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Mobile phones are virtually omnipresent. 
In 2008, 3.3 billion people—half the 
world population—use mobile phones, 

according to the International Telecommunications 
Union. By 2010, Nokia expects that there will be 
as many mobile phone users as toothbrush users (4 
billion). Over the past 10 years, the phone has ex­

panded from being just a phone 
to being a full multimedia unit, 
on which you can play games (see 
Figure 1), shoot photos, listen to 
music, watch television or video, 
send messages, and do video­
conferencing.

One factor leading to the wide­
spread adoption of mobile phones 
has been the dramatic improve­
ment in display technologies. Dis­
plays used to be monochromatic 
and small (48 × 84 pixels). Today, 
we have 24-bit (16.8 million col­
ors) displays with VGA resolution 
(640 × 480 pixels). Consequently, 
mobile phones have the potential 

to deliver graphics to the masses.
The mobile context differs vastly from the PC 

context. A mobile phone

is always with you,
is always connected to the network and can find 
its location and provide access to location-based 
services and navigation, and
supports applications that require a graphics- 
intensive user interface.

■

■

■

In addition, most mobile phones include a cam­
era, which allows many possibilities for better user 
interaction with the device, as well as augmented 
reality (AR) applications that combine digital im­
ages (rendered graphics models) with real-world 
images (such as those on a camera viewfinder).

Standard mobile graphics APIs have laid the foun­
dation for much mobile graphics research and appli­
cations. For 3D graphics, there’s OpenGL ES, which 
is a low-level API based on the popular OpenGL, and 
M3G (JSR 184), which is designed on top of OpenGL 
ES and supports scene graphs, animation, and file 
formats for mobile Java. Kari Pulli and his colleagues 
cover various uses of OpenGL ES and M3G.1 For 2D 
vector graphics, there’s OpenVG, a low-level API 
similar to OpenGL, and Scalable Vector Graphics 
API for mobile Java (JSR 226). A description of these 
and other related APIs appears elsewhere.2

By mobile, we mostly mean handheld devices. So, 
although aviation or car displays are certainly mo­
bile, they fall outside this article’s scope. Here, we 
aim to survey the state of mobile graphics research. 
We don’t address issues related to particular appli­
cations and development tools. We also don’t dis­
cuss mobile gaming in depth; Mark Callow and his 
colleagues provide a good overview of mobile-game 
development and distribution.3 Jörg Baus and his 
colleagues survey 2D and 3D maps for navigation, 
which is also mostly beyond this article’s scope.4 
Furthermore, we concentrate on interactive graph­
ics because noninteractive graphics can be simply 
rendered on other devices and rendered as simple 
bitmaps. For this reason, we also address user inter­
faces and handheld interaction techniques.

High-quality computer 
graphics let mobile-device 
users access more compelling 
content. Still, the devices’ 
limitations and requirements 
differ substantially from 
those of a PC. This survey 
of mobile graphics research 
describes current solutions in 
terms of specialized hardware 
(including 3D displays), 
rendering and transmission, 
visualization, and user 
interfaces.
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Handhelds’ limitations
Compared to the desktop, handheld devices are 
limited by

power supply,
computational power,
physical display size, and
input modalities.

Mobile devices’ fundamental problem is that 
they’re battery operated. Whereas many other 
aspects of computing follow Moore’s law, battery 
technology develops much more slowly. The dis­
play is one of the largest consumers of power, and 
graphics applications keep the display, often with a 
backlight, constantly on. Innovation is required at 
the hardware level for lower power consumption, 
while diligence is required at the software level for 
power-aware mobile applications. Finally, the de­
vices are small; even if more power were available, 
that power would turn into heat, which can dam­
age circuits unless the design process considered 
the thermal aspects early on.

Mobile device CPUs also have limited computing 
power. A related limitation is internal bandwidth 
for memory accesses, which increases more slowly 
than raw computing power and consumes much 
power. Another limitation is cost: mass-market 
consumer devices should be cheap, which limits 
the silicon budget. For example, only the most re­
cent high-end phones support floating-point units. 
Having dedicated graphics hardware helps the de­
vices get by with lower-clock-rate CPUs.

Although the pixel pitch ratio is increasing at a 
stable rate, the requirements to keep the devices 
handheld and pocketable means that the devices’ 
physical size has an upper bound. Whereas the 
largest displays might have a diameter of up to 5 
inches, many devices have much smaller displays.

