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Abstract:  Diffraction of plane waves on dielectric gratings with planar 
plasmonic inserts is studied with the emphasis put on the anomalous 
selectivity of diffraction orders. It is shown that some formally propagating 
orders can be suppressed within a wide frequency range. The effect of 
suppression is more general than the isolation effect observed earlier in 
zero-permittivity and (near-)zero-index slabs and sensitive to the frequency 
dependent peculiarities of the field distribution within the plasmonic layer. 
It is required that the real part of the permittivity of this layer is positive less 
than unity. The wideband features of the suppression effect, i.e., one-way 
transmission and diffraction-free reflection are demonstrated. Narrowband 
selectivity effects are also studied. The structures suggested can be used for 
extending the potential of technologies that are based on multibeam 
operation and field transformation. 
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1. Introduction 

Recently, it has been demonstrated that the planar slabs of a matched-index metamaterial 
having a zero index of refraction can transform the cylindrical waves generated by an 
embedded line source or external curvilinear wave fronts into planar wave fronts [1]. A 
similar transformation can be realized by using epsilon-near-zero materials [2]. The wave 
fronts can be transformed in such a way that two regions of space with a rather complex 
boundary shape can be isolated and the phase pattern in one region can be tailored, while 
being independent of the excitation shape in the other region. This effect is connected with the 
fact that the phase variation within an epsilon-near-zero material is small and completely 
disappears at zero permittivity. 

In case a linearly polarized plane wave is incident on the grating with front-side periodic 
corrugations, which is made of a zero-permittivity material, the isolation effect manifests 
itself in that some diffraction orders in transmission, which are formally allowed to propagate, 
can be suppressed [3]. As a result, the transmitted far field is not affected by the front-side 
corrugations. One more feature, that is related to this effect, is that the transmission can 
strongly depend on whether the front or back side of the grating is corrugated (these results 
have not been shown in [3]). This effect is known as one-way transmission and has been 
studied in detail at microwave frequencies in [4] for multislit gratings, in which the slits are 
branched in such a manner that the interfaces have different periods. It is noteworthy that a 
similar effect has been observed in photonic crystals with one-side grating-like corrugations 
[5].  

Materials with near-zero permittivity, 0≈ε , exist in nature at terahertz frequencies (polar 
dielectrics) and at the visible and ultraviolet (noble metals). They are necessarily dispersive 
and their permittivities are often well described in the framework of Drude or Drude-Lorentz 
models. According to [6], Drude-type dispersion can be scaled down to microwave 
frequencies in arrays of thin metallic wires. Correspondingly, the operation regimes with 
0<Reε<1 can be obtained within a wide frequency range. For example, periodic arrays of 
silver rods have been suggested in [7] for obtaining a metamaterial for wavelengths from 0.5 
μm to 1.5 μm. Other performances of epsilon-near-zero and matched zero-index 
metamaterials have been considered, for example, in [2,8,9]. In the context of our present 
interest, we should also mention those metamaterials that have been designed to operate at 
optical or microwave frequencies in the negative-index regime, but also show the ranges with 
0<Reε<1, e.g., see [10]-[14].  
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It is noteworthy that thin metallic films with corrugated interfaces have been studied by 
many research groups, by putting the emphasis on the anomalous transmission effects, which 
appear due to surface plasmon polaritons and hence correspond to Reε<0, or to narrowband 
transmission effects at Reε>0, e.g., see [15]-[17]. A combined structure, which consists of a 
thin non-corrugated metallic film and periodically located dielectric pillars, has been studied 
in [18]. Some interesting diffraction effects have been observed in the relief gratings, which 
are obtained by introducing periodic corrugations on the interface between an air half-space 
and a half-space that is made of a negative-phase-velocity (negative-index) material [19,20]. 

In the present paper, we study diffraction on three-layer gratings, which consist of the 
inner non-corrugated plasmonic layer and the outer corrugated dielectric layers, while the 
permittivity of the plasmonic layer is smaller than unity but positive. In some theoretical 
performances, one of the dielectric layers is removed, in turn leading to two-layer gratings. It 
will be shown here that the isolation effect can appear within a wide range of Reε varying in 
line with the Drude model, i.e., the (near-)zero phase variation is not a necessary condition. 
For the structures considered, this leads to the appearance of several anomalous diffraction 
effects, which manifest themselves in the wideband suppression of some propagating 
diffraction orders and, hence, can be characterized in terms of the diffraction order selectivity. 
In particular, we will demonstrate that the one-way transmission can be achieved within a 
wide frequency range. It is distinguished from the recently suggested performances, in which 
this effect is narrowband. On the other hand, it is distinguished from a transmission that is 
associated with surface plasmon polaritons at negative Reε, which is a rather narrowband 
effect. In fact, the used plasmonic materials can be the same as those in [15]-[18], but 
correspond in most cases to another frequency range. In our case, plasmonic layers have flat 
interfaces, so that the regions, which are mainly responsible for the isolation and diffraction 
effects, are different. This feature distinguishes the suggested gratings from the two-layer 
gratings considered in [3] but makes them similar to some of those in [18]. Note that the 
considered isolation mechanism differs from that occurring due to the reflection-free edge 
modes in gyromagnetic and gyroelectric crystals [21,22], since no anisotropic material is 
required in our case. All effects studied in this paper are in accordance with the reciprocity 
theorem. To numerically solve the diffraction problem, we use a flexible and efficient self-
made solver, which is based on the fast coupled-integral-equations technique [23].  

