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Abstract—We present a novel hierarchical partitioning strategy
for the efficient parallelization of the multilevel fast multipole al-
gorithm (MLFMA) on distributed-memory architectures to solve
large-scale problems in electromagnetics. Unlike previous paral-
lelization techniques, the tree structure of MLFMA is distributed
among processors by partitioning both clusters and samples
of fields at each level. Due to the improved load-balancing, the
hierarchical strategy offers a higher parallelization efficiency than
previous approaches, especially when the number of processors
is large. We demonstrate the improved efficiency on scattering
problems discretized with millions of unknowns. In addition, we
present the effectiveness of our algorithm by solving very large
scattering problems involving a conducting sphere of radius 210
wavelengths and a complicated real-life target with a maximum
dimension of 880 wavelengths. Both of the objects are discretized
with more than 200 million unknowns.

Index Terms—Large-scale problems, multilevel fast multipole
algorithm, parallelization, scattering problems, surface integral
equations.

I. INTRODUCTION

S URFACE integral equations are commonly used to
formulate scattering and radiation problems involving

three-dimensional conducting bodies with arbitrary shapes [1].
The application of boundary conditions for the electric field
and the magnetic field on the surface of an object leads to the
electric-field integral equation (EFIE) and the magnetic-field
integral equation (MFIE), respectively. For closed surfaces,
EFIE and MFIE can be combined to obtain the combined-field
integral equation (CFIE), which is free of the internal-reso-
nance problem [2]. Numerical solutions of integral equations
require the discretization (e.g., triangulation) of surfaces. Then,
unknown surface currents are expanded in a series of basis
functions, and integral equations are tested by employing a
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set of testing functions. Finally, solutions of resulting
dense matrix equations provide the expansion coefficients,
which can be used to compute the scattered or radiated electric
and magnetic fields everywhere.

Surface integral equations provide accurate results when
they are discretized appropriately by using small elements with
respect to wavelength. Therefore, when a problem involves
a large object with dimensions of several wavelengths, its
accurate discretization leads to a large matrix equation with
hundreds of thousands of unknowns. Such a large problem can
be solved iteratively, where the required matrix-vector multi-
plications (MVMs) are performed efficiently by the multilevel
fast multipole algorithm (MLFMA) [3]. For an dense
matrix equation, MLFMA reduces the complexity of MVMs
from to , allowing for the solution of large
problems with limited computational resources. On the other
hand, accurate solutions of many real-life problems require
discretizations with millions of elements, leading to matrix
equations with millions of unknowns, which cannot easily be
solved with sequential implementations of MLFMA running on
a single processor. To solve such large problems, it is helpful
to increase computational resources by assembling parallel
computing platforms and, at the same time, by parallelizing
MLFMA.

The parallelization of MLFMA is not trivial because of the
complicated structure of this algorithm. Simple parallelization
techniques usually fail to provide efficient solutions, due to
communications among processors, poor load-balancing of the
workload, and unavoidable duplications of computations over
multiple processors. Advanced parallelization techniques have
been developed to improve the parallelization of MLFMA by
using novel partitioning strategies, load-balancing algorithms,
and optimizations for communications [4]–[11]. This way, it
has become possible to solve problems with tens of millions of
unknowns on relatively inexpensive computing platforms with
distributed-memory architectures [4]–[6], [9], [10].

Recently, we developed a hierarchical partitioning strategy
that is well suited for the multilevel structure of MLFMA [12].
With the enhanced load-balancing offered by the hierarchical
strategy, parallelization of MLFMA can be improved signifi-
cantly. In this paper, we provide the details of our parallelization
algorithm. We employ canonical problems involving sphere ge-
ometries of various sizes for the comparison of the hierarchical
strategy with previous approaches. We show that the efficiency
of the parallelization is improved drastically, especially when
the number of processors is large. Improved efficiency provided
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by the hierarchical strategy is also demonstrated on scattering
problems discretized with more than 100 million unknowns. Fi-
nally, we present the solutions of very large scattering problems
involving a sphere of radius and a stealth airborne target
with a maximum dimension of , which are discretized with
204,823,296 and 204,664,320 unknowns, respectively, and
denotes the wavelength.

The rest of the paper is organized as follows. In Section II, we
summarize an efficient implementation of MLFMA, focusing
on the main stages of the algorithm. Section III presents the
parallelization of MLFMA using the hierarchical partitioning
strategy. We investigate the communications among processors
in Section IV and compare our parallelization technique with the
previous approaches in Section V. Finally, numerical results are
presented in Section VI, followed by our concluding remarks in
Section VII.