Furthermore, mobile devices currently support 
key-based interfaces through joypad and direction 
keys and a numerical keyboard. On larger devices, 
additional keys provide a better user experience 
for complex tasks because keys can be dedicated to 
specific tasks. Smart phones can’t easily use such 
keys owing to limited physical space. Interaction 
with touch-sensitive screens has emerged as an al­
ternative, but most solutions require two-handed 
interaction, which causes additional attentional 
overhead in users.

Finally, there’s an order of magnitude difference 
between high- and low-end devices in graphics pro­
cessing and computational capacity. A particular 
technique might run efficiently in one device but 
be inefficient on another. This requires solutions 

■

■

■

■

that can scale down to low-end mobile phones and 
up to larger devices, even PCs.

Industry and academia researchers have devel­
oped several solutions to these problems. The fol­
lowing sections describe the key approaches. 

Graphics hardware
A given task, such as 3D rendering, can always 
be done more efficiently on special-purpose hard­
ware than on a general-purpose CPU. It’s possible 
to write a rendering engine fully in software ex­
ecuting on a CPU, providing maximum flexibility. 
In fact, most mobile 3D engines are still software 
implementations. However, dedicated graphics 
hardware can provide both faster execution and 
lower power consumption. Dedicated graphics 
processing units (GPUs) are already available on 
high-end smart phones. Some GPUs are available 
on a separate chip, but often the GPU and CPU 
are on the same chip, which decreases manufac­
turing costs.

Although modern graphics engines, such as 
OpenGL ES 2.0, provide programmable compo­
nents—so-called shaders—a lot of functionality 
still isn’t programmable but consists of blocks of 
fixed functionality that can be parameterized and 
turned on or off. Fixing the functionality allows 
more efficient implementations and latency hid­
ing. Triangle setup, texture fetch and filtering, and 
blending operations can be more efficient when 
implemented in dedicated logic.

The key to good graphics performance and low 
power consumption is to reduce the internal traf­
fic between the processing elements and the mem­
ory. So, mobile graphics solutions focus on how to 
compress and even completely avoid that traffic. 
Reducing the traffic is even more important be­
cause computation power increases more quickly 
than memory bandwidth. For example, John Ow­
ens reports that the yearly processing capability 
growth is about 71 percent, while dynamic RAM 
bandwidth grows only by 25 percent.5 This differ­
ence suggests that one should take great care when 
designing a GPU architecture.

Figure 1. 
High-quality 
graphics games 
have reached 
mobile devices. 
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Compression
Compression not only saves storage space, but it 
also reduces the amount of data sent over a net­
work or a memory bus. For GPUs, compression 
and decompression (codec) have two major tar­
gets: textures and buffers.

Textures are read-only images glued onto geomet­
rical primitives such as triangles. A texture codec 
algorithm’s core requirements include fast random 
access to the texture data, fast decompression, 
and inexpensive hardware implementation. The 
random-access requirement usually implies that a 
block of pixels is compressed to a fixed size. For ex­
ample, a group of 4 × 4 pixels can be compressed 
from 3 × 8 = 24 bits per pixel down to 4 bits per 
pixel, requiring only 64 bits to represent the whole 
group. As a consequence of this fixed-rate compres­
sion, most texture compression algorithms are lossy 
(for example, JPEG) and usually don’t reproduce the 
original image exactly. Because textures are read-
only data and usually compressed offline, the time 
spent compressing the image isn’t as important as 
the decompression time, which must be fast. Such 
algorithms are sometimes called asymmetric.

As a result of these requirements, developers have 
adopted Ericsson Texture Compression (ETC) as a 
new codec for OpenGL ES.6 ETC stores one base 
color for each 4 × 4 block of texels and modifies 
the luminance using only a 2-bit lookup index per 
pixel. This technique keeps the hardware decom­
pressor small. Currently, no desktop graphics APIs 
use this algorithm.