2. Theoretical background 

General geometry of the suggested structures is shown in Fig. 1. The planar plasmonic layer is 
sandwiched between two dielectric layers, at least one of which has a periodically corrugated 
interface. The upper (front-side) and lower (back-side) interfaces are assumed to be set by 

)/2cos(/)( 111 φπ ++= LxMBAhxf    and    )/2cos(/)( 222 φπ ++= LxMDChxf ,     (1) 

respectively, where h is the total thickness. We refer to the structure shown in Fig. 1 as a DU 
structure (Double corrugations, Upper interface determines the period of the whole structure). 
In this case, M2/M1 is an integer larger than unity. Correspondingly, M1/M2 is an integer larger 
than unity for a DL structure (Double corrugations, Lower Interface). If D=0, then we obtain a 
U structure. In turn, L structures correspond to B=0. The upper and lower dielectric layers are 
assumed to be made of dielectrics with ε=εU and ε=εL, respectively. The permittivity of the 
plasmonic insert (a<y<b) satisfies the Drude model, i.e., it is given by 

)](/[1)( 2 γωωωωε ipi +−= , where ωp and γ  mean plasma and collision frequencies. It is 

assumed that 1≤+ BA , 0≥− DC , haDC /≤+ , and hbBA /≥− . 
Consideration is restricted to the case of TM polarization. We assume that the plane wave 

is incident on a grating, as shown in Fig. 1. The electric fields in the upper (y>h) and lower 
(y<0) half-spaces are presented as follows: 
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where ][ 22
2/1

αβ nn k −= , 0Im ≥β n , Lnn /20 ζπαα += , },min{ 21 MM=ζ , θα sin0 k= , 

k=ω/c is free-space wave number, θ  is angle of incidence, L is fundamental grating period, ρn 
and τn are amplitudes of the nth-order reflected and transmitted beams (Bragg waves). In turn, 

the incident wave is given by )exp(),( 000 yixiEyxEi
z βα −= , where θβ cos0 k= . The 

intensities of the nth-order reflected and transmitted beams (diffraction efficiencies) are given 
by 
  

Wr nnnn /Re* βρρ=   and  Wt nnnn /Re* βττ= ,  (4) 
 

where W means the energy of the incident wave and asterisk means complex conjugate. On 
the other hand, W=R+T+A where R, T, and A are reflectance, transmittance, and absorptance, 
respectively.  

 
Fig. 1. Three-layer grating with plasmonic insert, which is illuminated by a TM polarized 

plane wave. 
 

In agreement with the general theory of diffraction gratings [24], the nth-order beams are 
propagating if k>kn where Lnk n )sin1/(2 θπ ±= . In the latter formula, signs + and – 

correspond to θsgnsgn ≠n  and θsgnsgn =n , respectively. The nth-order reflected beams 

diffract at the angles ψn, which can be obtained from the equation kLnn /2sinsin ζπθψ += .  

It is assumed that the angles ψn and θ are measured from the positive-value part of the y axis 
in the clockwise and counter-clockwise directions, respectively. The angles of diffraction of 
the nth-order transmitted beams ψ̂ n  are measured from the negative-value part of the y axis 

in the counter-clockwise direction, i.e., ψψ nn =ˆ .  

The reciprocity conditions for the 0th-order beams, i.e., tt U
0

L
0 =  and  tt DU

0
DL
0 =  are 

satisfied for any kL, provided that φ1 and φ2  in Eq. (1) are chosen in such a manner that a pair 
of L and U structures, or a pair of DL and DU structures, corresponds in fact to the same 
structure but the directions of illumination are opposite. These conditions are rather important 

for our study. Similar conditions for rL
0  and rU

0 , and rDL
0  and rDU

0  exist only if kk< ±1 . 

These conditions are unimportant for our purposes, since at least the 1± st and 2± nd orders 
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should be propagating in order to illustrate the basic effects expected. Throughout this paper, 
we take 1=ζ  and πω θ 4/

02 =≥ =± LkcLp . In case of πω 4/ =cLp  and 0=θ , which 

corresponds to most of the presented numerical results, the 2± nd orders become propagating 
and Reεi passes through zero nearly simultaneously, while kL is raising. In Fig. 2, the 
dependences of ψn on kL and those of Reεi, Imεi, and |εi| on kL are shown, which correspond 
to the considered range of variation of the problem parameters. 
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Fig. 2. Diffraction angle in degrees for the orders n=1, 2, and 3 at θ=0 – plot (a), and 
permittivity of the plasmonic insert at ωpL/c=4π and γ/ωp=0.01 − plot (b). 

