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Abstract

Besov spaces of harmonic functions on the unit ball of R
n are defined by requiring sufficiently high-order derivatives of functions

lie in harmonic Bergman spaces. We compute the reproducing kernels of those Besov spaces that are Hilbert spaces. The kernels
turn out to be weighted infinite sums of zonal harmonics and natural radial fractional derivatives of the Poisson kernel. To cite this
article: S. Gergün et al., C. R. Acad. Sci. Paris, Ser. I 347 (2009).
© 2009 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

Noyaux reproduisants pour les espaces harmoniques de Besov sur la boule. Les espaces de Besov de fonctions harmoniques
sur la boule unité de R

n sont défini en exigeant que suffisamment des dérivés de haut ordre de fonctions appartiennent aux espaces
de Bergman harmoniques. Nous calculons les noyaux reproduisants de ces espaces de Besov qui sont des espaces de Hilbert. Les
noyaux se révèlent être, de façon tout naturel, des sommes infinies pondérées des harmoniques zonalles et des dérivés fractionnels
radiaux du noyau de Poisson. Pour citer cet article : S. Gergün et al., C. R. Acad. Sci. Paris, Ser. I 347 (2009).
© 2009 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction and preliminaries

Let B and S be the unit ball and the unit sphere in R
n with respect to the usual inner product x ·y = x1y1 +· · ·+xnyn

and the norm |x| = √
x · x. Always n � 2, and we often write x = rξ , y = ρη with r = |x|, ρ = |y| and ξ, η ∈ S. We

let ν and σ be the volume and surface measures on B and S normalized as ν(B) = 1 and σ(S) = 1. We always take
q ∈ R, and define on B also the measures dνq(x) = Nq(1 − |x|2)q dν(x). These measures are finite only for q > −1
and then we choose Nq so as to have νq(B) = 1. For q � −1, we set Nq = 1. We denote the Lebesgue classes with
respect to νq by L

p
q , and we always consider 1 � p < ∞.

We let h(B) denote the space of complex-valued harmonic functions on B, those annihilated by the usual Lapla-
cian �, with the topology of uniform convergence on compact subsets of B. The Besov spaces under consideration in

✩ This research is supported by TÜBİTAK under Research Project Grant 108T329.
E-mail addresses: gergun@cankaya.edu.tr (S. Gergün), kaptan@fen.bilkent.edu.tr (H.T. Kaptanoğlu), aureyen@anadolu.edu.tr (A.E. Üreyen).
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this Note form a two-parameter Sobolev-type family within h(B). They extend Bergman spaces of harmonic functions.
They have been studied early in [4–8] from a different perspective.

The Pochhammer symbol is defined by (a)b := �(a + b)/�(a) when a and a + b are off the pole set of the gamma
function �. Stirling formula gives

�(c + a)

�(c + b)
∼ ca−b and

(a)c

(b)c
∼ ca−b (Re c → ∞), (1)

where x ∼ y means that |x/y| is bounded above and below by two positive constants.
The rest of the material in this section is classical and can be found in [1, Chapter 5] or [11, Chapter IV]. For

m = 0,1,2, . . . , let Hm denote the space of all harmonic homogeneous polynomials of degree m. By homogeneity,
a u ∈ Hm is determined by its restriction to S, and we freely identify u with its restriction. The restrictions are called
spherical harmonics. The space L2(σ ) is the orthogonal direct sum of all the Hm.

Lemma 1.1. If u ∈ h(B), then u has a unique homogeneous expansion u = ∑∞
m=0 um with um ∈ Hm, the series

converging absolutely on B, and uniformly on its compact subsets.

The spaces Hm are finite-dimensional; we set δm = dim Hm. Then the evaluation functionals at points η ∈ S are
bounded on Hm, and so Hm is a reproducing kernel Hilbert space. Its reproducing kernel Zm(ξ, η) is called the zonal
harmonic of degree m; thus Zm is a positive definite function. Zonal harmonics can be extended to positive definite
functions on B × B as Zm(x, y) = rm ρm Zm(ξ, η) by homogeneity. Zonal harmonics are real-valued and symmetric
in their variables, that is, Zm(x, y) = Zm(y, x) for x, y ∈ B. Consequently, Zm is harmonic in either of its variables
since it lies in Hm. There are explicit formulas for Zm(x, y) in the two books mentioned above, but we do not need
them in this Note.

Our main results are given in Section 3. Detailed proofs and further results will be presented elsewhere.

