
74	 July/August 2008	 Published by the IEEE Computer Society� 0272-1716/08/$25.00 © 2008 IEEE

Mobile Graphics Survey

The State of the Art in
Mobile Graphics Research
Tolga Capin ■ Bilkent University

Kari Pulli ■ Nokia Research Center Palo Alto

Tomas Akenine-Möller ■ Lund University

Mobile phones are virtually omnipresent.
In 2008, 3.3 billion people—half the
world population—use mobile phones,

according to the International Telecommunications
Union. By 2010, Nokia expects that there will be
as many mobile phone users as toothbrush users (4
billion). Over the past 10 years, the phone has ex­

panded from being just a phone
to being a full multimedia unit,
on which you can play games (see
Figure 1), shoot photos, listen to
music, watch television or video,
send messages, and do video­
conferencing.

One factor leading to the wide­
spread adoption of mobile phones
has been the dramatic improve­
ment in display technologies. Dis­
plays used to be monochromatic
and small (48 × 84 pixels). Today,
we have 24-bit (16.8 million col­
ors) displays with VGA resolution
(640 × 480 pixels). Consequently,
mobile phones have the potential

to deliver graphics to the masses.
The mobile context differs vastly from the PC

context. A mobile phone

is always with you,
is always connected to the network and can find
its location and provide access to location-based
services and navigation, and
supports applications that require a graphics-
intensive user interface.

■

■

■

In addition, most mobile phones include a cam­
era, which allows many possibilities for better user
interaction with the device, as well as augmented
reality (AR) applications that combine digital im­
ages (rendered graphics models) with real-world
images (such as those on a camera viewfinder).

Standard mobile graphics APIs have laid the foun­
dation for much mobile graphics research and appli­
cations. For 3D graphics, there’s OpenGL ES, which
is a low-level API based on the popular OpenGL, and
M3G (JSR 184), which is designed on top of OpenGL
ES and supports scene graphs, animation, and file
formats for mobile Java. Kari Pulli and his colleagues
cover various uses of OpenGL ES and M3G.1 For 2D
vector graphics, there’s OpenVG, a low-level API
similar to OpenGL, and Scalable Vector Graphics
API for mobile Java (JSR 226). A description of these
and other related APIs appears elsewhere.2

By mobile, we mostly mean handheld devices. So,
although aviation or car displays are certainly mo­
bile, they fall outside this article’s scope. Here, we
aim to survey the state of mobile graphics research.
We don’t address issues related to particular appli­
cations and development tools. We also don’t dis­
cuss mobile gaming in depth; Mark Callow and his
colleagues provide a good overview of mobile-game
development and distribution.3 Jörg Baus and his
colleagues survey 2D and 3D maps for navigation,
which is also mostly beyond this article’s scope.4
Furthermore, we concentrate on interactive graph­
ics because noninteractive graphics can be simply
rendered on other devices and rendered as simple
bitmaps. For this reason, we also address user inter­
faces and handheld interaction techniques.

High-quality computer
graphics let mobile-device
users access more compelling
content. Still, the devices’
limitations and requirements
differ substantially from
those of a PC. This survey
of mobile graphics research
describes current solutions in
terms of specialized hardware
(including 3D displays),
rendering and transmission,
visualization, and user
interfaces.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Bilkent University Institutional Repository

https://core.ac.uk/display/52922555?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

	 IEEE Computer Graphics and Applications� 75

Handhelds’ limitations
Compared to the desktop, handheld devices are
limited by

power supply,
computational power,
physical display size, and
input modalities.

Mobile devices’ fundamental problem is that
they’re battery operated. Whereas many other
aspects of computing follow Moore’s law, battery
technology develops much more slowly. The dis­
play is one of the largest consumers of power, and
graphics applications keep the display, often with a
backlight, constantly on. Innovation is required at
the hardware level for lower power consumption,
while diligence is required at the software level for
power-aware mobile applications. Finally, the de­
vices are small; even if more power were available,
that power would turn into heat, which can dam­
age circuits unless the design process considered
the thermal aspects early on.

Mobile device CPUs also have limited computing
power. A related limitation is internal bandwidth
for memory accesses, which increases more slowly
than raw computing power and consumes much
power. Another limitation is cost: mass-market
consumer devices should be cheap, which limits
the silicon budget. For example, only the most re­
cent high-end phones support floating-point units.
Having dedicated graphics hardware helps the de­
vices get by with lower-clock-rate CPUs.

Although the pixel pitch ratio is increasing at a
stable rate, the requirements to keep the devices
handheld and pocketable means that the devices’
physical size has an upper bound. Whereas the
largest displays might have a diameter of up to 5
inches, many devices have much smaller displays.

Furthermore, mobile devices currently support
key-based interfaces through joypad and direction
keys and a numerical keyboard. On larger devices,
additional keys provide a better user experience
for complex tasks because keys can be dedicated to
specific tasks. Smart phones can’t easily use such
keys owing to limited physical space. Interaction
with touch-sensitive screens has emerged as an al­
ternative, but most solutions require two-handed
interaction, which causes additional attentional
overhead in users.