Buffers are more symmetric than textures in 
terms of compression and decompression because 

both processes must occur in hardware in real time. 
For example, the color buffer can be compressed, 
so when a triangle is rendered to a block of pix­
els (say, 4 × 4) in the color buffer, the hardware 
attempts to compress this block. If this succeeds, 
the data is marked as compressed and sent back to 
the main memory in compressed form over the bus 
and stored in that form. Most buffer compression 
algorithms are exact to avoid error accumulation. 
However, if the algorithm is lossy, the color data 
can be lossily compressed and later recompressed, 
and so on, until the accumulated error exceeds the 
threshold for what’s visible. This is called tandem 
compression, meaning that if compression fails, you 
must have a fallback that guarantees an exact color 
buffer—namely, sending the data uncompressed.7

Depth and stencil buffers might also be com­
pressed. The depth buffer deserves special men­
tion because its contents are proportional to 1/z, 
and when viewed in perspective, the depth values 
over a triangle remain linear. Depth-buffer com­
pression algorithms heavily exploit this property, 
which accounts for higher compression rates. A 
survey of existing algorithms appears elsewhere.8

Interestingly, all buffer codec algorithms are 
transparent to the user. All action takes place in the 
GPU and is never exposed to the user or program­
mer, so there’s no need for standardization. There’s 
no major difference for buffer codec on mobile 
devices versus desktops, but mobile graphics has 
caused renewed interest in such techniques.

Tiling architectures
Tiling architectures aim to reduce the memory traf­
fic related to frame-buffer accesses using a com­
pletely different approach. Tiling the frame buffer 
so that a small tile (such as a rectangular block of 
pixels) is stored on the graphics chip provides many 
optimization and culling possibilities. Commercial­
ly, Imagination Technologies and ARM offer mobile 
3D accelerators using tiling architectures. Their core 
insight is that a large chunk of the memory accesses 
are to buffers such as color, depth, and stencil.

Ideally, we’d like the memory for the entire frame 
buffer on-chip, which would make such memory 
accesses extremely inexpensive. However, this isn’t 
practical for the whole frame buffer, but storing a 
small tile of, say, 16 × 16 pixels of the frame buffer 
on-chip is feasible. When all rendering has been 
finished to a particular tile, its contents can be 
written to the external frame buffer in an efficient 
block transfer. Figure 2 illustrates this concept.

However, tiling has the overhead that all the tri­
angles must be buffered and sorted into correct tiles 
after they’re transformed to screen space. A tiling 
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Figure 2. A tiling architecture. The primitives are being transformed 
and stored in external memory. There they are sorted into tile lists, 
where each list contains the triangles overlapping that tile. This makes it 
possible to store the frame buffer for a tile (for example, 16 × 16 pixels) 
in on-chip memory, which makes accesses to the tile’s frame buffer 
extremely inexpensive.
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unit creates, for each tile, a list of triangles overlap­
ping with that tile. Each tile can then be processed 
in turn or in parallel with others. This architecture’s 
main advantage is that frame-buffer accesses become 
inexpensive. This must be balanced with the cost of 
buffering and sorting the triangles.9 It’s still un­
known whether a traditional architecture or tiling 
is best. The optimal approach also depends on the 
content being rendered. For example, if the overdraw 
factor is high, the tiled approach can be a winner, 
but if there are many long but thin triangles, the 
traditional nontiled approach might work better.

Culling
Even better than compressing data is to avoid pro­
cessing it. To cull means “to select from a group,” 
and this often amounts to avoiding processing data 
that doesn’t contribute to the final image. One par­
ticular technique stores (in a cache) the maximum, 
Zmax, of the depth values in a block of pixels, and 
when rendering to this block, the GPU estimates 
conservatively whether the triangle is behind Zmax. 
If so, all per-pixel processing can be avoided in that 
block because the triangle will be hidden.10

A similar technique stores the minimum, Zmin, 
of the depth values and determines whether a tri­
angle is definitely in front of all rendered geometry 
in a block. If so, depth buffer reads can be avoided 
in the block.11 You can also use Zmin to handle 
other depth tests. These two techniques are often 
called Z-culling.

Another technique uses occlusion queries. The 
programmer renders, for example, a bounding box 
around a complex object, and the occlusion query 
counts how many fragments on the box are visible. 
If no fragments are visible, then the bounding box 
is hidden and rendering the complex object can be 
avoided. Another approach, called delay streams, can 
also be used for occlusion culling.12 The idea is to 
process the triangles as usual, write to the depth buf­
fer, and delay other per-pixel processing. Instead, the 
triangles are put in a first-in, first-out queue (that is, 
the delay stream). When the delay stream is full, the 
“occluding power”—that is, the Zmax values—builds 
up substantially. As the triangles leave the delay 
stream, they are tested against the Zmax values, and 
many fragments can be skipped because they’re now 
occluded by other surfaces.