2. Harmonic Bergman spaces and kernels

For q > −1, the Bergman space b
p
q is that closed subspace of L

p
q whose members are also in h(B). The Bergman

spaces with p = 2 are reproducing kernel Hilbert spaces, and the reproducing kernel of b2
q is

Rq(x, y) =
∞∑

m=0

(n/2 + 1 + q)m

(n/2)m
Zm(x, y) =:

∞∑
m=0

γm(q)Zm(x, y) (q > −1, x, y ∈ B), (2)

which also defines γm(q); see [9, Proposition 3]; also [6, p. 25], [8], and [1, pp. 156–157] for q = 0; and [13, p. 357]
for n = 2; and also [2, (3.1)] for integer q . The kernels Rq converge absolutely on B×B, and uniformly if one variable
lives in a compact subset of B. Therefore the Rq are symmetric in their variables and harmonic as a function of each.

The computation yielding Rq is valid only for q > −1, but R−1 also perfectly makes sense and is nothing but the
homogeneous extension of the Poisson kernel P to B × B since γm(−1) = 1 for all m. In fact, the coefficients γm(q)

make sense down to q > −(n/2 + 1), and for all such q , they satisfy

γm(q) ∼ m1+q (m → ∞) (3)

by (1). With smaller γm(q), the infinite sums in (2) for q � −1 have at least the same convergence properties on
B × B as those for q > −1. Since γm(q) > 0 for all m and q > −(n/2 + 1), and the Zm are positive definite kernels,
by convergence we conclude that Rq given as in (2) is a positive definite function, and thus is a reproducing kernel
and generates a reproducing kernel Hilbert space on B for all q > −(n/2 + 1). All the references cited in the previous
paragraph restrict themselves to q > −1 or so. The point of view of getting from kernels to spaces apparently has
never been utilized before.

3. Harmonic Besov kernels and spaces

Our purpose now is to extend the kernels Rq even further to all q ∈ R. The main idea is to replace the coefficients
γm(q) of Zm in Rq by new γm(q) that preserve the growth rate of (3) for q � −(n/2 + 1) as well.
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Definition 3.1. For m = 0,1,2, . . . , we set

γm(q) =
⎧⎨
⎩

(n/2+1+q)m
(n/2)m

, if q > −(n/2 + 1);
(m!)2

(1−n/2−q)m (n/2)m
, if q � −(n/2 + 1);

and define

Rq(x, y) =
∞∑

m=0

γm(q)Zm(x, y). (4)

It seems the kernels (4) for q � −(n/2 + 1) are completely new here. Note that γ0(q) = 1 for all q and (3) is
satisfied for all real q by (1) as promised. Moreover, γm(q) �= 0 for all m = 0,1,2, . . . and all q ∈ R.

Proposition 3.2. The series (4) converges absolutely for any x, y ∈ B. If one of x or y lies in a compact subset of B

and the other in B, then the series converges uniformly.

Definition 3.3. Let u = ∑∞
m=0 um ∈ h(B) be given as in Lemma 1.1. We define operators Dt

s by

Dt
su :=

∞∑
m=0

dm(s, t) um :=
∞∑

m=0

γm(s + t)

γm(s)
um.

For any s, D0
s = I , the identity. If λ is a multi-index, then Dt

sx
λ = d|λ|(s, t) xλ. So in every case Dt

s(Hm) = Hm.
By Definition 3.1 and (1), we have dm(s, t) ∼ mt as m → ∞ for all s ∈ R. Particularly, D1−n/2 = R + I , where R is

the radial derivative given by Ru(x) = ∇u(x) · x = ∑∞
m=0 m1 um(x) in which ∇ is the usual gradient. Summing up,

each Dt
s is a radial differential operator of fractional order t .

Moreover, dm(s, t) �= 0 for all choices of m,s, t . Then every Dt
s is invertible with two-sided inverse (Dt

s)
−1 = D−t

s+t ,
which follows from the additive property Du

s+tD
t
s = Dt+u

s . The operators Dt
s are constructed so that Dt

sRs(x, y) =
Rs+t (x, y) in all cases, where differentiation is performed only on one of the variables x, y; and by symmetry it does
not matter which. In particular, Rq(x, y) = D

1+q

−1 P(x, y) extending [2, (3.1)], [1, 8.12], and a formula in [9, p. 29].

Lemma 3.4. Every Dt
s maps h(B) into itself continuously. Thus Dt

su is harmonic on B if u is.