Finally, there’s an order of magnitude difference
between high- and low-end devices in graphics pro­
cessing and computational capacity. A particular
technique might run efficiently in one device but
be inefficient on another. This requires solutions

■

■

■

■

that can scale down to low-end mobile phones and
up to larger devices, even PCs.

Industry and academia researchers have devel­
oped several solutions to these problems. The fol­
lowing sections describe the key approaches.

Graphics hardware
A given task, such as 3D rendering, can always
be done more efficiently on special-purpose hard­
ware than on a general-purpose CPU. It’s possible
to write a rendering engine fully in software ex­
ecuting on a CPU, providing maximum flexibility.
In fact, most mobile 3D engines are still software
implementations. However, dedicated graphics
hardware can provide both faster execution and
lower power consumption. Dedicated graphics
processing units (GPUs) are already available on
high-end smart phones. Some GPUs are available
on a separate chip, but often the GPU and CPU
are on the same chip, which decreases manufac­
turing costs.

Although modern graphics engines, such as
OpenGL ES 2.0, provide programmable compo­
nents—so-called shaders—a lot of functionality
still isn’t programmable but consists of blocks of
fixed functionality that can be parameterized and
turned on or off. Fixing the functionality allows
more efficient implementations and latency hid­
ing. Triangle setup, texture fetch and filtering, and
blending operations can be more efficient when
implemented in dedicated logic.

The key to good graphics performance and low
power consumption is to reduce the internal traf­
fic between the processing elements and the mem­
ory. So, mobile graphics solutions focus on how to
compress and even completely avoid that traffic.
Reducing the traffic is even more important be­
cause computation power increases more quickly
than memory bandwidth. For example, John Ow­
ens reports that the yearly processing capability
growth is about 71 percent, while dynamic RAM
bandwidth grows only by 25 percent.5 This differ­
ence suggests that one should take great care when
designing a GPU architecture.

Figure 1.
High-quality
graphics games
have reached
mobile devices.

©
 2

00
8

N
ok

ia
.

76	 July/August 2008

Mobile Graphics Survey

Compression
Compression not only saves storage space, but it
also reduces the amount of data sent over a net­
work or a memory bus. For GPUs, compression
and decompression (codec) have two major tar­
gets: textures and buffers.

Textures are read-only images glued onto geomet­
rical primitives such as triangles. A texture codec
algorithm’s core requirements include fast random
access to the texture data, fast decompression,
and inexpensive hardware implementation. The
random-access requirement usually implies that a
block of pixels is compressed to a fixed size. For ex­
ample, a group of 4 × 4 pixels can be compressed
from 3 × 8 = 24 bits per pixel down to 4 bits per
pixel, requiring only 64 bits to represent the whole
group. As a consequence of this fixed-rate compres­
sion, most texture compression algorithms are lossy
(for example, JPEG) and usually don’t reproduce the
original image exactly. Because textures are read-
only data and usually compressed offline, the time
spent compressing the image isn’t as important as
the decompression time, which must be fast. Such
algorithms are sometimes called asymmetric.

As a result of these requirements, developers have
adopted Ericsson Texture Compression (ETC) as a
new codec for OpenGL ES.6 ETC stores one base
color for each 4 × 4 block of texels and modifies
the luminance using only a 2-bit lookup index per
pixel. This technique keeps the hardware decom­
pressor small. Currently, no desktop graphics APIs
use this algorithm.

Buffers are more symmetric than textures in
terms of compression and decompression because

both processes must occur in hardware in real time.
For example, the color buffer can be compressed,
so when a triangle is rendered to a block of pix­
els (say, 4 × 4) in the color buffer, the hardware
attempts to compress this block. If this succeeds,
the data is marked as compressed and sent back to
the main memory in compressed form over the bus
and stored in that form. Most buffer compression
algorithms are exact to avoid error accumulation.
However, if the algorithm is lossy, the color data
can be lossily compressed and later recompressed,
and so on, until the accumulated error exceeds the
threshold for what’s visible. This is called tandem
compression, meaning that if compression fails, you
must have a fallback that guarantees an exact color
buffer—namely, sending the data uncompressed.7

Depth and stencil buffers might also be com­
pressed. The depth buffer deserves special men­
tion because its contents are proportional to 1/z,
and when viewed in perspective, the depth values
over a triangle remain linear. Depth-buffer com­
pression algorithms heavily exploit this property,
which accounts for higher compression rates. A
survey of existing algorithms appears elsewhere.8

Interestingly, all buffer codec algorithms are
transparent to the user. All action takes place in the
GPU and is never exposed to the user or program­
mer, so there’s no need for standardization. There’s
no major difference for buffer codec on mobile
devices versus desktops, but mobile graphics has
caused renewed interest in such techniques.

Tiling architectures
Tiling architectures aim to reduce the memory traf­
fic related to frame-buffer accesses using a com­
pletely different approach. Tiling the frame buffer
so that a small tile (such as a rectangular block of
pixels) is stored on the graphics chip provides many
optimization and culling possibilities. Commercial­
ly, Imagination Technologies and ARM offer mobile
3D accelerators using tiling architectures. Their core
insight is that a large chunk of the memory accesses
are to buffers such as color, depth, and stencil.

