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Abstract—We investigate the accuracy of the combined-field
integral equation (CFIE) discretized with the Rao-Wilton-Glisson
(RWG) basis functions for the solution of scattering and radiation
problems involving three-dimensional conducting objects. Such
a low-order discretization with the RWG functions renders the
two components of CFIE, i.e., the electric-field integral equation
(EFIE) and the magnetic-field integral equation (MFIE), incom-
patible, mainly because of the excessive discretization error of
MFIE. Solutions obtained with CFIE are contaminated with the
MFIE inaccuracy, and CFIE is also incompatible with EFIE and
MFIE. We show that, in an iterative solution, the minimization of
the residual error for CFIE involves a breakpoint, where a further
reduction of the residual error does not improve the solution in
terms of compatibility with EFIE, which provides a more accurate
reference solution. This breakpoint corresponds to the last useful
iteration, where the accuracy of CFIE is saturated and a further
reduction of the residual error is practically unnecessary.

Index Terms—Accuracy analysis, combined-field integral equa-
tion (CFIE), iterative methods, surface integral equations.

I. INTRODUCTION

S URFACE integral equations are commonly used to
formulate scattering and radiation problems in electro-

magnetics [1]. When a problem involves closed conducting
surfaces, it can be formulated with the electric-field integral
equation (EFIE), the magnetic-field integral equation (MFIE),
or the combined-field integral equation (CFIE), which is the
convex combination of EFIE and MFIE. In general, CFIE is
preferred over EFIE and MFIE, because CFIE is free of the
internal-resonance problem [2], and its discretization produces
well-conditioned matrix equations, which are easy to solve
iteratively [3]–[5] with accelerated methods, such as the fast
multipole method (FMM) [6] and the multilevel fast multipole
algorithm (MLFMA) [7].
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For numerical solutions of scattering and radiation problems
involving three-dimensional objects with arbitrary shapes, it is
common to apply a triangulation on the surface of the object
and discretize integral equations by using a set of Rao-Wilton-
Glisson (RWG) functions defined on triangles [8]. In many ap-
plications, discretizations of EFIE with mesh size, where

is the wavelength, produce accurate results. Unfortunately, re-
cent studies show that the same accuracy cannot be obtained
with MFIE [9]–[19]. Induced currents and scattered or radi-
ated electromagnetic fields calculated with MFIE can be signif-
icantly inaccurate, compared to EFIE, even when the same dis-
cretization is used for the two formulations. Investigations also
show that the inaccuracy of MFIE is mainly due to insufficient
discretization of the identity operator with the RWG functions
[11], [19]–[21]. Even though the discretization of the identity
operator is trivial, this operator behaves like an integro-differ-
ential operator with a strongly-singular kernel [11], [19], [20].
Due to the excessive discretization error of the identity operator
in MFIE, matrix equations obtained with EFIE and MFIE are
incompatible, i.e., a solution vector calculated by using MFIE
does not satisfy EFIE with the desired level of accuracy, and vice
versa. Being a convex combination of EFIE and MFIE, CFIE so-
lutions are contaminated with the MFIE inaccuracy [17]. There-
fore, coefficients obtained with CFIE are also incompatible with
EFIE and MFIE systems.

In this study, we investigate the accuracy of CFIE discretized
with the RWG functions. We show that, in an iterative solu-
tion, the minimization of the residual error of CFIE involves
a breakpoint, where further reduction of the residual error does
not improve the compatibility of the CFIE solution with EFIE
and MFIE systems. Since EFIE produces more accurate results
than CFIE, the breakpoint also corresponds to the last “useful”
iteration, where the accuracy of the CFIE solution is saturated
and cannot be improved any more. Then, a further reduction of
the residual error is practically unnecessary. Our observations
are demonstrated on three different electromagnetics problems
depicted in Fig. 1. The radiation problem in Fig. 1(a) involves a

conducting box located at the origin. The box is ex-
cited with a Hertzian dipole located inside the box at .
In the scattering problem depicted in Fig. 1(b), a
conducting box is illuminated by a plane wave propagating in
the direction with the electric field polarized in the di-
rection. Finally, the scattering problem in Fig. 1(c) involves a
conducting sphere with a radius of . Similar to the second
problem, the sphere is illuminated by a plane wave propagating
in the direction with the electric field polarized in the di-
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Fig. 1. Electromagnetics problems involving canonical objects. (a) A radiation
problem involving a �� �� � conducting box excited with a Hertzian dipole
located inside the box at � � ����. (b) A scattering problem involving a � �

� � � conducting box illuminated by a plane wave. (c) A scattering problem
involving a sphere with a radius of ���� illuminated by a plane wave.

rection. Discretizations of the problems with the RWG functions
on triangles lead to 2052 2052 (box) and 8364 8364
(sphere) matrix equations. Matrix elements are calculated with
a maximum of 1% error by using singularity extraction tech-
niques [22]–[25], Gaussian quadratures [26], and adaptive in-
tegration methods [27]. Iterative solutions of the matrix equa-
tions are performed by using the biconjugate-gradient-stabilized
(BiCGStab) algorithm [28].

The rest of the paper is organized as follows. In Section II,
we discuss the incompatibility of the integral-equation formu-
lations, i.e., EFIE, MFIE, and CFIE. In Section III, we con-
sider iterative solutions of CFIE and demonstrate the incompat-
ibility of CFIE solutions with EFIE and MFIE systems in terms
of residual errors. Then, Section IV investigates convergence
to minimum achievable error in iterative solutions of EFIE and
CFIE. For CFIE solutions, we demonstrate the relation between
the last useful iteration to obtain the highest possible accuracy
and the breakpoint for the compatibility with EFIE. Finally,
Section V includes our concluding remarks.

II. INCOMPATIBILITY OF INTEGRAL EQUATIONS

For the solution of a scattering or radiation problem involving
a closed conducting object, discretizations of EFIE and MFIE
lead to dense matrix equations in the form of

(1)

where represents impedance matrices, represents
excitation vectors, and represents the unknown coefficient
vector. Due to the excessive discretization error in MFIE com-
pared to EFIE, matrix equations obtained from the two formu-
lations are incompatible, and their solutions are unequal, i.e.,

(2)

even when EFIE and MFIE solutions are not contaminated with
internal resonances. In common implementations, where dis-
cretizations are performed by employing the RWG functions on

triangulations, coefficients obtained with EFIE and MFIE
may differ significantly [9]–[19]. Increasing the accuracy of im-
plementations, especially for MFIE, by using finer triangula-
tions and/or using higher-order basis functions reduces the dis-
crepancy between EFIE and MFIE [10], [16]–[18].

In this paper, we investigate the accuracy of the conventional
implementations, where the integral equations are discretized
by employing the RWG functions on triangulations. Then,
EFIE solutions are considered to be reference solutions, and we
write

(3)

where the discrepancy between the coefficients obtained with
EFIE and MFIE is interpreted as the error in MFIE. CFIE is
obtained by combining EFIE and MFIE as

(4)

where
(5)

(6)

and . The coefficient vector obtained with CFIE is
related to those obtained with EFIE and MFIE as

(7)

Using (3) and (5) in (7), we arrive at

(8)

where

(9)

which can be interpreted as the CFIE solution being contami-
nated with the inaccuracy of MFIE.