Definition 3.5. Consider the linear transformation I t
s defined for u ∈ h(B) by I t

s u(x) = (1 − |x|2)t Dt
su(x). For q ∈ R

and 1 � p < ∞, we define the harmonic Besov space b
p
q to consist of all u ∈ h(B) for which I t

s u belongs to L
p
q for

some s, t satisfying

q + pt > −1. (5)

Condition (5) assures that all b
p
q contain the polynomials and therefore are nontrivial. Thus Hm ⊂ b

p
q for all

possible values of the parameters. For any s, t satisfying (5), by the invertibility of Dt
s and that 1 − |x|2 �= 0 for

x ∈ B, the map I t
s imbeds b

p
q into L

p
q . Then ‖u‖b

p
q

:= ‖I t
s f ‖L

p
q

defines a norm on b
p
q for each such s, t , and only

0 ∈ h(B) has norm 0. Similarly, each pair s, t satisfying (5) with p = 2 gives rise to an inner product on b2
q by

[u,v]b2
q
= [I t

s u, I t
s v]L2

q
. Explicitly,

‖u‖p

b
p
q

= Nq

∫

B

∣∣Dt
su(x)

∣∣p (
1 − |x|2)q+pt dν(x), [u,v]b2

q
= Nq

∫

B

Dt
su(x)Dt

sv(x)
(
1 − |x|2)q+2t dν(x).

Proposition 3.6. Different values of s, t satisfying (5) give equivalent norms ‖ · ‖b
p
q

on b
p
q .

Definition 3.5 assigns the space b
p
q to the point (p, q) in the half plane {Rep � 1}. When q > −1, we can take

t = 0, and thus the spaces b
p
q are the well-known harmonic weighted Bergman spaces. Our main interest lies in the

region q � −1, but our results cover and generalize what is known for q > −1 as well.
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Harmonic Besov spaces are studied in [4–8] in the generality of Definition 3.5, but recently only smaller subfamilies
are considered such as with q = −n or t = 1 or both; see [3,10,12,14].

Theorem 3.7. Each b2
q for q ∈ R is a reproducing kernel Hilbert space, and its reproducing kernel is Rq .

For another description of b2
q , let’s start with the homogeneous expansion of u ∈ h(B) given in Lemma 1.1. If

{Ym1, . . . , Ymδm} is an orthonormal basis for Hm ⊂ L2(σ ), then each um restricted to S has itself an expansion in
terms of the {Ymk}, and thus

u(x) =
∞∑

m=0

rm um(ξ) =
∞∑

m=0

rm

δm∑
k=1

cmk Ymk(ξ) =
∞∑

m=0

δm∑
k=1

cmk Ymk(x) (x ∈ B), (6)

cmk =
∫

S

um(ξ)Ymk(ξ)dσ(ξ) = 1

rm

∫

S

um(rξ)Ymk(ξ)dσ(ξ) = 1

rm

∫

S

u(rξ)Ymk(ξ)dσ(ξ) (0 < r < 1)

by orthogonality. We also see that this computation of cmk is independent of r ∈ (0,1).

Theorem 3.8. The Hilbert space b2
q coincides with the space βq of functions u ∈ h(B) with expansions of the form (6)

for which

∞∑
m=0

δm∑
k=1

|cmk|2
γm(q)

< ∞ (7)

equipped with the inner product 〈u,v〉q = ∑∞
m=0

∑δm

k=1
1

γm(q)
cmkc

′
mk and the associated norm ‖|u|‖q = 〈u,u〉1/2,

where primes denote the coefficients of v ∈ h(B).

Corollary 3.9. The norms ‖| · |‖q and ‖ · ‖b2
q

are equivalent on b2
q .

Example 3.10. Harmonic Besov spaces b2
q with different q are different. Let q1 < q2. By Definition 3.5, it is clear

that b2
q1

⊂ b
p
q2 . Next, define u(x) = ∑∞

m=1 m(q1+q2)/4 Ym1(x). Then u ∈ b2
q2

\ b2
q1

, because by (7),

‖|u|‖q1 ∼
∞∑

m=1

1

m1−(q2−q1)/2
= ∞ while ‖|u|‖q2 ∼

∞∑
m=1

1

m1+(q2−q1)/2
< ∞.

References

[1] S. Axler, P. Bourdon, W. Ramey, Harmonic Function Theory, Springer, New York, 1992.
[2] R.R. Coifman, R. Rochberg, Representation theorems for holomorphic and harmonic functions in Lp , Astérisque 77 (1980) 12–66.
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