Ideally, we’d like the memory for the entire frame
buffer on-chip, which would make such memory
accesses extremely inexpensive. However, this isn’t
practical for the whole frame buffer, but storing a
small tile of, say, 16 × 16 pixels of the frame buffer
on-chip is feasible. When all rendering has been
finished to a particular tile, its contents can be
written to the external frame buffer in an efficient
block transfer. Figure 2 illustrates this concept.

However, tiling has the overhead that all the tri­
angles must be buffered and sorted into correct tiles
after they’re transformed to screen space. A tiling

Tiling

Rasterizer
pixel shader

Memory

Primitives

Primitives
Geometry Scene data

Transformed
scene data

Frame buffer

Tile lists

Primitives
per tile

Texture read

Write

RGBA/Z

On-chip
buffers

GPU

Figure 2. A tiling architecture. The primitives are being transformed
and stored in external memory. There they are sorted into tile lists,
where each list contains the triangles overlapping that tile. This makes it
possible to store the frame buffer for a tile (for example, 16 × 16 pixels)
in on-chip memory, which makes accesses to the tile’s frame buffer
extremely inexpensive.

	 IEEE Computer Graphics and Applications� 77

unit creates, for each tile, a list of triangles overlap­
ping with that tile. Each tile can then be processed
in turn or in parallel with others. This architecture’s
main advantage is that frame-buffer accesses become
inexpensive. This must be balanced with the cost of
buffering and sorting the triangles.9 It’s still un­
known whether a traditional architecture or tiling
is best. The optimal approach also depends on the
content being rendered. For example, if the overdraw
factor is high, the tiled approach can be a winner,
but if there are many long but thin triangles, the
traditional nontiled approach might work better.

Culling
Even better than compressing data is to avoid pro­
cessing it. To cull means “to select from a group,”
and this often amounts to avoiding processing data
that doesn’t contribute to the final image. One par­
ticular technique stores (in a cache) the maximum,
Zmax, of the depth values in a block of pixels, and
when rendering to this block, the GPU estimates
conservatively whether the triangle is behind Zmax.
If so, all per-pixel processing can be avoided in that
block because the triangle will be hidden.10

A similar technique stores the minimum, Zmin,
of the depth values and determines whether a tri­
angle is definitely in front of all rendered geometry
in a block. If so, depth buffer reads can be avoided
in the block.11 You can also use Zmin to handle
other depth tests. These two techniques are often
called Z-culling.

Another technique uses occlusion queries. The
programmer renders, for example, a bounding box
around a complex object, and the occlusion query
counts how many fragments on the box are visible.
If no fragments are visible, then the bounding box
is hidden and rendering the complex object can be
avoided. Another approach, called delay streams, can
also be used for occlusion culling.12 The idea is to
process the triangles as usual, write to the depth buf­
fer, and delay other per-pixel processing. Instead, the
triangles are put in a first-in, first-out queue (that is,
the delay stream). When the delay stream is full, the
“occluding power”—that is, the Zmax values—builds
up substantially. As the triangles leave the delay
stream, they are tested against the Zmax values, and
many fragments can be skipped because they’re now
occluded by other surfaces.

With the advancement of programmable shaders,
more work is being put into pure computation. At
some point, it’s likely that the GPU will become com­
pute-bound—that is, limited in performance because
of too much computation. One solution is to spend
more time on shader compiler optimization, but that
only takes you so far. Another solution is to avoid

executing the pixel shader when you can determine
that the computation results won’t contribute to the
final image anyway. For example, consider a block
of pixels that are all in shadow (completely black).
If a high-level mechanism could determine conser­
vatively that these pixels are all in shadow, then per-
pixel shadow computations could be avoided.

This is another type of culling, and the basic idea
is implemented in the programmable culling unit
(PCU).13 The PCU executes the pixel shader once
over an entire block of pixels. For conservative out­
put, the computations are carried out using inter­
val arithmetic, so the input is the intervals of the
block’s in-parameters. The total number of instruc­

tions decreased from 48 to 71 percent, which indi­
cates that a performance increase of about 2 times
is possible. In addition, the memory bandwidth
usage decreased by 14 to 28 percent. Interestingly,
the PCU can also operate in a lossy mode. The pro­
grammer can activate this by instructing the pixels
to be killed if the contribution is less than, say, 1
percent of the maximum intensity. In such a case,
the threshold of when per-pixel processing should
commence provides a knob that the user can set to
trade off image quality for performance.

Adaptive voltage scaling
The techniques we just discussed are high-level so­
lutions. Other methods reduce power usage at the
hardware level. Several researchers have proposed
low-power GPUs with conventional power manage­
ment strategies. Bren Mochocki and his colleagues
analyze how such factors as resolution, frame rate,
level of detail, lighting, and texture maps affect pow­
er consumption of mobile 3D graphics pipeline stag­
es.14 On the basis of this analysis, they use dynamic
voltage and frequency scaling (DVFS) schemes for
different pipeline stages. Using a prediction strategy
for workloads for the different stages, DVFS could
decrease power consumption by 40 percent.