 
3. Numerical results and discussion 

3.1 Basic effects 

Figure 3 shows tn and rn vs kL in the cases U and L, which correspond to the same structure 
being illuminated from the opposite sides. In Figs. 3(a) and 3(b), it is illuminated from the 
side of corrugated interface (U case). In Figs. 3(d) and 3(e), illumination is performed from 
the side of the flat dielectric layer (L case). One of the main effects is demonstrated in Fig. 
3(a). It manifests itself in that the 2± nd-order transmitted beams are suppressed within a wide 
kL-range (4π<kL<17.2), where they are formally propagating. Therefore, the free-space wave 

number, starting from which the n± th-order beams actually contribute to T, k
T

nˆ± , in case of 

2±=n  is substantially larger than k 2±  and ωp/c. At the same time, k
Tˆ 1±  and k

Tˆ0  are located 

in the vicinity of k=ωp/c, so that t0  and t 1±  contribute to T within most of the range 0< Reεi 
<1. The corrugations affect the transmitted far field, but the actual periodicity cannot be 
recognized by using the transmission results. From the comparison with Fig. 2(b), it is clearly 
seen that the range with T=t0+t-1+t1 corresponds to 0< Reεi <0.5. One can refer to this effect 
as the partial translation, or the partial isolation.  

The observed effect of the suppression of the propagating orders is similar in some sense 
to that detected for the gratings made of zero-ε materials, where higher propagating orders in 
the transmission were suppressed, while the 0th order remained strongly contributive [3]. 
However, since Reεi>0 and 01 ≠±t , this effect is even closer to that observed in two-
dimensional dielectric and metallic photonic crystals with corrugated interfaces, where one or 
several propagating orders have been suppressed within a wide range of kL-variation that is 
adjacent to an edge of a band gap [5]. In our case, the transmitted far field is affected by the 
upper-side corrugations only due to the 1± st orders, so that the transmission is characterized 
by wideband selectivity with respect to diffraction orders. In Fig. 3(b), one can see that all the 

propagating orders contribute to R  at 4π<kL<17.2. In particular, kk
R

22ˆ ±± =  and, therefore, 

kk
TR ˆˆ 22 ±± ≠ . Owing to the narrowband diffraction effects, rR≈ 0  at kL=11.9  and kL=14.8, T= 

t-1+t1 at kL=14.88 and kL=16.45, and T=t0 at kL=15 and kL=16.55. 
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Fig. 3. Transmittance (a,d), reflectance (b,e), and the geometry of grating within a period (c,f) 
in cases U (a)-(c) and L (d)-(f); A=0.8, B=0.2, C=D=0, φ1=0 in U case, and A=1, B=0, 
C=D=0.2, φ2=0 in L case; Μ1=1, εU=εL=2.1, a/h=0.4, b/h=0.6, ωpL/c=4π, γ/ωp=0.01, and θ=0;  
solid  line – n=0,  dashed  line - 1±=n ,  dash-dotted  line - 2±=n , dotted line (Σ) – sum of  

all propagating orders; filled circles – Lk 2±  and Lk 3± . 

  
Now consider Figs. 3(d) and 3(e). In Fig. 3(d), 02 ≠±t  at 4π<kL<17.2. This occurs due to 

the effect of the lower (corrugated) interface. The strong difference in the values of tL
2±  and 

t U
2±  results in the one-way transmission effect, which is similar to that observed in metallic 

gratings with the multiple branched slits and different periods at different interfaces [4]. 
However, in our case this effect is wideband. Furthermore, at kL=16.45 the situation occurs 

when 41.011
U ≈+≈ − ttT  and 77.022

L ≈+≈ − ttT . Hence, all beams, that actually 

contribute to the transmission, can show different values of ψ n± , depending on the side of 

incidence ( °±=± 5.221ψ  and °±=± 8.492ψ ). The presence of the contributing 2± nd-order 

transmitted beams enables a substantial increase of T in the L case at ωpL/c<kL<15. For 
example, TL=0.63 and TU=0.08 at kL=14, where 2.0Re ≈ε i . It is seen in Fig. 3(e), that the 
corrugations do not affect the reflected far field, except for the narrow ranges with 

025.01 <±t arising in the vicinity of kL=16. 5 and kL=17.7. As a result, the isolation of two 
regions, i.e., y/h>0.6 and y/h<0.4, from each other takes place, manifesting itself in that the 
topological features of the lower corrugated layer are not translated through the 
plasmonic  layer. This effect is, in fact, a counterpart of the isolation effect, which has been 
studied in [2] in the transmission through a near-zero index slab with a non-flat front-side 

interface. In Fig. 3(e), we again obtain kk
TR ˆˆ 22 ±± ≠ , but now also kk

TR ˆˆ 11 ±± ≠ . It is noteworthy 

that the L structure can be reflection-free. For example, W=T+A  at kL=15.  
 

(C) 2009 OSA 5 January 2009 / Vol. 17,  No. 1 / OPTICS EXPRESS  283
#102675 - $15.00 USD Received 13 Oct 2008; revised 17 Nov 2008; accepted 21 Nov 2008; published 2 Jan 2009



12 14 16 18
0

0.1

0.2

0.3

0.4

0.5

kL

T
ra

ns
m

itt
an

ce

(a) Σ

12 14 16 18
0

0.2

0.4

0.6

0.8

1

kL

R
ef

le
ct

an
ce

(b)Σ

 

12 14 16 18
0

0.1

0.2

0.3

0.4

0.5

0.6

kL

T
ra

ns
m

itt
an

ce

(d)
Σ

12 14 16 18
0

0.2

0.4

0.6

0.8

1

kL

R
ef

le
ct

an
ce

(e)

 
 

Fig. 4. Transmittance (a,c), reflectance (d,e), and the geometry of grating within a period (c,f) 
in cases DU (a)-(c) and DL (d)-(f); A=0.8, B=0.2, C=D=0.0833, φ1=0,  φ2=π, M1=1, M2=2 in 
DU case, and A=1-B, B=0.0833, C=D=0.2, φ1= φ2=0, M1=2, M2=1 in DL case; εU=εL=2.1, 
a/h=0.4, b/h=0.6, ωpL/c=4π, γ/ωp=0.01, and θ=0; solid line – n=0, dashed line - 1±=n , dash-
dotted line - 2±=n , dotted line (Σ)  – sum  of  all   propagating   orders;   filled   circles  show  

Lk 2±  and Lk 3± . 
 