With the advancement of programmable shaders, 
more work is being put into pure computation. At 
some point, it’s likely that the GPU will become com­
pute-bound—that is, limited in performance because 
of too much computation. One solution is to spend 
more time on shader compiler optimization, but that 
only takes you so far. Another solution is to avoid 

executing the pixel shader when you can determine 
that the computation results won’t contribute to the 
final image anyway. For example, consider a block 
of pixels that are all in shadow (completely black). 
If a high-level mechanism could determine conser­
vatively that these pixels are all in shadow, then per-
pixel shadow computations could be avoided.

This is another type of culling, and the basic idea 
is implemented in the programmable culling unit 
(PCU).13 The PCU executes the pixel shader once 
over an entire block of pixels. For conservative out­
put, the computations are carried out using inter­
val arithmetic, so the input is the intervals of the 
block’s in-parameters. The total number of instruc­

tions decreased from 48 to 71 percent, which indi­
cates that a performance increase of about 2 times 
is possible. In addition, the memory bandwidth 
usage decreased by 14 to 28 percent. Interestingly, 
the PCU can also operate in a lossy mode. The pro­
grammer can activate this by instructing the pixels 
to be killed if the contribution is less than, say, 1 
percent of the maximum intensity. In such a case, 
the threshold of when per-pixel processing should 
commence provides a knob that the user can set to 
trade off image quality for performance.

Adaptive voltage scaling
The techniques we just discussed are high-level so­
lutions. Other methods reduce power usage at the 
hardware level. Several researchers have proposed 
low-power GPUs with conventional power manage­
ment strategies. Bren Mochocki and his colleagues 
analyze how such factors as resolution, frame rate, 
level of detail, lighting, and texture maps affect pow­
er consumption of mobile 3D graphics pipeline stag­
es.14 On the basis of this analysis, they use dynamic 
voltage and frequency scaling (DVFS) schemes for 
different pipeline stages. Using a prediction strategy 
for workloads for the different stages, DVFS could 
decrease power consumption by 40 percent.

3D displays and rendering
Many solutions for mobile 3D displays don’t re­
quire additional peripherals, such as glasses or head 
gear. Such displays are often called autostereoscopic 

At some point, it’s likely that the GPU  
will become compute-bound—that is, 
limited in performance because of too 
much computation.
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displays. Rendering to such displays can be more 
expensive than rendering to a regular display. So, 
specialized algorithms and hardware can help re­
duce the workload.

To give the sensation of 3D to a stationary ob­
server, a device must exploit a key source of 3D 
perception: the binocular parallax. All autostereo­
scopic displays exploit the binocular parallax through 
direction-dependent displaying. This means that the 
device must provide different views for each eye.

Existing solutions employ either a volumetric, 
multiview, or holographic display. The display most 
applicable to mobile devices is the multiview dis­
play, which uses lens arrays or parallax barriers 
to direct or select simultaneously displayed images 
depending on the viewpoint. All these solutions 
provide a single or multiple observer location from 
where a stereo pair of images is visible, while other 

positions yield unfocused or incorrect views. 
Stereo rendering generally costs twice as much in 

computation and bandwidth. However, for a larger 
angle of usage (that is, larger than the angle between 
the two eyes of an observer), some displays use even 
more views, which requires more processing. Special­
ized hardware can potentially render to autostereo­
scopic displays more efficiently because the images 
for the left and right eyes are similar. In contrast, 
with a brute-force implementation, the scene is ren­
dered first to the left eye and then to the right eye.

However, it makes sense to render a single tri­
angle to both views before proceeding with the next 
triangle.15 Aravind Kalaiah and Tolga Capin use this 
rendering order to reduce the number of vertex 
shader computations.16 Splitting the vertex shader 
into view-independent (computed once) and view-
dependent parts can greatly reduce vertex shader 
computations. In the following per-pixel processing 
stage, a simple sorting procedure in a generalized 
texture space greatly improves the texture cache hit 
ratio, keeping the texture bandwidth close to that 
of monoscopic rendering.15

In addition, Jon Hasselgren and Tomas Ak­
enine-Möller introduce approximate rendering in 
the multiview pipeline, so that fragment colors in 
all neighboring views can be approximated from 

a central view when possible.15 When approxima­
tive rendering is acceptable, you can avoid many 
per-pixel shader instruction executions. For stereo 
rendering, about 95 percent of the computations 
and bandwidth is avoided for the left view (the 
right view must be rendered as usual).