II. MULTILEVEL FAST MULTIPOLE ALGORITHM

For perfectly-conducting objects, discretizations of surface
integral equations lead to dense matrix equations in the
form of

(1)

where the matrix elements for can be
interpreted as electromagnetic interactions of discretization ele-
ments, i.e., basis and testing functions. The matrix equation (1)
can be solved iteratively via a Krylov subspace algorithm, where
the required MVMs are performed efficiently by MLFMA [3].
In general, MLFMA splits MVMs as

(2)

where near-field interactions denoted by are calculated di-
rectly and stored in memory to perform the partial multiplica-
tions , while multiplications involving far-field interac-
tions, i.e., , are performed approximately and efficiently.
In this section, we briefly describe an efficient implementation
of MLFMA by summarizing the main stages of the algorithm.

A. Discretization of the Object

Without losing generality, we consider a smooth object
with an electrical dimension of , where is the
wavenumber. Discretization (triangulation) of the object with

mesh size leads to unknowns, where .
As basis and testing functions, we use Rao-Wilton-Glisson
(RWG) [13] functions defined on planar triangles.

B. Clustering

To calculate electromagnetic interactions in a multilevel
scheme, a tree structure is constructed by placing the object in
a cubic box and recursively dividing the computational domain
into subdomains, until the box size is about . A multilevel
tree structure with levels

is obtained by considering nonempty boxes (clusters)1. At level
from 1 to , the number of clusters can be approximated as

(3)

where . In other words, the number of clusters
decreases approximately by a factor of four from a level to the
next upper level.

The tree structure in MLFMA can be constructed by using
a top-down or a bottom-up strategy [10]. In the top-down
strategy, the size of the largest cube enclosing the object is
minimized, while the size of the smallest boxes at the lowest
level depends on the size of the object and the number of levels.
In the bottom-up strategy, however, the size of the smallest
boxes is fixed to some value (such as ), and the sizes of the
boxes at higher levels are recursively doubled until the whole
object is enclosed by the largest box. For a given problem, one
of the two strategies can be preferable in terms of efficiency
and accuracy.

C. Sampling

For each cluster in the tree structure, radiated and incoming
fields are defined and sampled on the unit sphere. We choose
samples regularly spaced in the direction and use the
Gauss-Legendre quadrature in the direction [14]. For level

, the number of samples is and
along and directions, respectively, where

is the truncation number determined by the excess bandwidth
formula [15], i.e.,

(4)

In (4), is the box size at level , and is the desired digits
of accuracy. The sampling rate depends on the cluster size as
measured by the wavelength , and the total
number of samples can be approximated as

(5)

where .

D. Far-Field Interactions

In MLFMA, far-field interactions are calculated in a
cluster-by-cluster manner using the diagonalization and fac-
torization of the homogenous-space Green’s function [14]. In
each MVM, three main stages, i.e., aggregation, translation,
and disaggregation, are performed as described below.

1) Aggregation: In this stage, radiated fields of clusters are
calculated from the bottom of the tree structure to the highest
level . At the lowest level, radiation patterns of basis
functions, which are calculated during the setup of MLFMA, are
multiplied with the coefficients provided by the iterative solver

1In this paper, � represents the number of effective levels, where MLFMA
stages, i.e., aggregation, translation, and disaggregation, are performed. The ac-
tual number of levels is �����, but the highest two levels are not used directly
in MLFMA.
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and combined to obtain the radiated fields of the smallest clus-
ters. Then, the radiated fields of clusters at higher levels are ob-
tained by shifting and combining the radiated fields of clusters
at lower levels. During the aggregation stage, we use a local
Lagrange interpolation between successive levels to match dif-
ferent sampling rates for fields.

2) Translation: In this stage, radiated fields computed during
the aggregation stage are translated into incoming fields. For
each cluster at any level, there are clusters to translate
the radiated field to. In addition, using the symmetry of cubic
(identical) clusters, the number of different translation operators
is , independent of the level [4]. Translation operators are
calculated during the setup of MLFMA in processing
time using local interpolation methods [16].