Consider the transmission and reflection for the structures, which are distinguished from 
those in Fig. 3 in that they have two-sided corrugations introduced in such a way that 
M2=2M1. Therefore, the 1± st orders of a grating with period L/2 correspond now to the 2± nd 
orders of a grating with period L, i.e., )()2/( 21 LkLk ±± =  and )()2/( 21 LL ψψ ±± = . In other 

words, the even orders of the whole structure might appear due to the effect of each of the 
corrugated interfaces, while the odd orders might appear only due to the interface with period 
L (the upper interface in DU case and the lower one in DL case). Figure 4 shows an example 
for both DU and DL cases. Figures 4(a), 4(b), 4(d), and 4(e) should be compared with Figs. 
3(a), 3(b), 3(d), and 3(e), respectively. In Fig. 4(a), t 2±  contribute to T within a much wider 
kL-range than in Fig. 3(a), indicating in turn the effect of new corrugations. However, we still 

have kk
T

22ˆ ±± >  and kk
RT

22ˆ ±± ≠ . In Fig. 4(e), kk
R

22ˆ ±± =  while the 1± st-order beams are 

absent within a wide range of kL>ωpL/c due to the isolation effect. The narrowband effects 
that are related to the dominance of some propagating orders in T or R, which have been 
observed in Fig. 3, are also seen in Fig. 4. In particular, this concerns the one-way 
transmission at kL=16.45. The peak of T near kL=11.95 appears due to the tunneling of the 
field of the surface plasmon arising at the upper interface (Reεi = −0.106). It is interesting that 
in this case the sum t-1+ t1 is substantially larger than t0, so that the transmission is mainly 
realized in the form of the deflected beams. A detailed study of a transmission at Reεi<0 is 
beyond the scope of the present paper. 

To better understand the mechanism leading to the order selectivity, we consider near-field 
patterns (in units of |Ez|) within a single grating period, i.e., at 0<x<L and 0<y<h. Several 
examples are shown in Fig. 5, which correspond to the typical behaviors of tn and rn in Figs. 3 
and 4. First, we compare Figs. 5(a) and 5(b) corresponding to the two cases (L and DL), 
which only differ in the shape of the upper-side interface. Three typical regions can be 
recognized in each figure. Within the lower region (0<y/h<0.4), the field patterns are nearly 
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the same. Four maxima of  |Ez(x,y)| occur at y=0 within the period, which can be associated 
with the 2± nd orders. Indeed, ttT 22 +≈ −  at kL=16.45 in Figs. 3(d) and 4(d). In the upper 
region (0.6<y/h<1), |Ez(x,y)| in Figs. 5(a) and 5(b) is completely different, that indicates the 
effect exerted by the upper interface. Four maxima occur at y=const at least within a part of 
the upper region in Fig. 5(b). In this case, rrrR 220 ++≈ − , see Fig. 4(e). Since the field 
topology at y<0.4 is not affected by the shape of the upper layer, the middle region 
(0.4<y/h<0.6) isolates the two others.  

 

 
Fig. 5. Electric field pattern within a grating period at the parameters from Figs. 3(d), 3(e) – 
plot (a), from Figs. 4(d), 4(e) – plot (b),  from  Figs. 3(a),  3(b) – plots  (c)  and  (d),  and  from  
Figs. 4(a) and 4(b) – plot (e); kL=16.45 in plots (a)-(c) and kL=16 in plots (d) and (e). 

 

In contrast with (near-)zero-ε materials [1,2], some periodic features of the field 
distribution within the middle region in Figs. 5(a) and 5(b) do remain. According to the theory 
of relief gratings, the number of the orders propagating in air and non-air half-spaces with the 
common corrugated interface can be different, depending on the ε of the non-air half-space 
and kL-value. Accounting for the maxima of |Ez| within the lower layer, e.g., at y/h=0.2, one 
can recognize the features related to the presence of the 3± rd orders, which are evanescent in 

air ( 45.1633 >=± πLk ) but propagating in dielectric ( 35.11/ 2/1
L3 =± εLk ). Within most of 

the middle region, the effect of higher orders can be seen. The contribution of the 1± st orders 

can be explained by the fact that 72.9)Re(/ 2/1
1 =± ε iLk  and 45.19)Re(/ 2/1

2 =± ε iLk , 

where Reεi=0.417 at kL=16.45, while the features of the 2± nd orders at y=a in Figs. 5(a) and 
5(b) and at y=b in Fig. 5(b) are connected with the effect of the corrugated interface(s). The 
fields above the plasmonic layer are strongly sensitive to the upper-interface shape, regardless 
of that whether it is corrugated or flat. For example, the contribution of higher orders to the 

near and far fields at y>b in Fig. 5(a) is insignificant despite of that )Re(/ 2/1
1 ε ikk > ± . One 