Rendering and transmission
In parallel with advances in graphics hardware and 
displays, we’re witnessing a dramatic increase in the 
complexity of graphics models on mobile devices. 
Here, we highlight recent advances in rendering and 
transmitting such models on mobile devices.

To overcome the complexity of representing the 
mesh connectivity, numerous solutions convert in­
put mesh models to internal, more efficient repre­
sentations. Florent Duguet and George Drettakis’s 
solution uses point-based graphics.17 They create 
point samples from an input mesh as a preprocess 
or procedurally on the fly and create a hierarchi­
cal representation of the object samples’ bounding 
volumes. During rendering, the processing of the 
hierarchy stops at a specified depth, achieving flex­
ible rendering that’s scalable to the mobile device’s 
speed requirements and screen size. This approach 
is also memory efficient because it doesn’t need to 
keep the whole model in main memory.

An alternative approach eliminates rendering 
nonimportant parts of the graphical content. Vidya 
Setlur and her colleagues’ method considers the hu­
man perception system’s limitations for retargeting 
2D vector animations for small displays.18 They aim 
to preserve key objects’ recognizability in a vector 
graphics animation by exaggerating the important 
objects’ features and eliminating insignificant parts 
during rendering. Instead of uniformly scaling down 
the input to small displays, this perceptually based 
solution uses nonuniform scaling of objects, based 
on the objects’ importance in the scene.

Jingshu Huang and her colleagues try a dif­
ferent approach to rendering complex models on 
small screens.19 Their MobilVis system adapts well-
known illustrative rendering techniques, such as 
interactive cutaway views, ghosted views, silhou­
ettes, and selective rendering, to mobile devices to 
more clearly convey an object’s shapes, forms, and 
interior structures.

Although these solutions provide more efficient re­
sults than basic graphics rendering, they’re still lim­
ited by the devices’ processing power. Because mobile 
devices are always connected to the network, remote 
rendering becomes a viable alternative. Typically, 
this technique uses a client–server approach. The 
rendering occurs on a high-performance server or a 
PC; the mobile client receives intermediate results 

In parallel with advances in graphics 
hardware and displays, we’re witnessing 
a dramatic increase in the complexity of 

graphics models on mobile devices. 
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over a network connection and renders the final 
results. Chun-Fa Chang and Shyh-Haur Ger pres­
ent an image-based remote-rendering solution, 
where the client receives depth images from the 
server and applies a 3D warping method, achiev­
ing near-real-time rates.20 Daoud Hekmatzada and 
his colleagues present a nonphotorealistic render­
ing solution, based on drawing silhouettes and 
contour lines as primitives.21

A related problem is the transmission of com­
plex models to mobile devices. Downloading such 
models through the air requires much bandwidth. 
In Xiaonan Luo and Guifeng Zheng’s solution for 
transmitting meshes, the mobile device commu­
nicates with a wired IP server via an IP network 
and a wireless channel.22 This solution is based on 
a flexible progressive mesh coding technique that 
adapts to different bit-rate and error-resilience 
requirements, while minimizing computational 
complexity usually associated with a transcoder. 
Azzedine Boukerche and Richard W.N. Pazzi pres­
ent a streaming protocol for 3D virtual-environ­
ment exploration on mobile devices; they address 
network transmission problems such as rate and 
congestion control.23 Siddhartha Chattopadhyay 
and his colleagues describe power-aware compres­
sion and transmission of motion capture data for 
mobile devices.24

Several issues must be solved for remote ren­
dering, such as connectivity problems, latency 
for transmitting user input, and rendered images. 
Hybrid solutions that balance processing between 
on-device and remote rendering present interest­
ing research possibilities.

Visualization and user interfaces
The key challenges in mobile visualization and 
user interfaces relate to small displays and the 
limited amount of interaction hardware compared 
to the desktop (for example, there’s no mouse or 
a full-size keyboard). Interaction is an important 
component of most graphics applications.

Visualization
Presenting large amounts of graphical data and 
complex user interface components more effec­
tively on small displays is a key research topic. 
When the data complexity exceeds what mobile 
displays can show, users must manually browse 
through the large data. This can easily happen 
when rendering and visualizing 2D data (such as 
maps or documents) or 3D data (such as medical 
data or city models). Scalable and zoomable user 
interfaces also require such visualization tech­
niques. Luca Chittaro surveys problems and solu­

tions for visualizing five types of data for mobile 
applications such as text, pictures, maps, physical 
objects, and abstract data.25

Patrick Baudisch and Ruth Rosenholtz propose 
the classification of the two following approaches 
to visualization on mobile devices.26

Overview + Detail. These approaches are based on dis­
playing two different views of the data simultane­
ously—one for context and one for detail. While the 
user navigates around the large data in the context 
view, the detailed view displays the area in focus.