It should be emphasized that this paper is not concerned with
errors resulting from the internal resonances of EFIE and MFIE;
all references to error and accuracy are related to discretization
errors of the integral equations. It is well known that CFIE elim-
inates the respective null spaces of EFIE and MFIE, and hence
is immune to the internal-resonance problem. At a specific fre-
quency, the EFIE or MFIE solution may be corrupted with an
internal-resonance error. However, even though CFIE is a com-
bination of EFIE and MFIE, if a CFIE solution is obtained at
the same frequency, it will not contain any internal-resonance
error propagating from EFIE or MFIE. At that same frequency,
both EFIE and MFIE solutions contain errors due to the dis-
cretizations of the integral equations. Such discretization errors
are relatively small compared to the larger internal-resonance
errors, and they may not be noticeable in the presence of that
larger error. Nevertheless, they exist and contaminate the CFIE
solution. It is interesting to note that a larger internal-resonance
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Fig. 2. First 30 elements of residual vectors ��� (CFIE), ��� (CFIE in EFIE),
and ��� (CFIE in MFIE) for the iterative CFIE �� � ���� solution of the
radiation problem in Fig. 1(a). Residual vectors ��� and ��� are obtained
by testing the coefficient vector ��� in matrix equations obtained with EFIE and
MFIE, respectively.

error of MFIE does not propagate to the CFIE solution, but a
smaller discretization error does.

III. MINIMIZATION OF RESIDUAL ERROR IN ITERATIVE

SOLUTIONS OF CFIE

When the solution of CFIE is obtained by using an iterative
algorithm, the residual vector

(10)

is minimized. Using (5) and (6) in (10), the residual vector for
CFIE can be written as

(11)

where
(12)

(13)

are residual vectors obtained by testing the CFIE solution in the
EFIE and MFIE systems, respectively.

When the norm of in (11) is minimized in an iterative
CFIE solution, norms of and are not necessarily
minimized. As an example, we consider the solutions of the ra-
diation and scattering problems in Fig. 1(a) and (b) involving a

conducting box, when the problems are formulated
with CFIE. Iterations are stopped when the residual error

(14)

where represents the -norm of a vector, is reduced to
below . Fig. 2 presents the first 30 elements of residual
vectors , , and , denoted by “CFIE”, “CFIE in

Fig. 3. First 30 elements of residual vectors ��� (CFIE), ��� (CFIE in EFIE),
and ��� (CFIE in MFIE) for the iterative CFIE �� � ���� solution of the
scattering problem in Fig. 1(b). Residual vectors ��� and ��� are ob-
tained by testing the coefficient vector ��� in matrix equations obtained with
EFIE and MFIE, respectively.

EFIE”, and “CFIE in MFIE”, respectively, when in the
CFIE solution of the radiation problem in Fig. 1(a). We observe
that and involve significantly larger elements than

. Furthermore, the elements of are exactly four times
those of . This is because, as the norm of is mini-
mized, elements of and are scaled with respect to
each other, i.e.,

(15)

instead of converging to zero. For , the ratio of

(16)

is manifested in Fig. 2. More precisely, the error criteria for the
iterative solution, i.e.,

(17)

is achieved without the minimization of and
.

Fig. 3 presents the first 30 elements of residual vectors ,
, and , when in the CFIE solution of the

scattering problem in Fig. 1(b). Similar to the previous example,
and , denoted by “CFIE in EFIE” and “CFIE in

MFIE”, respectively, involve significantly larger elements than
, denoted by “CFIE.” As opposed to the previous solution,

however, since

(18)
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Fig. 4. Iterative solutions of the radiation problem in Fig. 1(a). Residual errors and the far-field error defined in (22) are plotted as a function BiCGStab iterations
for EFIE and CFIE when � � ���, 0.5, and 0.8.

Depending on the value of , compatibility of the CFIE solution
with the EFIE and MFIE systems varies, but the CFIE solution
cannot satisfy both systems at the same time with the desired
level of accuracy.

IV. CONVERGENCE TO THE MINIMUM ACHIEVABLE ERROR

In an iterative solution of a matrix equation obtained from the
discretization of an integral-equation formulation, accuracy of
the solution is saturated and the solution error cannot be reduced
any further after a number of iterations. This is because there are
various error sources, such as the numerical calculation of the
matrix elements, and the overall error cannot be minimized by
only reducing the residual error. Then, in an iterative solution,
a further reduction of the residual error becomes meaningless
after the minimum solution error is achieved.