3D displays and rendering
Many solutions for mobile 3D displays don’t re­
quire additional peripherals, such as glasses or head
gear. Such displays are often called autostereoscopic

At some point, it’s likely that the GPU
will become compute-bound—that is,
limited in performance because of too
much computation.

78	 July/August 2008

Mobile Graphics Survey

displays. Rendering to such displays can be more
expensive than rendering to a regular display. So,
specialized algorithms and hardware can help re­
duce the workload.

To give the sensation of 3D to a stationary ob­
server, a device must exploit a key source of 3D
perception: the binocular parallax. All autostereo­
scopic displays exploit the binocular parallax through
direction-dependent displaying. This means that the
device must provide different views for each eye.

Existing solutions employ either a volumetric,
multiview, or holographic display. The display most
applicable to mobile devices is the multiview dis­
play, which uses lens arrays or parallax barriers
to direct or select simultaneously displayed images
depending on the viewpoint. All these solutions
provide a single or multiple observer location from
where a stereo pair of images is visible, while other

positions yield unfocused or incorrect views.
Stereo rendering generally costs twice as much in

computation and bandwidth. However, for a larger
angle of usage (that is, larger than the angle between
the two eyes of an observer), some displays use even
more views, which requires more processing. Special­
ized hardware can potentially render to autostereo­
scopic displays more efficiently because the images
for the left and right eyes are similar. In contrast,
with a brute-force implementation, the scene is ren­
dered first to the left eye and then to the right eye.

However, it makes sense to render a single tri­
angle to both views before proceeding with the next
triangle.15 Aravind Kalaiah and Tolga Capin use this
rendering order to reduce the number of vertex
shader computations.16 Splitting the vertex shader
into view-independent (computed once) and view-
dependent parts can greatly reduce vertex shader
computations. In the following per-pixel processing
stage, a simple sorting procedure in a generalized
texture space greatly improves the texture cache hit
ratio, keeping the texture bandwidth close to that
of monoscopic rendering.15

In addition, Jon Hasselgren and Tomas Ak­
enine-Möller introduce approximate rendering in
the multiview pipeline, so that fragment colors in
all neighboring views can be approximated from

a central view when possible.15 When approxima­
tive rendering is acceptable, you can avoid many
per-pixel shader instruction executions. For stereo
rendering, about 95 percent of the computations
and bandwidth is avoided for the left view (the
right view must be rendered as usual).

Rendering and transmission
In parallel with advances in graphics hardware and
displays, we’re witnessing a dramatic increase in the
complexity of graphics models on mobile devices.
Here, we highlight recent advances in rendering and
transmitting such models on mobile devices.

To overcome the complexity of representing the
mesh connectivity, numerous solutions convert in­
put mesh models to internal, more efficient repre­
sentations. Florent Duguet and George Drettakis’s
solution uses point-based graphics.17 They create
point samples from an input mesh as a preprocess
or procedurally on the fly and create a hierarchi­
cal representation of the object samples’ bounding
volumes. During rendering, the processing of the
hierarchy stops at a specified depth, achieving flex­
ible rendering that’s scalable to the mobile device’s
speed requirements and screen size. This approach
is also memory efficient because it doesn’t need to
keep the whole model in main memory.

An alternative approach eliminates rendering
nonimportant parts of the graphical content. Vidya
Setlur and her colleagues’ method considers the hu­
man perception system’s limitations for retargeting
2D vector animations for small displays.18 They aim
to preserve key objects’ recognizability in a vector
graphics animation by exaggerating the important
objects’ features and eliminating insignificant parts
during rendering. Instead of uniformly scaling down
the input to small displays, this perceptually based
solution uses nonuniform scaling of objects, based
on the objects’ importance in the scene.

Jingshu Huang and her colleagues try a dif­
ferent approach to rendering complex models on
small screens.19 Their MobilVis system adapts well-
known illustrative rendering techniques, such as
interactive cutaway views, ghosted views, silhou­
ettes, and selective rendering, to mobile devices to
more clearly convey an object’s shapes, forms, and
interior structures.

Although these solutions provide more efficient re­
sults than basic graphics rendering, they’re still lim­
ited by the devices’ processing power. Because mobile
devices are always connected to the network, remote
rendering becomes a viable alternative. Typically,
this technique uses a client–server approach. The
rendering occurs on a high-performance server or a
PC; the mobile client receives intermediate results

In parallel with advances in graphics
hardware and displays, we’re witnessing
a dramatic increase in the complexity of

graphics models on mobile devices.