can consider this effect as an anomalous isolation in reflection mode. 
Most of the explanations related to the L and DL cases in Figs. 5(a) and 5(b) can also be 

used in U and DU cases. An example for a U case is shown in Fig. 5(c). The effect of the 
different number of propagating orders in the upper and middle regions is clearly seen. It is 
noteworthy that the difference between Figs. 5(a) and 5(c) is in the values of max|Ez|, at least 
within the regions containing corrugations with period L. In Fig. 5(c), it is approx. 3 times 
larger than in Fig. 5(a). This corresponds to the approximately 80-fold enhancement of the 
field intensity within the upper region in Fig. 5(c) compared to the incident wave. Figure 5(c) 
demonstrates the effect of partial isolation in transmission. Here, 02 =±t  and tttT 110 ++≈ −  
at kk > ±2 . One can see that the periodic features of the transmitted field are formed within the 
plasmonic layer and then translated through the lower layer to the lower interface. Having no 
own corrugations, it does not change these features. Hence, the anomalous suppression of 
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the 2± rd orders within a wide kL-range [Fig. 3(a)] can simply be explained in terms of the 
periodicity reduction by the plasmonic layer. 

 Figures 5(d) and 5(e) show a field pattern in the U and DU cases, when 00 ≠t  but the 
1± st orders dominate in T and the 0th order dominates in R. It is seen that the field topologies 

differ only within the lower region due to the shape of the lower interface. Again, the 
plasmonic layer reduces the periodicity, while the role of the upper and lower regions depends 
on the presence of corrugations. From the presented results, it follows that the structures 
suggested can provide one with a powerful tool for controlling the number of beams actually 
contributing to the transmission and reflection and the topology of the near field.   

One can use the following condition for U-case transmission. If  
 

1Re <ε i     and    )Re(/)Re(/ 2/1
)1(

2/1 εε ipip kkk +±± <<  ,  (5) 
 

the field features, which correspond to the orders with |n|=0,1,…p, can be translated to the 
lower half-space (partial translation), while those corresponding to |n|= p+1, p+2,… cannot be 

translated (partial isolation). If the condition )Re(/ 2/1
1 ε ikk ±<  is satisfied, i.e., p=0 and  

k0=0 in Eq. (5), no periodic feature can appear within the plasmonic layer. Therefore, the 
effect of the upper corrugated interface on the transmitted far field would be reduced, so that 

the condition Reεi=0 is not necessary for achieving the total isolation ( tT 0
U ≈ ). This case 

corresponds to the wave front flattening [1,2], which can be considered as a special case of the 
periodicity reduction. To obtain Eq. (5), it has been assumed that Imεi=0. 

It can be shown that such a kL  range always exists near any ω=ωp that all the higher 
orders are evanescent within the plasmonic layer, provided that 0<Reεi<1 and Imεi=0.  Indeed, 

∞=± )Re(/ 2/1ε ink  at Reεi=0 and is decreased with raising Reεi, tending to k n±  at Reεi=1. 
All the higher orders (|n|>0) are evanescent if 

 

)/(/
22

1
ckkc pp ωω +<< ± .     (6) 

 

The total isolation is always a wideband effect, because the all materials with Reεi<1 are 
necessarily dispersive. The band width is determined by the values of dReεi /dω and can be 
relatively large for the typical parameters of the Drude model. In particular, this explains why 

kck
T

p ˆ/ 11 ±± << ω . Correspondingly, the range of achievable values of the 1± st-order 

diffraction angles is limited by  
 

⎥
⎦

⎤
⎢
⎣

⎡ +< ±
−

± )/()(/2sin
2

1
21

1 cLLk pωπψ . 

 

For example, °<± 5.261ψ at ωpL/c=4π and 05.14)/()(
2

1
2 =+= ± cLLkkL pω . A rather 

strong contribution of the higher orders to T at kL<14.05 in Figs. 3 and 4 can be explained by 
the fact that the thickness of the plasmonic region is not large enough. 

3.2 Parametric Study 

Now, we consider some manifestations of the near- and far-field effects, which are similar to 
those in Figs. 3-5 and appear at varying the grating parameters. At least in the DL case, the 
situation can be realized when 00 ≈r  and rrR 22 +≈ − , i.e., the reflected far field only 

contains the beams with θψ ≠±2 , see Fig. 6. In Fig. 6(a), this occurs at kL=13.65 where 
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7.0≈R  and °±=± 7.522ψ . In Fig. 6(b), this occurs at kL=16.25, where 89.0≈R , 

063.022 =+≈ − ttT , A=0.051, and °±=± 3.442ψ . In contrast to Figs. 3 and 4, the 

narrowband selectivity is related here to the non-sharp extrema of rn and tn. One can clearly 
see that the anomalous wideband weakening of the effect of the upper-side corrugations (with 
period L/2) can be achieved, as occurs in Fig. 6(a) at 16<kL<18.5. In turn, Fig. 6(b) 
demonstrates that the wideband enhancement of the 2± nd orders can be obtained.  
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Fig. 6. Reflectance in DL case at the same parameters and notations as in Fig. 4(e), except for 
a/h=0.55, b/h=0.75 – plot (a), and except  for  ωpL/c=5π – plot  (b);  and  electric  field  pattern  
within a grating period at kL=16.25 and remaining parameters from plot (b) – plot (c). 