3) Disaggregation: This stage involves the calculation of
total incoming fields at cluster centers from the top of the tree
structure to the lowest level. At the highest level, the total in-
coming field for a cluster is obtained by the combination of
incoming fields due to translations. At lower levels, however,
the incoming field to the center of a cluster involves a contribu-
tion from the incoming field to the center of its parent cluster.
We use transpose interpolation (anterpolation) between consec-
utive levels during the disaggregation stage to match different
sampling rates of the levels [17]. Following the disaggregation
operations at the lowest level, incoming fields are received by
the testing functions. Similar to the radiation patterns of basis
functions, receiving patterns of testing functions are also calcu-
lated during the setup of MLFMA.

Considering the three stages of MLFMA, the processing time
and memory required for all operations at level is proportional
to the product of the number of clusters and the number of sam-
ples, i.e.,

(6)

We note that all levels of MLFMA have equal importance with
complexity in terms of processing time and memory.

E. Near-Field Interactions

In MLFMA, there are also near-field
interactions, which are calculated directly in the setup stage of
the program and stored in memory to be used multiple times
during the iterations. These interactions are between the basis
and testing functions that are located close to each other. We
use singularity extraction techniques [18]–[21] and Gaussian
quadratures [22] in order to calculate the near-field interactions
accurately and efficiently.

III. HIERARCHICAL PARALLELIZATION OF MLFMA

The main task in the parallelization of MLFMA on dis-
tributed-memory architectures is partitioning the multilevel tree
structure among processors. Simple parallelization techniques,
based on distributing clusters among processors, usually fail
to provide efficient solutions. This is mainly due to dense
communications between processors, duplication of compu-
tations, and unbalanced distribution of the workload among
processors [7], [8]. Since such problems arise mostly at the

Fig. 1. Distribution of a four-level tree structure among eight processors using
the hierarchical partitioning strategy.

higher levels of MLFMA, a hybrid parallelization technique,
which applies different partitioning strategies for the lower
and the higher levels, is developed to improve the efficiency
[7]–[10]. In this technique, processor assignments are made on
the basis of fields of clusters at the higher levels. In other words,
each cluster at higher levels is shared by all processors, while
each processor is assigned to the same portion of fields for
all clusters. Even though the hybrid parallelization technique
increases the parallelization efficiency significantly, compared
to simple parallelization approaches, the improvement can be
insufficient, especially when the number of processors is large.

In this section, we provide the details of the hierarchical par-
allelization of MLFMA for the efficient solution of large-scale
problems. The hierarchical parallelization is based on the simul-
taneous partitioning of clusters and their fields at all levels. We
adjust the partitioning in both directions (clusters and samples
of fields) appropriately by considering the number of clusters
and the number of samples at each level. As an example, Fig. 1
depicts a four-level tree structure , where levels are rep-
resented by two-dimensional rectangles. Horizontal and vertical
dimensions of rectangles correspond to clusters and samples
of fields, respectively. The tree structure is partitioned among
eight processors labeled 1 to 8. At the lowest level, clusters are
distributed among eight processors, and each cluster is assigned
to a single processor, without any partitioning of field samples.
Then, at the next level , field samples are partitioned
among two groups of processors, i.e., (1,3,5,7) and (2,4,6,8),
while the number of cluster partitions is reduced to four. At this
level, samples of each cluster are shared by two processors. As
we proceed to the higher levels, the number of partitions for
clusters and samples of fields are systematically decreased and
increased, respectively.

In the following subsections, we present the hierarchical par-
allelization of MLFMA in detail by considering the main stages
of the algorithm.

A. Partitioning of the Tree Structure

We consider the parallelization of MLFMA on a cluster of
processors, where for some integer . Using the hierar-
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Fig. 2. Aggregation operations from level 3 to level 4 for the partitioned tree
structure in Fig. 1.

chical partitioning strategy, the number of partitions for clusters
at level is chosen as

(7)

We note that clusters are not partitioned for levels ,
if such a level exists. The number of clusters assigned to each
processor can be approximated as

(8)

In addition, samples of the fields are divided into

(9)

partitions along the direction for level . Field samples are par-
titioned only along the direction for an easy implementation
of interpolation/anterpolation operations [7]. The number of
samples assigned to each processor is

(10)

Also considering the sampling in the direction, the total
number of samples per processor can be written as

(11)

Finally, the size of the local data at each processor is

(12)

for .

B. Aggregation Stage

For the partitioned tree structure in Fig. 1, aggregation oper-
ations from level 3 to level 4 are depicted in Fig. 2 and can be
listed as follows.