Focus + Context. These approaches use a single view 
into data, with nonuniform scaling of data ele­
ments. The most prominent solution is the fish-
eye view, which magnifies the data in the user’s 
attention and renders distant objects in progres­
sively smaller sizes. Fish-eye views are mostly used 
in maps and menus.27

One example of this approach is speed-dependent 
adaptive zooming. Tolga Capin and Antonio Haro 
capture the device’s physical movement from 
camera input, which they analyze to determine 
scroll direction and magnitude.28 The zoom level 
increases or decreases depending on the scroll’s 
magnitude. For example, when a user moves a 
phone, the view zooms out and the display shows 
an overall view. When the user stops moving the 
phone, the zooming level gradually increases and 
the display shows a detailed view.

Benjamin Bederson and his colleagues devel­
oped DateLens, a fish-eye interface for a calendar 
on mobile devices.29 The user first sees an overview 
of a large time period using a graphical representa­
tion of each day’s activities. Choosing a particular 
day expands the area representing that day and 
reveals the appointment list in context.

Recently, Amy Karlson and her colleagues proposed 
AppLens and LaunchTile design solutions that adapt 
the UI to multiple devices with different resolutions 
and aspect ratios.30 AppLens uses a tabular fish-eye 
approach for integrated access and notification for 
nine applications. LaunchTile uses pure zooming 
within a landscape of applications to accomplish the 
same goals. A further development of LaunchTile is 
the zoomable fish-eye visualization of Zumobi, for 
Web browsing on mobile devices (see Figure 3).

Figure 3. 
Zumobi’s user 
interface. 
The interface 
platform 
supports a 
zoomable 
Web-browsing 
experience on 
mobile devices. 

C
ou

rt
es

y 
of

 Z
um

ob
i (

w
w

w
.z

um
ob

i.c
om

).



80	 July/August 2008

Mobile Graphics Survey

Another problem is visualizing the location of 
off-screen objects because small mobile displays 
can’t display all data at once. Solutions to this 
problem augment the detailed view with visual 
references to off-screen objects. For example, Bau­
disch and Rosenholtz use the “street lamp” meta­
phor, with an associated halo that includes a red 
arc at the detailed view’s borders.26 Figure 4 illus­
trates the Halo approach.

3D user interfaces
Three-dimensional user interfaces are a key ap­
plication of visualization on mobile devices, es­
pecially those with autostereoscopic displays. 
Creating 3D interfaces that approach the rich­
ness of 3D reality has long been a research tar­
get of several other research groups, particularly 
for desktop environments. Ben Shneiderman and 
Catherine Plaisant analyzed the features of effec­
tive 3D interfaces, primarily for desktop and near-
to-eye display domains, and proposed numerous 
guidelines.31 These include making better use of 
occlusion, shadows, and perspective; minimizing 
the number of steps in navigation; and improving 
text readability with better rendering and contrast 
with the background.

Graphics hardware support for OpenGL ES 2.0 
in a mobile phone opens up new possibilities for 
user interfaces owing to the programmable nature 
of that API. Because 3D UI rendering solutions de­
veloped for desktop computers don’t scale down 
well to mobile devices, a different set of widgets 
must be developed. In Figure 5, photos, videos, and 
applications drop down at the far end and move 

toward the front. The user can “catch” a photo, vid­
eo, or application and make it active. This includes 
showing the video or photo in higher resolution or 
activating the application. Programmable vertex 
and pixel shaders render depth-of-field effects and 
motion blur. These shaders also animate “wobbly” 
windows using vertex skinning.

Directly manipulating content
Mobile devices are currently limited in the mode of 
interaction they provide to users. However, direct-
manipulation interfaces provide a more intuitive 
interaction than current key-modal and menu-
based systems.31 Users can manipulate individual 
objects, each with a direct display representation. 
They apply actions directly to objects by selecting 
them and then choosing a command. Graphi­
cal representation is key for direct manipulation: 
users manipulate, through selection events and 
moving a pointing device, a graphical or iconic 
representation of the underlying data. Dragging 
an object by the pointer is an example of this in­
teraction mode.