	 IEEE Computer Graphics and Applications� 79

over a network connection and renders the final
results. Chun-Fa Chang and Shyh-Haur Ger pres­
ent an image-based remote-rendering solution,
where the client receives depth images from the
server and applies a 3D warping method, achiev­
ing near-real-time rates.20 Daoud Hekmatzada and
his colleagues present a nonphotorealistic render­
ing solution, based on drawing silhouettes and
contour lines as primitives.21

A related problem is the transmission of com­
plex models to mobile devices. Downloading such
models through the air requires much bandwidth.
In Xiaonan Luo and Guifeng Zheng’s solution for
transmitting meshes, the mobile device commu­
nicates with a wired IP server via an IP network
and a wireless channel.22 This solution is based on
a flexible progressive mesh coding technique that
adapts to different bit-rate and error-resilience
requirements, while minimizing computational
complexity usually associated with a transcoder.
Azzedine Boukerche and Richard W.N. Pazzi pres­
ent a streaming protocol for 3D virtual-environ­
ment exploration on mobile devices; they address
network transmission problems such as rate and
congestion control.23 Siddhartha Chattopadhyay
and his colleagues describe power-aware compres­
sion and transmission of motion capture data for
mobile devices.24

Several issues must be solved for remote ren­
dering, such as connectivity problems, latency
for transmitting user input, and rendered images.
Hybrid solutions that balance processing between
on-device and remote rendering present interest­
ing research possibilities.

Visualization and user interfaces
The key challenges in mobile visualization and
user interfaces relate to small displays and the
limited amount of interaction hardware compared
to the desktop (for example, there’s no mouse or
a full-size keyboard). Interaction is an important
component of most graphics applications.

Visualization
Presenting large amounts of graphical data and
complex user interface components more effec­
tively on small displays is a key research topic.
When the data complexity exceeds what mobile
displays can show, users must manually browse
through the large data. This can easily happen
when rendering and visualizing 2D data (such as
maps or documents) or 3D data (such as medical
data or city models). Scalable and zoomable user
interfaces also require such visualization tech­
niques. Luca Chittaro surveys problems and solu­

tions for visualizing five types of data for mobile
applications such as text, pictures, maps, physical
objects, and abstract data.25

Patrick Baudisch and Ruth Rosenholtz propose
the classification of the two following approaches
to visualization on mobile devices.26

Overview + Detail. These approaches are based on dis­
playing two different views of the data simultane­
ously—one for context and one for detail. While the
user navigates around the large data in the context
view, the detailed view displays the area in focus.

Focus + Context. These approaches use a single view
into data, with nonuniform scaling of data ele­
ments. The most prominent solution is the fish-
eye view, which magnifies the data in the user’s
attention and renders distant objects in progres­
sively smaller sizes. Fish-eye views are mostly used
in maps and menus.27

One example of this approach is speed-dependent
adaptive zooming. Tolga Capin and Antonio Haro
capture the device’s physical movement from
camera input, which they analyze to determine
scroll direction and magnitude.28 The zoom level
increases or decreases depending on the scroll’s
magnitude. For example, when a user moves a
phone, the view zooms out and the display shows
an overall view. When the user stops moving the
phone, the zooming level gradually increases and
the display shows a detailed view.

Benjamin Bederson and his colleagues devel­
oped DateLens, a fish-eye interface for a calendar
on mobile devices.29 The user first sees an overview
of a large time period using a graphical representa­
tion of each day’s activities. Choosing a particular
day expands the area representing that day and
reveals the appointment list in context.

Recently, Amy Karlson and her colleagues proposed
AppLens and LaunchTile design solutions that adapt
the UI to multiple devices with different resolutions
and aspect ratios.30 AppLens uses a tabular fish-eye
approach for integrated access and notification for
nine applications. LaunchTile uses pure zooming
within a landscape of applications to accomplish the
same goals. A further development of LaunchTile is
the zoomable fish-eye visualization of Zumobi, for
Web browsing on mobile devices (see Figure 3).

Figure 3.
Zumobi’s user
interface.
The interface
platform
supports a
zoomable
Web-browsing
experience on
mobile devices.

C
ou

rt
es

y
of

 Z
um

ob
i (

w
w

w
.z

um
ob

i.c
om

).

80	 July/August 2008

Mobile Graphics Survey

Another problem is visualizing the location of
off-screen objects because small mobile displays
can’t display all data at once. Solutions to this
problem augment the detailed view with visual
references to off-screen objects. For example, Bau­
disch and Rosenholtz use the “street lamp” meta­
phor, with an associated halo that includes a red
arc at the detailed view’s borders.26 Figure 4 illus­
trates the Halo approach.

3D user interfaces
Three-dimensional user interfaces are a key ap­
plication of visualization on mobile devices, es­
pecially those with autostereoscopic displays.
Creating 3D interfaces that approach the rich­
ness of 3D reality has long been a research tar­
get of several other research groups, particularly
for desktop environments. Ben Shneiderman and
Catherine Plaisant analyzed the features of effec­
tive 3D interfaces, primarily for desktop and near-
to-eye display domains, and proposed numerous
guidelines.31 These include making better use of
occlusion, shadows, and perspective; minimizing
the number of steps in navigation; and improving
text readability with better rendering and contrast
with the background.