1) One-to-One Communications for Data Inflation: During
aggregations from a level to the next higher level, interpolations
are required to increase the sampling rate for radiated fields.
Using local Lagrange interpolation, each target point in the fine
grid has contributions from a set of neighboring points in the
coarse grid. Therefore, when samples of fields are partitioned

among processors, interpolations in each processor need sam-
ples located in other processors. Consequently, before interpo-
lations, one-to-one communications are required between pairs
of processors to inflate the local data, in accordance with the in-
terpolation requirements.

For the partitioned tree structure in Fig. 1, aggregation from
level 3 to level 4 requires one-to-one communications within
two separate groups of processors that are located in the same
columns, i.e., (1,2,3,4) and (5,6,7,8), as depicted in Fig. 2. As
an important advantage of the hierarchical partitioning strategy,
distribution of the samples into large numbers of partitions
is avoided. Therefore, communications are required mostly be-
tween pairs of processors located “next to each other.” For ex-
ample, processor 3 communicates mainly with processors 1 and
2, but not with processor 4. Processors 3 and 4 would need
to communicate with each other if the number of the sam-
ples required for the interpolation is larger than the number of
the samples per processor. However, using the hierarchical
strategy, the number of partitions along the direction, hence
the number of the samples per processor, can be adjusted such
that those secondary communications between “distant” proces-
sors are avoided.

2) Interpolation and Shifting: When the required data is pre-
pared by one-to-one communications for a cluster, its radiated
field is interpolated and shifted to the center of its parent cluster.
Temporary levels involving parent clusters and field samples
after the interpolation and shifting operations are denoted as in-
termediate levels. As an example, for the partitioned tree struc-
ture in Fig. 1, level 3.5 is depicted in Fig. 2. Following the inter-
polation, the number of samples along the direction assigned
to each processor is doubled, i.e.,

(13)

At the same time, the number of clusters in each processor can
be written as

(14)

Intermediate levels are defined temporarily and used to arrange
the data in each processor, before communications are per-
formed to modify the partitioning according to the hierarchical
strategy.

3) Data Exchanges: From an intermediate level
to the next level , data is exchanged among processors,
if . As depicted in Fig. 2, processors are paired
according to their positions in the partitioning scheme. Each
processor performs the following communications.

• Send half of the field samples of each cluster at the inter-
mediate level;

• Receive the complementary data, which involves field sam-
ples of some clusters, from the associated processor.

With data exchanges, the number of clusters in each processor
is doubled with respect to the number of clusters at the interme-
diate level, while the number of samples along the direction is
halved. Then, we have

(15)
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Fig. 3. One-to-one communications during the translation stage at levels 2 and
3 of the partitioned tree structure in Fig. 1.

and

(16)

which agree with the expressions in (8) and (10), respectively.

C. Translation Stage

Using the hierarchical partitioning strategy, one-to-one com-
munications are also required during the translation stage, since
clusters are partitioned, and some translations are needed among
clusters located in different processors. These communications
are achieved by pairing the processors and transferring the radi-
ated fields of clusters between the pairs. As depicted in Fig. 3,
communications are required only among the processors that
are located in the same row of the partitioning. For example,
communications at level 2 are performed within two separate
groups of processors, i.e., (1,3,5,7) and (2,4,6,8). In general, for
“inter-processor” translations at level , each processor is paired
one by one with the other processors. Once a pairing is
established, radiated fields of clusters are transferred, and trans-
lations are performed by the receiver processor.

In addition to inter-processor translations, there are also
“intra-processor” translations that are related to clusters located
in the same processor. These translations can be performed
independently in each processor, without any communication.

D. Disaggregation Stage

The parallelization of the disaggregation stage is very sim-
ilar to the parallelization of the aggregation stage. In general,
operations in the aggregation stage are performed in a reverse
manner.

1) Data Exchanges: When incoming fields are calculated at
cluster centers at level , partitioning is modified via data ex-
changes among the processors. This way, the partitioning at
level is generated as required for anterpolation and
shifting operations.

2) Anterpolation and Shifting: Incoming fields at the centers
of clusters are anterpolated and shifted to the centers of their
subclusters at level .

3) One-to-One Communications for Data Deflation: Since
the anterpolation is the transpose of the interpolation, some of
the samples obtained from an anterpolation operation should be
sent to other processors. This is because interpolations during

the aggregation stage are performed using the inflated data
prepared by one-to-one communications among processors.
As the reverse of this process, anterpolations produce inflated
data, which must be deflated via one-to-one communications.
Following an anterpolation operation, some of the resulting
data are used locally, while the rest are sent to other processors.
Similar to the communications during interpolations, data are
transferred mostly among neighboring processors in the same
column of the partitioning scheme.