 
Figure 6(c) shows a field pattern for the case of 00 ≈r  from Fig. 6(b). The field topology 

within the upper region is nearly the same as in the DL case in Fig. 5(b). This does not remain 
true with respect to the middle and lower regions. Contrary to Fig. 5, the field at the middle 
region tends to lose the periodic features. Here, the behavior of |Ez| is completely consistent 

with Eq. (5). Indeed, 5.24)Re(/ 2/1
1 =± ε iLk  at kL=16.25, where Reεi=0.066 if ωpL/c =5π. 

This corresponds to p=0 in Eq. (5). The dominance of the 2± nd orders in T is a pure 
diffraction effect, which appears due to peculiar wave processes within the lower region.  

The wideband suppression of certain propagating orders remains at 0≠θ . Figure 7 shows 
rn vs kL in L and DL cases at θ=π/6 and the same other parameters as in the previous figures. 
In Fig. 7(a), higher orders are suppressed at least at kL<16, where Reεi<0.39. At 16<kL<17, 

1.01 <±r  and 02.02 <±r . In the vicinity of kL=15.3 and at 17<kL<18.5, the sum of rn at 
0≠n  does not exceed 0.016. The wide range of the enhanced transmission appears at 

16.8<kL<18, instead of such a narrower range at θ=0 in the vicinity of kL=15 in Fig. 3(e). It 
follows from the comparison of Figs. 7(b) and 4(e) that r-2 at θ=π/6 can be larger than r-2+r2 at 
θ=0, so that the common effect of the orders with 2|| ±=n  can be enhanced within some kL-

ranges, e.g., at 4π<kL<14.5. At the same time, the 1± st orders and the 3− rd order are 
suppressed due to the isolation effect. The narrowband order selectivity effects in the 
reflection and transmission at θ=π/6 mostly correspond to sharper peaks than at θ=0. In 
particular, 9.02 >≈ −rR  at such a peak as seen in Fig. 7(b) at kL=13.22, where ψ−2=−26.8°. In 
this case, most of the energy of the incident wave is reflected in the near-backward direction.  
Note that the analogs of Eq. (5) and Eq. (6) can be derived for 0≠θ .  

Next, we consider the DU and DL cases, which differ from those in Figs. 3-5 and 7 in that 
the plasmonic layer has a larger thickness (b/h-a/h=0.4) and the corrugations with period L are 
less deep. In Fig. 8, typical dependences of tn and rn on kL and near-field patterns are shown. 
In Fig. 8(a), attention should be paid for the two effects: (i) strong wideband weakening of the 
propagating orders with 0=n  and 2±=n  at 15.7<kL<17.5 and in the vicinity of kL=18, and 
(ii) suppression or weakening of all propagating orders at ωpL/c<kL<13.8.  
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Fig. 7. Reflectance at the parameters from Fig. 3(e) except for θ=π/6 – plot (a),  and  at  the 
parameters from Fig. 4(e) except θ=π/6 – plot (b); solid line – n=0, dashed line – n=−1,  
dash-dotted line – n=−2, thin solid line – n=−4, dotted line – sum of all propagating  
orders; filled circles – k-3L and k-4L. 
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Fig. 8. Transmittance at the same parameters and notations as shown in Fig. 4(a), except for 
a/h=0.3, b/h=0.7, A=0.85, and B=0.15 – plot (a); reflectance at the same parameters and 
notations as in Fig. 4(d), except for a/h=0.3, b/h=0.7, and C=D=0.15 – plot (b); electric field 
pattern within a grating period at kL=15.8 and the  remaining  parameters  from  plot  (a) – plot  
(c), and at kL=16 and the remaining parameters from plot (b) – plot (d). 

 
The former case is associated with a wideband one-way transmission effect (compare to 

[4]). In the vicinity of kL=18, we obtain a similar situation as in Figs. 3(a) and 3(c) at 

kL=16.45, i.e., ttT 11
DU +≈ −  and ttT 22

DL +≈ − , but here it occurs for a structure with two-

side corrugations. This case corresponds to 0<Reεi<0.17. According to Eq. (6), the total 
isolation should occur at kL<14.05. On the other hand, the weakening of the 0th-order 
transmission at 4π<kL<14.05 is related to the increase of the thickness of the middle region, 
which now shows near-zero Reεi. 

From the comparison of Figs. 8(b) and 4(e), one can see that the wideband suppression of 
the 1± st-order beams and the typical behavior of the 2± nd-order beams do remain. The only 
exception is probably related to the relatively wide range in the vicinity of kL=17.8, where 

rR≈ 0 . Some features of the near field are shown in Figs. 8(c) and 8(d). Figure 8(c) 
corresponds to the case with the 0th and 1± st orders being dominant in R and the 1± st orders 
being dominant in T, while 37.0Re ≈ε i . One can see how the periodic features that are 
associated with the 1± st orders are enhanced within the plasmonic layer and then translated 
to the lower half-space. In comparison with Fig. 5(d), this regime is realized here, while the 
lower interface is corrugated with period L/2. Although the effect of the 2± nd orders is seen 
within the lower region, the peculiar near-field distribution leads to the fact that their 
contribution to the transmitted far field is vanishing. Therefore, not only the actual upper-side 
periodicity but also the actual lower-side periodicity can be unseen for an observer located in 
the far zone at y<0. Figure 8(d) provides one with an example of another typical near field 
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distribution, where the contribution of the 0th order within the plasmonic layer is strong, 
leading to some flatness. Despite of this, the effect of the 0th order on T is relatively weak. 

