where the total electric field is obtained by adding the incident
field due to the Hertzian dipole and the secondary field due to
the induced electric current on the cube. Fig. 4 shows that the
errors in both the EFIE and CFIE solutions decay, as the mesh size
is decreased. However, similar to the previous examples, CFIE is
significantly less accurate than EFIE.

6. Concluding remarks

In this study, we demonstrate the excessive error due to the
discretization of the identity operator by using the nonradiating
property of the tangential incident fields on arbitrary surfaces.
Nonradiating currents { J inc(r), M inc(r)} are expanded in a series
of RWG functions using two different methods. The first method
involves the direct testing of the integro-differential K and T op-
erators, and it does not contain the identity operator. The second
method, however, involves only the identity operator. We show
that the second method is significantly inaccurate compared to the
first method, even though both of the methods are discretized with
the same set of RWG functions. The two methods are analogous
to the solutions of electromagnetics problems using first-kind and
second-kind integral equations. In fact, solutions with surface in-
tegral equations can be interpreted as the expansion of the total
currents in a series of basis functions. First-kind equations, such as
EFIE, are free of well-tested identity operators, and they are consis-
tently more accurate than the second-kind equations, such as CFIE,
involving well-tested identity operators, when these formulations
are discretized with low-order basis functions.
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Appendix A. Surface formulations of dielectric problems

In this appendix, we present the surface formulations of dielec-
tric problems with CTF, MNMF, and JMCFIE. Consider a homoge-
neous dielectric object with a closed surface separating two media
with different electrical properties. Using the equivalence principle,
we consider the inner and outer problems separately and derive
two sets of equations by employing the boundary conditions, i.e.,

n̂ × ηo To{ J }(r) − n̂ × K P V ,o{M}(r) + Ωo

4π
I{M}(r)

= −n̂ × E inc(r) (NE-O), (47)

t̂ · ηo To{ J }(r) − t̂ · K P V ,o{M}(r) − Ωo

4π
t̂ · I ×n{M}(r)

= −t̂ · E inc(r) (TE-O), (48)

n̂ × 1

ηo
To{M}(r) + n̂ × K P V ,o{ J }(r) − Ωo

4π
I{ J }(r)

= −n̂ × H inc(r) (NH-O), (49)

t̂ · 1

ηo
To{M}(r) + t̂ · K P V ,o{ J }(r) + Ωo

4π
t̂ · I ×n{ J }(r)

= −t̂ · H inc(r) (TH-O) (50)

for the outer medium denoted with “o” and

n̂ × ηi Ti{ J }(r) − n̂ × K P V ,i{M}(r) − Ωi

4π
I{M}(r) = 0 (NE-I), (51)

t̂ · ηi Ti{ J }(r) − t̂ · K P V ,i{M}(r) + Ωi

4π
t̂ · I ×n{M}(r) = 0 (TE-I),

(52)

n̂ × 1

ηi
Ti{M}(r) + n̂ × K P V ,i{ J }(r) + Ωi

4π
I{ J }(r) = 0 (NH-I),

(53)

t̂ · 1

ηi
Ti{M}(r) + t̂ · K P V ,i{ J }(r) − Ωi

4π
t̂ · I ×n{ J }(r) = 0 (TH-I),

(54)

for the inner medium denoted with “i”. CTF is obtained by com-
bining the tangential equations as [3][
η−1

o TE-O + η−1
i TE-I

ηoTH-O + ηiTH-I

]
, (55)

leading to

t̂ ·
[

Z T
11(r) + Z T

12(r)

Z T
21(r) + Z T

22(r)

]
= −t̂ ·

[
η−1

o E inc(r)

ηo H inc(r)

]
, (56)

where

Z T
11(r) = (To + Ti){ J }(r), (57)

Z T
12(r) = −(

η−1
o K P V ,o + η−1

i K P V ,i
){M}(r)

− 1

4π

(
Ωoη

−1
o − Ωiη

−1
i

)
I ×n{M}(r), (58)

Z T
21(r) = (ηo K P V ,o + ηi K P V ,i){ J }(r)

+ 1

4π
(Ωoηo − Ωiηi)I ×n{ J }(r), (59)

Z T
22(r) = (To + Ti){M}(r). (60)

Using a Galerkin scheme, the discretization of CTF involves weakly-
tested identity operators, i.e.,∫
S

dr tm(r) · I ×n{bn}(r) =
∫
S

dr tm(r) · n̂ × bn(r). (61)
m m
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Unlike CTF, MNMF is obtained by combining the normal equa-
tions as [4][
μo/(μo + μi)NH-O − μi/(μo + μi)NH-I
−εo/(εo + εi)NE-O + εi/(εo + εi)NE-I

]
, (62)

leading to

n̂ ×
[

Z N
11(r) + Z N

12(r)

Z N
21(r) + Z N

22(r)

]
= −n̂ ×

[
μo H inc(r)/(μo + μi)

−εo E inc(r)/(εo + εi)

]
, (63)

where

Z N
11(r) = 1

(μo + μi)
(μo K P V ,o − μi K P V ,i){ J }(r)

+ 1

4π(μo + μi)
(μoΩo + μiΩi)I ×n{ J }(r), (64)

Z N
12(r) = 1

(μo + μi)

(
μoη

−1
o To − μiη

−1
i Ti

){M}(r), (65)

Z N
21(r) = 1

(εo + εi)
(εiηi Ti − εoηo To){ J }(r), (66)

Z N
22(r) = 1

(εo + εi)
(εo K P V ,o − εi K P V ,i){M}(r)

+ 1

4π(εo + εi)
(εoΩo + εiΩi)I ×n{M}(r). (67)

MNMF is a second-kind integral equation, and its discretization in-
volves well-tested identity operators, i.e.,∫
Sm

dr tm(r) · n̂ × I ×n{bn}(r) = −
∫
Sm

dr tm(r) · bn(r), (68)

using a Galerkin scheme.
CTF and MNMF are natural extensions of EFIE and MFIE, respec-

tively, for the solution of dielectric problems. For PEC objects, CTF
in (56) reduces to two decoupled equations, i.e.,

t̂ · ηo To{ J }(r) = −t̂ · E inc(r), (69)

t̂ · K P V ,o{ J }(r) + t̂ · Ωo

4π
I ×n{ J }(r) = −t̂ · H inc(r). (70)

The first equation (69) is the original EFIE, whereas the second
equation (70) is a tangential form of MFIE, which is unstable when
it is discretized by using a Galerkin scheme, since both K and
identity operators are weakly tested. Similarly, for PEC objects,
MNMF in (63) reduces to two decoupled equations. These are the
original MFIE

n̂ × K P V ,o{ J }(r) − Ωo(r)

4π
I{ J }(r) = −n̂ × H inc(r) (71)

and a normal form of EFIE, i.e.,

n̂ × ηo To{ J }(r) = −n̂ × E inc(r), (72)

which is unstable when it is discretized with a Galerkin scheme,
since the T operator is weakly tested.

Finally, as an extension of CFIE for dielectric objects, JMCFIE can
be derived by combining all equations in (47)–(54) as [5][
η−1

o TE-O + η−1
i TE-I + NH-O − NH-I

ηoTH-O + ηiTH-I − NE-O + NE-I

]
. (73)
For PEC objects, JMCFIE reduces to two decoupled equations:
the original CFIE and an unstable form of CFIE.
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