IV. COMMUNICATIONS IN THE HIERARCHICAL

PARALLELIZATION OF MLFMA

Using the hierarchical partitioning strategy, computations on
the tree structure are distributed among processors with im-
proved load-balancing, compared to previous strategies based
on partitioning with respect to only clusters or only samples
of fields. However, there are still unavoidable communications
among processors, which may reduce the efficiency of the paral-
lelization. In this section, we investigate these communications
in detail.

A. Communications in the Aggregation/Disaggregation Stages

During an interpolation operation in a processor at level
, the amount of data required from other pro-

cessors for each cluster is proportional to the number of samples
in the direction. Considering also the number of clusters per
processor, the communication time for interpolations at level
can be written as

(17)

We note that the communication time tends to decrease
with the increasing number of processors .

To switch the partitioning scheme from level to level, each
processor exchanges half of its data produced during the aggre-
gation stage. The processing time for these communications can
be expressed as

(18)

where the upper bound is again inversely proportional to the
number of processors . The processing time required for com-
munications during the disaggregation stage is the same as the
time required for communications during the aggregation stage.

B. Communications in the Translation Stage

During the translation stage, each processor is paired one by
one with processors to per-
form inter-processor translations. For each pair, the number of
cluster-cluster interactions required to be performed is propor-
tional to the number of clusters per processor. In addition, the
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size of the data transferred in each interaction is proportional to
the number of local samples per cluster, i.e., . Therefore, the
communication time for translations can be written as

(19)

The communication time for translations can be significant, es-
pecially at the lower levels of MLFMA.

V. COMPARISONS WITH PREVIOUS PARALLELIZATION

TECHNIQUES

In this paper, we compare the hierarchical parallelization
technique with two previous approaches, namely, the simple
and the hybrid parallelization techniques. As mentioned in Sec-
tion III, the simple parallelization of MLFMA is based on the
distribution of clusters among processors at all levels. A major
disadvantage of this technique is the difficulty in distributing a
small numbers of clusters at the higher levels of the tree struc-
ture [8]. When the number of processors is large, those clusters
must be duplicated over multiple processors. Otherwise, a large
amount of data is required to be communicated during the
aggregation and disaggregation stages. In addition, when using
the simple parallelization technique, translations involve dense
communications among processors [7], [8].

The hybrid parallelization technique was successfully de-
veloped to improve the parallelization of MLFMA [7]. In this
technique, the lower (distributed) levels of MLFMA are parti-
tioned as in the simple technique, i.e., clusters are distributed
among processors. In the higher (shared) levels, however,
samples of fields are distributed, instead of clusters. Unlike
the hierarchical parallelization, samples in a shared level are
distributed among all processors, without any partitioning of
clusters. Distributing samples provides improved load-bal-
ancing and communication-free translations for the higher
levels of the tree structure. On the other hand, problems arise
for some levels at the middle of the tree, where it is not efficient
to distribute either fields or clusters among processors [10].

The hierarchical parallelization technique provides two im-
portant advantages, compared to simple and hybrid techniques.

• Improved load-balancing: Partitioning both clusters and
samples of fields leads to an improved load-balancing
of the workload among processors at each level. Conse-
quently, duplication of computations, which may occur in
the simple parallelization, and waits for the synchroniza-
tion of processors are minimized.

• Reduced communications: Although the hierarchical par-
titioning increases the types of communications, compared
to simple and hybrid approaches, the amount of data trans-
ferred is decreased. In addition, due to the improved load-
balancing, the average package size is enlarged, and the
number of communication events is reduced. As a result,
the communication time is significantly shortened.