As shown in Section III, a CFIE solution can be significantly
incompatible with the EFIE and MFIE systems, even when the
residual error is small. In fact, an iterative solution of CFIE
involves a breakpoint, where a further reduction of the residual
error does not improve the solution in terms of compatibility
with EFIE and MFIE. Since EFIE is more accurate than CFIE,
this breakpoint, where the compatibility of the CFIE solution
with the EFIE system is maximized, corresponds to the last
useful iteration to obtain the highest possible accuracy with
CFIE. We note that the minimum achievable error in an EFIE
solution depends on various error sources, and not only on the

reduction of the residual error. In the case of CFIE, however,
the excessive discretization error in the MFIE part becomes a
major error source, and the minimum achievable error is closely
related to the compatibility of the CFIE solution with the EFIE
system.

Fig. 4 presents the iterative solutions of the radiation problem
in Fig. 1(a) formulated with EFIE and CFIE. For CFIE, we
consider three different combinations of EFIE and MFIE, i.e.,

, 0.5, and 0.8. In Fig. 4, residual errors

(19)

are plotted with respect to BiCGStab iterations. For the CFIE
solutions, we also plot

(20)

denoted by “CFIE in EFIE” and “CFIE in MFIE”, respectively,
in the first row of Fig. 4. Our observations are as follows.

• In the EFIE solution, the number of iterations to reduce the
residual error to below is 316.

• In the CFIE solutions, the number of iterations is 31, 50,
and 117 when , 0.5, and 0.8, respectively.

• Compatibility of the CFIE solution with the EFIE and
MFIE systems is saturated at about the 10th, 20th, and 50th
iterations, respectively. The values of and ,
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Fig. 5. Iterative solutions of the scattering problem in Fig. 1(b). Residual errors and the near-field error defined in (24) are plotted as a function BiCGStab iterations
for EFIE and CFIE when � � ���, 0.5, and 0.8.

which are obtained by testing the coefficient vector in
the EFIE and MFIE systems, respectively, become steady
after these breakpoints, and they do not drop further as
iterations continue.

• The maximum compatibility of the CFIE solution with the
EFIE or MFIE system depends on the value of . This is
in agreement with the results in Section III.

For the radiation problem in Fig. 1(a), we also calculate the
error in the far-zone electric field at each iteration in addition to
the residual error. We compute the total electric field in the far
zone on the plane as

(21)
where and are the and components of the total
electric field, , and for

. The total electric field is obtained by combining
the incident field radiated by the Hertzian dipole and the sec-
ondary field due to the induced electric current on the surface
of the cube. Coefficients for the discretized induced current are
provided by the iterative algorithm at each iteration. Theoret-
ically, the total electric field should be zero outside the cube,
because the source is shielded by a perfectly-conducting closed
surface. Therefore, we define the “far-field error” as

(22)

where and are arrays of 360 elements containing total
and incident electric fields in the far zone.

In the second row of Fig. 4, the far-field error (22) in the
EFIE and CFIE solutions is plotted with respect to iterations. We
observe that the far-field error in the EFIE solution is reduced to

at the 150th iteration, but it becomes steady and does
not drop after this point, even though the residual error continues
to decrease. Our observations for the far-field error in the CFIE
solutions can be listed as follows.

• Similar to the EFIE solution, accuracy of the CFIE solu-
tions is saturated and cannot be improved any further after
some numbers of iterations.

• The last useful iteration and the minimum achievable ac-
curacy in a CFIE solution depends on the value of .

• For each value of , the last useful iteration in terms of the
solution accuracy corresponds to the breakpoint, where the
compatibility of the CFIE solution with the EFIE system is
saturated.

As a result, the compatibility of the CFIE solution with the EFIE
system is an important indicator in determining the last useful
iteration for the highest possible accuracy with CFIE.