Recently, stylus- and thumb-based interaction 
with touch-sensitive screens has emerged as a 
solution for mobile direct manipulation.32 Stylus-
based interaction, although accurate for selecting 
objects in a small screen, requires both hands and 
has caused additional attentional overhead.33 To 
overcome this problem, researchers have devel­
oped one-handed thumb-based interaction. Ap­
ple’s iPhone is the most prominent example; with 
a multitouch capacitive touch screen, it lets us­
ers interact with applications and type using their 
thumbs. Karlson and her colleagues have further 
developed several high-level gestures for more in­
tuitive interaction with their zoomable user inter­
face solution.30

Researchers have also incorporated physical sensors 
such as accelerometers in mobile devices for richer 
user interaction.34 However, such sensors produce 
error buildup over time. One way to overcome this 
is by merging relative continuous data from physical 
sensors with absolute but potentially intermittent 
data. This approach has provided good results and 
could lead to reliable tracking solutions.

Figure 4. The 
Halo approach 
displays arcs 
at the detailed 
view’s borders. 
The ring’s radius 
is proportional 
to the distance. 

Figure 5. A 
sequence of 
images from 
the SocialRiver 
user interface. 
Using OpenGL 
ES 2.0, 
SocialRiver 
implements 
motion blur, 
depth of field, 
and vertex 
skinning. Video 
input can also 
be composited. 

Courtesy of The Astonishing Tribe AB (www.tat.se).

Image courtesy of Patrick Baudisch and Ruth Rosenholtz.
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Alternatively, researchers have proposed several 
solutions where incoming camera video estimates 
phone motion and interacts with the user’s physi­
cal environment.28 With camera-based interac­
tion, users move the pointer or change the view by 
moving the phone instead of interacting with the 
screen or keypad. Correctly interpreting the ob­
jects’ observed motion or the camera’s global mo­
tion from video requires accurate tracking. Among 
the recent solutions, Jari Hannuksela and his col­
leagues propose region-based matching that uses 
a sparse set of features for motion analysis and a 
Kalman filter-based tracker for estimation.35 Capin 
and Haro’s solution tracks individual corner-like 
features observed in the entire incoming camera 
frames.28 This lets the tracker recognize sudden 
camera movements of arbitrary size, as long as at 
least some features from the previous frame are 
still visible. The tradeoff is that the tracker can’t 
detect rotations.

Augmented reality
AR, which augments video with graphics, can be 
contrasted with virtual reality, which renders ev­
erything with computer graphics, and telepresence, 
which conveys reality somewhere else by trans­
mitting video and audio. Whereas many mobile-
graphics applications resemble desktop-graphics 
applications (only with more constraints and less 
performance), AR provides a user experience on 
a mobile system that’s different from, and better 
than, the desktop user experience. Here, we dis­
cuss some early AR systems. 

One early example of mobile AR is the Touring 
Machine.36 The main system consisted of a back­
pack loaded with a computer and batteries. The user 
wore a head-mounted display and camera and held 
a tablet and stylus for input. The system worked as 
a campus tour guide, displaying the building names 
and related information over the buildings on its 
optical-see-through head-mounted display. Two 
surveys cover the basic components and problems 
of AR37 and developments in the late 1990s.38

Jun Rekimoto and Katashi Nagao’s Navicam was 
an early handheld AR system.39 It consisted of a 
handheld display that showed real-time camera 
imagery. The images were passed to a workstation 
for analysis. If the system recognized color-coded 
ID tags, it would superimpose situation-sensitive 
information over the camera image and display it 
on the device. This kind of video-see-through sys­
tem has many advantages over optical-see-through 
systems. Optical systems are open-loop control 
systems that require a good world model and ac­
curate tracking of the user’s eye position. A video 

system provides a much easier closed-loop control 
system because it analyzes the image, localizes the 
annotated object only with respect to the camera, 
and overlays the annotations with the target.