Finally, another important advantage of the hierarchical
parallelization algorithm appears when MLFMA is employed
on a cluster with multiprocessor nodes. Most of the main-
boards built recently have multiple processors connected via

high-speed buses. Then, parallel computers are constructed by
clustering a number of multiprocessor computing units (nodes),
instead of processors. Resulting parallel computers are highly
nonuniform, since communications among processors in the
same node are significantly faster than those among processors
located in different nodes. Using multicore processors further
complicates the situation, since communications within nodes
also have diverse rates, depending on whether the inter-core
communications are taking place in the same processor or
between two processors in the same node. The hierarchical par-
allelization technique is suitable for such parallel platforms. As
an example, let the tree structure in Fig. 1 be partitioned among
two nodes, each having four processors, i.e., processors 1–4
and processors 5–8 are located in two different nodes. Then,
all communications during the aggregation and disaggregation
stages from level 1 to level 3 are performed “inside” nodes.
Inter-node communications are required only for translations
and data exchanges during the aggregation/disaggregation
stages between level 3 and level 4. In general, the hierarchical
partitioning strategy facilitates the processor arrangements in
nonuniform platforms to minimize inter-node communica-
tions. However, in this paper, we do not use this advantage
directly; hence, the improved efficiency obtained with the
hierarchical parallelization is general and valid for all types of
distributed-memory architectures.

VI. RESULTS

The results of this paper can be categorized into three
parts. First, we demonstrate the improved efficiency provided
by the hierarchical parallelization strategy, compared to the
previous parallelization approaches, on scattering problems
involving spheres of various sizes discretized with millions of
unknowns. Second, parallelization efficiency is demonstrated
on large-scale scattering problems involving a sphere (a canon-
ical object) and an airborne target Flamme [23] (a complicated
object). Finally, we present the solution of very large scattering
problems involving a sphere of radius and the Flamme
with a maximum dimension of , which are discretized
with 204,823,296 and 204,664,320 unknowns, respectively.
These are the solutions of the largest problems of their classes
ever reported in the literature, to the best of our knowledge.

A. Formulation and Solution Parameters

In this paper, scattering problems involve closed conductors,
which can be formulated with CFIE. Matrix equations provided
by CFIE are usually better conditioned than those obtained with
EFIE and MFIE [24], [25]. Using CFIE, iterative convergence
is achieved rapidly, and it can be further accelerated by em-
ploying simple preconditioners, such as a block-diagonal pre-
conditioner (BDP). In all solutions, problems are discretized
with about mesh size, and near-field interactions are cal-
culated with maximum 1% error. For small problems involving
1.5–13.5 million unknowns, tree structures are constructed by
using a bottom-up strategy, and far-field interactions are cal-
culated with three digits of accuracy. For large problems (in-
volving more than 100 million unknowns), we use a top-down
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strategy to construct the tree structures, while the far-field inter-
actions are calculated with two digits of accuracy. During the
aggregation stage, interpolations from a level to the next higher
level are performed using 6 6 samples in the coarse grid for
each sample in the fine grid. Finally, iterative solutions are per-
formed using the biconjugate-gradient-stabilized (BiCGStab)
algorithm [26] accelerated with BDP, and the residual error for
the iterative convergence is set to and for small and
large problems, respectively.

B. Parallel Computing Platforms

Scattering problems are solved on three different parallel
clusters, each involving 16 computing nodes.

• Tigerton Cluster: Each node has 32 gigabytes (GB) of
memory and two quad-core Intel Xeon Tigerton proces-
sors with 2.93 GHz clock rate;

• Harpertown Cluster: Each node has 32 GB of memory
and two quad-core Intel Xeon Harpertown processors with
3.00 GHz clock rate;

• Dunnington Cluster: Each node has 48 GB of memory
and four six-core Intel Xeon Dunnington processors with
2.40 GHz clock rate.

In all three clusters, memory in a node is available to all cores
in the node. The nodes are connected via Infiniband networks,
while the processors in a node are connected through high-speed
mainboard buses. In the context of parallelization, we use the
terms “processor” and “core” synonymously. For a solution on

processors, we use the maximum number of nodes available,
i.e., the number of processes per node is minimized. In other
words, if a code is parallelized into processes, and if ,
then we use nodes, each running only one process. When

, however, the solution is parallelized over 16 nodes,
and processors are employed per node.

C. Parallel Efficiency Results and Comparisons

The solutions presented in this subsection are performed on
the Tigerton cluster. Fig. 4 presents the parallelization efficiency
obtained for the solution of a scattering problem involving a
sphere of radius discretized with 1,462,854 unknowns. Fig.
4(a) depicts the efficiency for the total time (including the setup
and iterations), when the solution is parallelized onto 2, 4, 8,
16, 32, 64, and 128 processors. The parallelization efficiency is
defined as

(20)

where is the processing time of the solution with proces-
sors. Fig. 4(a) shows that the hierarchical scheme improves the
parallelization efficiency significantly, compared to simple and
hybrid approaches, especially when the number of processors is
large. The hybrid parallelization performs better than the simple
parallelization; however, its efficiency drops rapidly for ,
and it becomes inefficient, compared to the hierarchical paral-
lelization. Using 128 processors, the hierarchical parallelization
technique provides 58% efficiency, corresponding to a 74-fold
speedup with respect to the single-processor solution.