Graphics hardware support for OpenGL ES 2.0
in a mobile phone opens up new possibilities for
user interfaces owing to the programmable nature
of that API. Because 3D UI rendering solutions de­
veloped for desktop computers don’t scale down
well to mobile devices, a different set of widgets
must be developed. In Figure 5, photos, videos, and
applications drop down at the far end and move

toward the front. The user can “catch” a photo, vid­
eo, or application and make it active. This includes
showing the video or photo in higher resolution or
activating the application. Programmable vertex
and pixel shaders render depth-of-field effects and
motion blur. These shaders also animate “wobbly”
windows using vertex skinning.

Directly manipulating content
Mobile devices are currently limited in the mode of
interaction they provide to users. However, direct-
manipulation interfaces provide a more intuitive
interaction than current key-modal and menu-
based systems.31 Users can manipulate individual
objects, each with a direct display representation.
They apply actions directly to objects by selecting
them and then choosing a command. Graphi­
cal representation is key for direct manipulation:
users manipulate, through selection events and
moving a pointing device, a graphical or iconic
representation of the underlying data. Dragging
an object by the pointer is an example of this in­
teraction mode.

Recently, stylus- and thumb-based interaction
with touch-sensitive screens has emerged as a
solution for mobile direct manipulation.32 Stylus-
based interaction, although accurate for selecting
objects in a small screen, requires both hands and
has caused additional attentional overhead.33 To
overcome this problem, researchers have devel­
oped one-handed thumb-based interaction. Ap­
ple’s iPhone is the most prominent example; with
a multitouch capacitive touch screen, it lets us­
ers interact with applications and type using their
thumbs. Karlson and her colleagues have further
developed several high-level gestures for more in­
tuitive interaction with their zoomable user inter­
face solution.30

Researchers have also incorporated physical sensors
such as accelerometers in mobile devices for richer
user interaction.34 However, such sensors produce
error buildup over time. One way to overcome this
is by merging relative continuous data from physical
sensors with absolute but potentially intermittent
data. This approach has provided good results and
could lead to reliable tracking solutions.

Figure 4. The
Halo approach
displays arcs
at the detailed
view’s borders.
The ring’s radius
is proportional
to the distance.

Figure 5. A
sequence of
images from
the SocialRiver
user interface.
Using OpenGL
ES 2.0,
SocialRiver
implements
motion blur,
depth of field,
and vertex
skinning. Video
input can also
be composited.

Courtesy of The Astonishing Tribe AB (www.tat.se).

Image courtesy of Patrick Baudisch and Ruth Rosenholtz.

	 IEEE Computer Graphics and Applications� 81

Alternatively, researchers have proposed several
solutions where incoming camera video estimates
phone motion and interacts with the user’s physi­
cal environment.28 With camera-based interac­
tion, users move the pointer or change the view by
moving the phone instead of interacting with the
screen or keypad. Correctly interpreting the ob­
jects’ observed motion or the camera’s global mo­
tion from video requires accurate tracking. Among
the recent solutions, Jari Hannuksela and his col­
leagues propose region-based matching that uses
a sparse set of features for motion analysis and a
Kalman filter-based tracker for estimation.35 Capin
and Haro’s solution tracks individual corner-like
features observed in the entire incoming camera
frames.28 This lets the tracker recognize sudden
camera movements of arbitrary size, as long as at
least some features from the previous frame are
still visible. The tradeoff is that the tracker can’t
detect rotations.

Augmented reality
AR, which augments video with graphics, can be
contrasted with virtual reality, which renders ev­
erything with computer graphics, and telepresence,
which conveys reality somewhere else by trans­
mitting video and audio. Whereas many mobile-
graphics applications resemble desktop-graphics
applications (only with more constraints and less
performance), AR provides a user experience on
a mobile system that’s different from, and better
than, the desktop user experience. Here, we dis­
cuss some early AR systems.

One early example of mobile AR is the Touring
Machine.36 The main system consisted of a back­
pack loaded with a computer and batteries. The user
wore a head-mounted display and camera and held
a tablet and stylus for input. The system worked as
a campus tour guide, displaying the building names
and related information over the buildings on its
optical-see-through head-mounted display. Two
surveys cover the basic components and problems
of AR37 and developments in the late 1990s.38

Jun Rekimoto and Katashi Nagao’s Navicam was
an early handheld AR system.39 It consisted of a
handheld display that showed real-time camera
imagery. The images were passed to a workstation
for analysis. If the system recognized color-coded
ID tags, it would superimpose situation-sensitive
information over the camera image and display it
on the device. This kind of video-see-through sys­
tem has many advantages over optical-see-through
systems. Optical systems are open-loop control
systems that require a good world model and ac­
curate tracking of the user’s eye position. A video

system provides a much easier closed-loop control
system because it analyzes the image, localizes the
annotated object only with respect to the camera,
and overlays the annotations with the target.