Whereas NaviCam was tethered to a worksta­
tion, Daniel Wagner and Dieter Schmalstieg cre­
ated the first autonomous handheld AR system.40 
They ported ARToolkit (www.hitl.washington.
edu/artoolkit), a popular library for many AR 
demos that tracks camera position with respect to 
square markers, to a PDA. The system offloaded 
the tracking to a server for faster frame rates, and 
the graphics rendering used a proprietary subset 
of OpenGL. Soon after, other researchers imple­
mented similar systems on mobile phones, such 
as Mathias Möhring and his colleagues, who im­
plemented their own tracker,41 and Anders Hen­
rysson and his colleagues, who adapted Wagner’s 
ARToolkit port to Symbian.42 Both these systems 
used OpenGL ES for graphics rendering.1

AR is also useful in gaming, and several games 
feature an AR phone. In Mosquito Hunt by Sie­
mens, virtual mosquitoes are drawn over live video 
from a camera. By moving the phone and track­
ing the motion flow in the camera, users try to 
zap the mosquitoes. In Marble Revolution2 (www.
bit-side.com/311.html), the motion flow guides a 
marble through a maze. Kick Real (www.kickreal.
de) shows a soccer ball on the ground that users 
can kick. AR Tennis tracks markers on a table to 
anchor a tennis field and tracks additional mark­
ers on players’ phones for a collaborative or com­
petitive tennis game (see Figure 6).42

Most mobile AR systems use markers to track the 
camera’s relative position with respect to objects or 
use optical flow to track the phone motion. More 
recently, some systems have done away with mark­
ers. The PhoneGuide is a museum guide based on 
camera phones (see the Projects in VR article in 

Figure 6. In 
AR Tennis, the 
camera tracks 
markers on the 
table and the 
other player’s 
camera. The 
players attempt 
to bounce 
the ball back 
and forth in a 
virtual tennis 
court.
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this issue for more on this).43 As Figure 7 illustrates, 
the PhoneGuide determines the user’s approximate 
location using Bluetooth beacons, so the vision sys­
tem only needs to distinguish between a smaller 
set of objects. The system splits the input image 
into bins, each bin produces a global feature vector 
consisting of various histograms and ratios (colors, 
intensities, edges, and so on), and a neural net­
work uses the inputs for recognition. Herbert Bay 
and his colleagues also created a museum guide.44 
Their system runs on a tablet PC and uses local 
scale-invariant Speeded Up Robust Features (SURF) 
to recognize objects. Such local feature matchers 
work better even if the objects have different back­
grounds or are partially occluded. SURF has also 
been ported to camera phones.45

The primary remaining challenges in mobile AR 
are object recognition and real-time tracking for 
unprepared markerless environments. Overcom­
ing these challenges allows annotating views with 
labels or arrows pointing to objects of interest. 
A secondary problem is seamlessly blending the 
graphics objects with the real scene with correct 
occlusions and shading. This requires modeling 
the environment and the current illumination 
levels in real time on the device.

Clearly, we need specialized graphics hardware 
for power-efficient graphics, but much research 

remains to be done. We believe that the best way 
around the battery capacity problem is to continue 
work on all fronts, which includes more efficient 
high-level graphics hardware algorithms, intelligent 
low-level power management, and clever software 
techniques for rendering and transmission. This 
also includes handling large, complex models and 

data sets. For both software and hardware tech­
niques and algorithms, it would be convenient to 
have a knob that the user can turn to trade off im­
age quality and operation time. Approximate ren­
dering for graphics hardware is a field that hasn’t 
been investigated thoroughly, and we expect that 
many new innovations will emerge.

Autostereoscopic displays can provide a major 
breakthrough on mobile devices before it does so 
on desktops. Interestingly, several such displays 
can already switch between displaying a standard 
2D image and conveying a 3D autostereoscopic 
experience. Graphics APIs could easily add sup­
port for these displays. For 3D TV and video, open 
issues in standardization organizations still exist. 
The main practical obstacle for autostereoscopic 
displays is creating content that fully benefits 
from such displays. 

User interfaces is an area where much innovation 
will happen at every level. The low-level APIs, such 
as OpenVG and OpenGL ES are there, but using 3D 
so that it truly enhances the user experience is still 
an active research issue. Multimodal interfaces that 
integrate voice, gesture, stylus or finger input, and 
keyboard input with interactive graphics and sound 
rendering, and take human perceptual and cogni­
tive capabilities into account, will create interaction 
that’s easier and more fun. Games are traditionally 
good at creating interfaces that are naturally easy to 
use; hopefully, these UI aspects will become more 
widespread in mobile UIs.

Because most mobile devices have a camera, 
exploring how we can integrate AR functionality 
into such cameras is worth exploring. However, 
the killer AR application has yet to be discovered. 
The future of mobile graphics is exciting, and our 
community will continue to invent new algo­
rithms, techniques, and applications that exploit 
the context of mobility.�
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