Figure 9 shows tn and rn vs kL for the structures with a smaller h/L than in Figs. 3-8. This 
is obtained due to the use of more thin dielectric layers, while (b-a)/L is kept. It is seen that 
the basic effects related to the isolation regime, i.e., suppression of some higher propagating 
orders in transmission and all such orders in reflection do remain. A comparison of Fig. 3(a) 
with Fig. 9(a) shows that T is larger in the latter case, at least at 15<kL<18. The suppression of 
the 2± nd-order beams is nearly the same in both cases. At kL=18, most of the energy of the 
incident wave shown in Fig. 9(a) is coupled to the deflected ( 1± st-order) beams with 

°=± 4.201ψ . The range with 01 ≈±t  appears in Fig. 9(a) at ωpL/c<kL<14, which is in good 

agreement with Eq. (5) and Eq. (6). In turn, the contribution of t 1±  to T at kL<14 in Fig. 3 
occurs since the thickness of the plasmonic layer is not large enough to compensate for the 
effect of deep corrugations. At larger (b-a)/h, the contribution of t 1±  to T at 

)Re(/ 2/1
1 ε ikk< ±  is vanishing [e.g., see Fig. 8(a)].  
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Fig. 9. Transmittance (a,b) and reflectance (c) in cases U (a) and L (b,c) at A=0.7, B=0.1, 
C=0.2, D=0, φ1=0 in U case, and A=0.8, B=0, C=0.3, D=0.1, φ2=0 in L case; M1=1, εU=εL=2.1, 
a/h=0.4, b/h=0.6, ωpL/c=4π, γ/ωp=0.01, and θ=0; solid line – n=0, dashed line - 1±=n , dash-

dotted line - 2±=n , dotted  line  (Σ) – sum  of  all  propagating  orders;  filled  circles - Lk 2±   

and Lk 3± . 
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Fig. 10. Same as Fig. 9 but for a/h=0.3, b/h=0.7, and A=0.75 and B=0.05 in plot (a), and 
C=0.25 and D=0.05 in plots (c) and (d). 

 
In the L case in Fig. 9(b), note the peak of T>0.2, which appears at kL=11.08 in the 

surface-plasmon regime ( 29.0Re −≈ε i ). For larger thicknesses of the dielectric layers, this 
effect has been observed in DU and DL cases only (compare with Figs. 3 and 4). In the 
comparison with Figs. 3(a) and 3 (d), both narrowband and wideband one-way transmission 
effects become weaker. No principal difference appears in the reflected far field, see Fig. 9(c).  

In Fig. 10, the kL-dependences of tn and rn are presented for the structures, which differ 
from those in Fig. 9 in that they have a thicker plasmonic layer and less deep corrugations 
with period L. As was expected, the suppression of the 1± st orders at kL<14 in the U case in 
Fig. 10(a) is more pronounced than Fig. 9(a). A comparison with [5] gives one an idea of how 
to explain a similar effect in metallic photonic crystals with the grating-like corrugations. The 
used modifications of the layer thicknesses result in a stronger wideband contribution of t0 
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than in Fig. 9. The 2± nd orders are suppressed even at those kL values, at which they 
contribute to T in the U case in Figs. 9(a) and 3(a). Furthermore, the wideband weakening of 
the contribution of t 2±  to T occurs even in L case [compare Figs. 9(b) and 10(b)]. These 
examples show that the effect of the corrugations in producing the higher transmitted orders is 
weakening with a decreasing corrugation depth in both the U and L cases. The contribution of 
the higher orders to R also becomes weaker [compare Figs. 9(c) and 10(c)]. 

In Fig. 11, tn and rn vs kL and near-field patterns are presented for the structures, which 
differ from those in Fig. 4 in that the dielectric layers with the corrugations of period L are 
simply removed now. In fact, these structures show period L/2. However, for the sake of 
convenience, the same notations are kept as above, i.e., we assume here that 012 ≡+t n . In Fig. 
11(a), all the propagating orders contribute to T. Figure 11(b) demonstrates the wideband 
suppression of r 2±  due to the isolation effect. A comparison of Figs. 11(b) and 3(e) shows 
that the absence of the upper dielectric layer and the changing of the periodicity of the whole 
structure do not affect the appearance of this effect.  
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Fig. 11. Transmittance and reflectance for the same parameters and notations as in Fig. 4, 
except for εU=1 in plots (a) and (b), and εL=1 in plots (d) and (e), and electric field pattern  
at kL=16 and the same remaining parameters as in plots (a), (b) - plot (c), and at kL=13.5  
and the same remaining parameters as in plots (d), (e) - plot (f). 

 
Figure 11(c) shows the near-field pattern, which corresponds to kL=16 in Figs. 11(a) and 

11(b). Since there are no upper-side corrugations and 3.20)Re(/ 2/1
2 =± ε iLk  where 

Reεi=0.383 at kL=16, the 2± nd orders do not contribute to the field within most part of the 
plasmonic layer, as well as above it. At the same time, the lower dielectric layer is thick 
enough in order to transform the field features seen within the plasmonic layer, which are 
associated with the 0th order, to those of the 2± nd orders at y=0.  