Whereas NaviCam was tethered to a worksta­
tion, Daniel Wagner and Dieter Schmalstieg cre­
ated the first autonomous handheld AR system.40
They ported ARToolkit (www.hitl.washington.
edu/artoolkit), a popular library for many AR
demos that tracks camera position with respect to
square markers, to a PDA. The system offloaded
the tracking to a server for faster frame rates, and
the graphics rendering used a proprietary subset
of OpenGL. Soon after, other researchers imple­
mented similar systems on mobile phones, such
as Mathias Möhring and his colleagues, who im­
plemented their own tracker,41 and Anders Hen­
rysson and his colleagues, who adapted Wagner’s
ARToolkit port to Symbian.42 Both these systems
used OpenGL ES for graphics rendering.1

AR is also useful in gaming, and several games
feature an AR phone. In Mosquito Hunt by Sie­
mens, virtual mosquitoes are drawn over live video
from a camera. By moving the phone and track­
ing the motion flow in the camera, users try to
zap the mosquitoes. In Marble Revolution2 (www.
bit-side.com/311.html), the motion flow guides a
marble through a maze. Kick Real (www.kickreal.
de) shows a soccer ball on the ground that users
can kick. AR Tennis tracks markers on a table to
anchor a tennis field and tracks additional mark­
ers on players’ phones for a collaborative or com­
petitive tennis game (see Figure 6).42

Most mobile AR systems use markers to track the
camera’s relative position with respect to objects or
use optical flow to track the phone motion. More
recently, some systems have done away with mark­
ers. The PhoneGuide is a museum guide based on
camera phones (see the Projects in VR article in

Figure 6. In
AR Tennis, the
camera tracks
markers on the
table and the
other player’s
camera. The
players attempt
to bounce
the ball back
and forth in a
virtual tennis
court.

C
ou

rt
es

y
of

 A
nd

er
s

H
en

ry
ss

on
.

82	 July/August 2008

Mobile Graphics Survey

this issue for more on this).43 As Figure 7 illustrates,
the PhoneGuide determines the user’s approximate
location using Bluetooth beacons, so the vision sys­
tem only needs to distinguish between a smaller
set of objects. The system splits the input image
into bins, each bin produces a global feature vector
consisting of various histograms and ratios (colors,
intensities, edges, and so on), and a neural net­
work uses the inputs for recognition. Herbert Bay
and his colleagues also created a museum guide.44
Their system runs on a tablet PC and uses local
scale-invariant Speeded Up Robust Features (SURF)
to recognize objects. Such local feature matchers
work better even if the objects have different back­
grounds or are partially occluded. SURF has also
been ported to camera phones.45

The primary remaining challenges in mobile AR
are object recognition and real-time tracking for
unprepared markerless environments. Overcom­
ing these challenges allows annotating views with
labels or arrows pointing to objects of interest.
A secondary problem is seamlessly blending the
graphics objects with the real scene with correct
occlusions and shading. This requires modeling
the environment and the current illumination
levels in real time on the device.

Clearly, we need specialized graphics hardware
for power-efficient graphics, but much research

remains to be done. We believe that the best way
around the battery capacity problem is to continue
work on all fronts, which includes more efficient
high-level graphics hardware algorithms, intelligent
low-level power management, and clever software
techniques for rendering and transmission. This
also includes handling large, complex models and

data sets. For both software and hardware tech­
niques and algorithms, it would be convenient to
have a knob that the user can turn to trade off im­
age quality and operation time. Approximate ren­
dering for graphics hardware is a field that hasn’t
been investigated thoroughly, and we expect that
many new innovations will emerge.

Autostereoscopic displays can provide a major
breakthrough on mobile devices before it does so
on desktops. Interestingly, several such displays
can already switch between displaying a standard
2D image and conveying a 3D autostereoscopic
experience. Graphics APIs could easily add sup­
port for these displays. For 3D TV and video, open
issues in standardization organizations still exist.
The main practical obstacle for autostereoscopic
displays is creating content that fully benefits
from such displays.

User interfaces is an area where much innovation
will happen at every level. The low-level APIs, such
as OpenVG and OpenGL ES are there, but using 3D
so that it truly enhances the user experience is still
an active research issue. Multimodal interfaces that
integrate voice, gesture, stylus or finger input, and
keyboard input with interactive graphics and sound
rendering, and take human perceptual and cogni­
tive capabilities into account, will create interaction
that’s easier and more fun. Games are traditionally
good at creating interfaces that are naturally easy to
use; hopefully, these UI aspects will become more
widespread in mobile UIs.

Because most mobile devices have a camera,
exploring how we can integrate AR functionality
into such cameras is worth exploring. However,
the killer AR application has yet to be discovered.
The future of mobile graphics is exciting, and our
community will continue to invent new algo­
rithms, techniques, and applications that exploit
the context of mobility.�

Acknowledgments
The Swedish Foundation for Strategic Research sup-
ported Tomas Akenine-Möller through a grant on
mobile graphics, and additional support came from a
Knowledge Foundation visualization grant. The Euro-
pean Commission FP7 3DPHONE project (grant FP7-
213349) and FP6 3DTV project (grant FP6-511568)
supported Tolga Capin.

References
	 1.	 K. Pulli et al., Mobile 3D Graphics with OpenGL ES

and M3G, Morgan Kaufmann, 2007.
	 2.	 K. Pulli, “New APIs for Mobile Graphics,” Proc. SPIE

Figure 7. The
PhoneGuide.
The user points
a camera
phone to an
object in a
museum (left).
A Bluetooth
beacon gives
an approximate
location
(top right).
The system
recognizes
the image
and provides
additional
information
(bottom right).