Fig. 4. Parallelization efficiency with respect to the number of processors for
the solution of a scattering problem involving a sphere of radius ��� discretized
with 1,462,854 unknowns. (a) Overall efficiency including setup and iterations,
when the solution is parallelized by using simple, hybrid, and hierarchical tech-
niques. (b) Efficiencies for MLFMA stages, i.e., aggregation, translation, and
disaggregation, using the hierarchical technique.

Fig. 4(b) presents the parallelization efficiency for the three
stages of MVMs, i.e., aggregation, translation, and disaggrega-
tion, using the hierarchical strategy. We observe that the trans-
lation stage is a major bottleneck in the hierarchical paralleliza-
tion of MLFMA. For a solution on 128 processors, the paral-
lelization efficiency of translations drops below 30%. This is
because the communication time for translations, given in (19),
does not scale with the number of processors , unlike the com-
munication time for the aggregation and disaggregation stages.
In addition, many communications required for inter-processor
translations occur among processors located in different nodes.
Then, the rate of communications during the translation stage
is mostly limited by the speed of the Infiniband network. Nev-
ertheless, even the parallelization of translations is improved
with the hierarchical parallelization technique, and the overall
efficiency provided by the hierarchical algorithm is consistently
higher than those obtained with simple and hybrid approaches.

Fig. 5 presents the parallelization efficiency for solutions of
scattering problems involving spheres of radii and
discretized with 5,851,416 and 13,278,096 unknowns, respec-
tively, where the efficiency is defined with respect to solutions
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Fig. 5. Parallelization efficiency for the solution of scattering problems in-
volving (a) a sphere of radius ��� discretized with 5,851,416 unknowns and
(b) a sphere of radius ��� discretized with 13,278,096 unknowns. Parallel effi-
ciency is defined with respect to two and four processors, respectively.

with two and four processors. Similar to the previous results,
the parallelization efficiency is increased significantly by using
the hierarchical parallelization technique.

Even though Figs. 4 and 5 compare the relative performances
of different parallelization techniques, we emphasize that they
do not provide the complete information for the efficiency of
solutions. In general, one should also consider the following
factors.

• Clock Rate of the Processors: Although using faster pro-
cessors leads to faster solutions, the parallelization effi-
ciency can be degraded as the computation time is reduced.
This is because the communication time becomes more
significant when the processing time for computations is
small.

• Efficient Implementation of the Algorithm: We care-
fully implement MLFMA by minimizing the processing
time, which may also have an adverse effect on the
parallelization efficiency. For example, as opposed to
common implementations of MLFMA, we calculate and
store radiation and receiving patterns of basis and testing
functions during the setup of the program, and we use
them efficiently during iterations. Calculating the patterns
on the fly in each MVM without storing them is also a
common practice for low-memory implementations. That

TABLE I
SOLUTIONS OF SPHERE PROBLEMS

TABLE II
TOTAL PROCESSING TIME AND PARALLELIZATION EFFICIENCY FOR

THE SOLUTION OF SCATTERING PROBLEMS DISCRETIZED

WITH MORE THAN 100 MILLION UNKNOWNS

would increase the processing time, but the parallelization
efficiency would also increase, since those calculations
can be parallelized very efficiently.

• Accuracy Parameters: The accuracy of solutions also af-
fects the parallelization efficiency. For example, most of
the communications during the aggregation and disaggre-
gation stages could be avoided by reducing the number of
interpolation points. This would increase the paralleliza-
tion efficiency, but the accuracy of the solutions would de-
teriorate.

We note that parallel-efficiency results presented in Figs. 4 and
5 are obtained under strict circumstances, using an efficient and
accurate implementation of MLFMA on a cluster of proces-
sors with a relatively high clock rate. To quantify the efficiency
of the solutions, Table I lists processing times, when the three
problems are solved on 128 processors. Using the hierarchical
parallelization technique, the largest problem with 13,278,096
unknowns is solved in less than one hour.