Fig. 5 presents the iterative solutions of the scattering
problem in Fig. 1(b). Similar to the previous example, the
residual error is plotted as a function of BiCGStab iterations
for EFIE and CFIE with , 0.5, and 0.8. In the first
row of Fig. 5, we again plot and to demonstrate
the compatibility of the CFIE solutions with the EFIE and
MFIE systems. For this problem, saturation occurs at the 7th,
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Fig. 6. Iterative solutions of the scattering problem in Fig. 1(c). Residual errors and the far-field error defined in (25) are plotted as a function BiCGStab iterations
for EFIE and CFIE when � � ���, 0.5, and 0.8.

10th, and 30th iterations, respectively, when , 0.5,
and 0.8. During the solutions, we also calculate the error in
the near-zone electric field at each iteration. In this case, we
sample the total electric field inside the cube at
regularly-spaced points, i.e.,

(23)

where , , and are the , , and components of
the total electric field, , and for

. Because of the shielding effect of the per-
fectly-conducting closed surface, the total electric field, which
is obtained by combining the incident plane wave and the sec-
ondary field due to the induced electric current, should be zero
inside the cube. Then, we define the “near-field error” as

(24)

where and are arrays of 361 elements containing total
and incident electric fields at the sample points. As depicted in
the second row of Fig. 5, the near-field error in the EFIE solu-
tion is saturated at the 150th iteration, and the minimum achiev-
able error is approximately . In addition, similar to
the previous example, the last useful iteration for the minimum

possible error with CFIE coincides with the breakpoint for the
compatibility of the solution with the EFIE system.

Finally, Fig. 6 presents the iterative solutions of the problem
of scattering from a sphere, as illustrated in Fig. 1(c). This
problem can be solved analytically using the Mie-series for-
malism. As depicted in the first row of Fig. 6, the compatibility
of the CFIE solutions with the EFIE system saturates at the 9th,
13th, and 56th iterations, respectively, when , 0.5, and
0.8. During the iterative solutions of this problem, “the far-field
error” is calculated as

(25)

where

(26)

(27)

, and for . In (26)
and (27), and are the and components of the elec-
tric field obtained by a reference Mie series solution, whereas
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and represent computational values. Fig. 6 confirms the
previous results that the minimum achievable error and the last
useful iteration in the CFIE solutions are closely related to the
compatibility of the solutions with the EFIE system.

V. CONCLUDING REMARKS

In this study, we present our investigations on the accuracy
of CFIE discretized with the RWG functions. Our observations
can be summarized as follows.

• Due to the excessive discretization error of the identity op-
erator in MFIE [21], matrix equations obtained with EFIE
and MFIE are incompatible. Being a convex combination
of EFIE and MFIE, CFIE is contaminated with the MFIE
inaccuracy, and CFIE solutions are also incompatible with
the EFIE and MFIE systems.

• In an iterative solution of a matrix equation obtained from
the discretization of an integral-equation formulation, ac-
curacy of the solution is saturated and the solution error
cannot be reduced any further after a number of iterations.
This is because there are various error sources, and the
overall error cannot be minimized by only reducing the
residual error.

• Minimization of the residual vector during an iterative so-
lution of CFIE involves a breakpoint, where the compat-
ibility of the solution with the EFIE and MFIE systems
cannot be enhanced any further.

• Since EFIE is more accurate than CFIE, the breakpoint
for the compatibility of the CFIE solution with the EFIE
system also corresponds to the last useful iteration, where
the minimum possible error is achieved with CFIE.

We conclude that the accuracy of CFIE solutions are contami-
nated with the well-known inaccuracy of MFIE, that the accu-
racy of CFIE solutions cannot be improved simply by reducing
the residual error in an iterative solution, and that the compat-
ibility of the CFIE solution with the EFIE system is an impor-
tant indicator to determine the last useful iteration to obtain the
highest possible accuracy with CFIE. Even though these conclu-
sions are deduced from the results of radiation and scattering
problems involving canonical objects in this study, the same
conclusions are also confirmed with various other problems in-
volving conducting objects with diverse geometries.
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