From a comparison of Fig. 11(d) with Fig. 3(a), it follows that the 2± nd orders in 
transmission are suppressed in the same way, to where the lower layer does not affect this 
effect, despite of the fact that the periods of the upper-side corrugations in these two figures 
are different. This is a quite predictable feature in the context of the consideration related to 
Fig. 5. Now compare Fig. 11(e) with Fig. 4(e). One can see that the removal of the lower 
dielectric region exerts an insignificant effect on the reflection. On the other hand, the 
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comparison of Figs. 11(d) and 4(d) shows that the presence of the lower dielectric layer with 
the corrugated interface strongly affects the transmission. It is noteworthy that the situation 
shown in Figs. 11(d) and 11(e) is the same as in the zero-permittivity gratings from [3] in the 
sense that only the 0th order contributes to T, while all the propagating orders contribute to R. 
A typical near-field pattern is shown in Fig. 11(f) for the structure from Figs. 11(d) and 11(e). 
Within the upper region, the field topology is similar to those in Figs. 5(b), 6(c), and 8(d), in 
turn showing a contribution of r 2±  to R. In contrast, no periodic feature appears in Fig. 11(f) 

below the plasmonic layer, for which 37)Re(/ 2/1
1 =± ε iLk . In fact, this example is 

connected with the possibility of obtaining flat transmitted wave fronts at Reεi>0. 
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Fig. 12. Second-order transmittance t 2 for parameters from Figs. 3(a)-3(c), except for γ=0 – 
plot (a), and from Figs. 11(d)-11(f), except for γ=0 - plot (b); solid line – P=300 and Q=600, 
dashed line – P=200 and Q=400, and dash-dotted line – P=50 and Q=100; energy balance Ω is 
shown for all three sets of P and Q by dotted lines, the most  upper  line  corresponds  to  P=50  
and the lowest line does to P=300. 
 

Finally, we demonstrate how strong suppression of formally propagating orders can 
typically be in the structures considered, and compare it with the achievable numerical 
accuracy, see Fig. 12. It is seen that t2<10-3 at least at kL<16. The strength of suppression can 
be varied due to a proper choice of the grating parameters. The solid and dashed lines in Fig. 
12 almost coincide, so that the used number of discretization points over x and y, P and Q 
[23], is large enough. In addition, the energy balance Ω is presented in Fig. 12, showing that 
t2>Ω can be obtained by increasing P and Q. It is important that a rather good convergence of 
t2 is achieved even if Ω can further be decreased by appropriately increasing P and Q. It is 
noteworthy that at least P=300 and Q=600 were used in all examples presented in Figs. 2-11.  

4. Conclusions 

To summarize, we have studied diffraction on three- and two-layer gratings with one- and 
two-side periodic corrugations, in which one layer (insert) is made of a plasmonic material. It 
was shown that the isolation effect, which has previously been associated with  isotropic 
(near-) zero-ε materials or multislit gratings, can appear within a wide range of variation of 
the permittivity of the plasmonic layer, allowing for the existence of anomalous wideband 
effects in the transmission and reflection. In the studied structures, the isolation effect can 
manifest itself in that some propagating diffraction orders in the transmission and/or reflection 
are suppressed, giving a new alternative to an anisotropic route of achieving one-way 
transmission. Most of the observed features can be explained in terms of the periodicity 
reduction, which is related to the change of the number of the propagating orders from one 
layer to another. The effect of wave front flattening can be considered as a limiting case of the 
field periodicity transformation. The actual periodicity of some gratings cannot be detected by 
a far-zone observer within a wide frequency range. 
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For example, for the three-layer structure with the upper corrugated interface (U case), the 
highest transmitted order is determined by the highest order supported by the plasmonic layer. 
If the wave is incident on the same structure from the opposite side (L case), it is determined 
by the lower-side corrugations. Either partial or total isolation can be obtained in the 
transmission, depending on number of the orders, which are allowed to propagate within the 
plasmonic layer. As a result, wideband one-way transmission can be realized. In other words, 
transmission can be substantially different when the structure is illuminated from the different 
sides. A similar narrowband effect can be obtained, in which diffraction orders contributing to 
the transmission and reflection are different. An anomalous manifestation of the isolation 
effect in the L case concerns the fact that the reflected field is not affected by the lower-side 
corrugations and, therefore, takes on no periodic feature, even if some higher orders within the 
plasmonic layer might be propagating.  

These and other effects, which we refer to as the diffraction order selectivity, are affected 
by two-side corrugations, the thicknesses of plasmonic and dielectric layers, and the presence 
of a non-corrugated dielectric layer. The isolation effect can result in the fact that the actual 
cutoff wave numbers are shifted towards larger values compared to those corresponding to 
Rayleigh frequencies. Furthermore, the actual cut offs for the same orders in reflection and 
transmission can be different, that is distinguished from conventional diffraction gratings. 
This effect is similar to that observed earlier in photonic crystals with one-side grating-like 
corrugations. However, one-way transmission can be achieved in the considered structures 
within wider frequency ranges. As a next step, the possibility of obtaining selectivity at 
enhanced (nearly total) transmission will be studied. The demonstrated effects promise to be a 
basis for a new approach to efficient beam management in multibeam regime and field 
transformations. 
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