D. Parallel Efficiency for Large-Scale Problems

Table II presents the solution of scattering problems dis-
cretized with more than 100 million unknowns. A sphere of
radius is discretized with 135,164,928 unknowns and
solved by a 10-level MLFMA. We also consider a stealth
airborne target, namely, the Flamme [23], having a maximum
dimension of 6 meters ( at 36 GHz) and discretized with
134,741,760 unknowns. This problem is solved by an 11-level
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Fig. 6. Bistatic RCS (in dB) of a sphere of radius ���� discretized with
204,823,296 unknowns (a) from 0 to 180 and (b) from 174 to 180 , where
0 and 180 correspond to back-scattering and forward-scattering directions,
respectively.

MLFMA. Both of the objects are illuminated by a plane wave,
and solutions are performed on 16, 32, and 64 processors of
the Harpertown cluster. The number of iterations is 23 and
44 for the sphere and the Flamme, respectively. Table II lists
the total processing times including the setup and iterative
solution parts, and the parallelization efficiency obtained for
32 and 64 processors with respect to 16 processors. Using 64
processors, parallelization efficiency is more than 80% for both
problems. Due to this relatively high efficiency provided by the
hierarchical partitioning strategy, we are able to perform each
solution in five to six hours.

E. Solutions of Very Large Problems

Finally, we present the solutions of very large scattering
problems discretized with more than 200 million unknowns.
A sphere of radius is discretized with 204,823,296 un-
knowns and solved on 64 processors of the Dunnington cluster.
Fig. 6(a) presents the normalized bistatic radar cross section
values ( , where is the radius of the sphere in meters)

Fig. 7. Normalized co-polar bistatic RCS (RCS/� in dB) of the stealth air-
borne target Flamme at 44 GHz. Maximum dimension of the Flamme is 6 me-
ters, corresponding to ����. The target is illuminated by plane waves propa-
gating in the �-� plane at (a) 30 and (b) 60 angles from the � axis, with the
electric field polarized in � direction (horizontal polarization).

in decibels (dB) from 0 to 180 such that 0 corresponds to the
back-scattering direction. Fig. 6(b) presents the same results
from 174 to 180 . We observe that computational values are in
agreement with the analytical values obtained by a Mie-series
solution. The solution of the problem using the hierarchical
parallelization strategy requires 645 minutes. Following the
setup, which takes about 280 minutes, the iterative solution
involving 25 iterations is performed in 360 minutes.

Fig. 7 presents the solution of a scattering problem involving
the complicated target Flamme at 44 GHz. The maximum di-
mension of the Flamme is at this frequency. Discretiza-
tion of the problem with mesh size leads to 204,664,320
unknowns. As depicted in the insets of Fig. 7, the nose of the
Flamme is directed towards the axis, and it is illuminated by
two plane waves (individually) propagating in the - plane at
30 and 60 angles from the axis. The electric field is polar-
ized in the direction (horizontal polarization). After the setup,
which takes 265 minutes, the problem is solved twice for the two
excitations in about 1300 minutes. The number of iterations for
30 and 60 illuminations are 38 and 42, respectively. Fig. 7
presents the normalized co-polar bistatic RCS (RCS/ in dB)
on the - plane as a function of the bistatic angle . For the 30
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illumination in Fig. 7(a), 30 and 210 correspond to back-scat-
tering and forward-scattering directions, respectively. We ob-
serve that the back-scattered RCS of the Flamme is extremely
low; it is 90 dB less than the forward-scattered RCS. This is
also observed for the 60 illumination in Fig. 7(b), where the
back-scattered RCS at 60 is significantly lower than the for-
ward-scattered RCS at 240 , due to the stealth property of the
Flamme.

VII. CONCLUSION

We present the details of a hierarchical partitioning strategy
for the efficient parallelization of MLFMA on relatively inex-
pensive computing platforms with distributed-memory architec-
tures. Our algorithm is based on partitioning both clusters and
field samples among processors at all levels of the multilevel tree
structure. This way, load-balancing is improved significantly,
compared to previous parallelization approaches based on par-
titioning with respect to only clusters or only samples of fields.
We demonstrate the improved efficiency provided by the hier-
archical technique on large scattering problems discretized with
millions of unknowns. We also present the solution of very large
scattering problems discretized with more than 200 million un-
knowns. For accurate investigations of complicated targets, such
as the Flamme, solutions obtained with parallel MLFMA are ex-
tremely important. This is because approximate methods, such
as physical optics (PO), may not provide accurate results for
those problems, even when objects are large.
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