©
 2

00
7

IE
EE

.

	 IEEE Computer Graphics and Applications� 83

Electronic Imaging: Multimedia on Mobile Devices II,
SPIE, 2006, pp. 1–13.

	 3.	 M. Callow, P. Beardow, and D. Brittain, “Big Games,
Small Screens,” ACM Queue, Nov./Dec. 2007, pp. 2–12.

	 4.	 J. Baus, K. Cheverst, and C. Kray, “Map-Based Mobile
Services,” Map-Based Mobile Services Theories, Methods
and Implementations, Springer, 2005, pp. 193–209.

	 5.	 J.D. Owens, “Streaming Architectures and Technology
Trends,” GPU Gems 2, Addison-Wesley, 2005, pp.
457–470.

	 6.	 J. Ström and T. Akenine-Möller, “iPACKMAN: High-
Quality, Low-Complexity Texture Compression for
Mobile Phones,” Proc. ACM Siggraph/Eurographics Conf.
Graphics Hardware, ACM Press, 2005, pp. 63–70.

	 7.	 J. Rasmusson, J. Hasselgren, and T. Akenine-Möller,
“Exact and Error-Bounded Approximate Color Buffer
Compression and Decompression,” Proc. ACM
Siggraph/Eurographics Symp. Graphics Hardware,
Eurographics Assoc., 2007, pp. 41–48.

	 8.	 J. Hasselgren and T. Akenine-Möller, “Efficient
Depth Buffer Compression,” Graphics Hardware
2006: Eurographics Symp. Proc., A K Peters, 2006,
pp. 103–110.

	 9.	 I. Antochi et al., “Scene Management Models and
Overlap Tests for Tile-Based Rendering,” Proc.
EUROMICRO Symp. Digital System Design, IEEE CS
Press, 2004, pp. 424–431.

	10.	 S. Morein, “ATI Radeon HyperZ Technology,” Proc.
Workshop Graphics Hardware (Hot3D), ACM Press, 2000;
www.graphicshardware.org/previous/www_2000/
presentations/ATIHot3D.pdf.

	11.	 T. Akenine-Möller and J. Ström, “Graphics for the
Masses: A Hardware Rasterization Architecture
for Mobile Phones,” ACM Trans. Graphics (Proc.
Siggraph), vol. 22, no. 3, 2003, pp. 801–808.

	12.	 T. Aila, V. Miettinen, and P. Nordlund, “Delay
Streams for Graphics Hardware,” ACM Trans.
Graphics (Proc. Siggraph), vol. 22, no. 3, 2003, pp.
792–800.

	13.	 J. Hasselgren and T. Akenine-Möller, “PCU: The
Programmable Culling Unit,” ACM Trans. Graphics
(Proc. Siggraph), vol. 26, no. 3, 2007, article 92.

	14.	 B.C. Mochocki et al., “Signature-Based Workload
Estimation for Mobile 3D Graphics,” Proc. 43rd
Ann. Conf. Design Automation (DAC 06), ACM Press,
2006, pp. 592–597.

	15.	 J. Hasselgren and T. Akenine-Möller, “An Efficient
Multi-View Rasterization Architecture,” Proc.
Eurographics Symp. Rendering, Eurographics Assoc.,
2006, pp. 61–72.

	16.	 A. Kalaiah and T. Capin, “Unified Rendering Pipeline
for Autostereoscopic Displays,” Proc. 3DTV Conf.,
IEEE Press, 2007, pp. 1–4.

	17.	 F. Duguet and G. Drettakis, “Flexible Point-Based
Rendering on Mobile Devices,” IEEE Computer

Graphics and Applications, vol. 24, no. 4, 2004, pp.
57–63.

	18.	 V. Setlur et al., “Retargeting Vector Animation for Small
Displays,” Proc. 4th Int’l Conf. Mobile and Ubiquitous
Multimedia (MUM 05), ACM Press, 2005, pp. 69–77.

	19.	 J. Huang et al., “Interactive Illustrative Rendering
on Mobile Devices,” IEEE Computer Graphics and
Applications, vol. 27, no. 3, 2007, pp. 48–56.

	20.	 C.-F. Chang, and S.-H. Ger, “Enhancing 3D Graphics
on Mobile Devices by Image-Based Rendering,” Proc.
3rd IEEE Pacific Rim Conf. Multimedia (PCM 02),
LNCS 2532, Springer, 2002, pp. 1105–1111.

	21.	 D. Hekmatzada, J. Meseth, and R. Klein, “Non-
Photorealistic Rendering of Complex 3D Models on
Mobile Devices,” Proc. 8th Ann. Conf. Int’l Assoc.
Mathematical Geology, vol. 2, Alfred-Wegener-
Stiftung, 2002, pp. 93–98.

	22.	X. Luo and G. Zheng, “Progressive Meshes Transmission
over a Wired-to-Wireless Network,” Wireless Networks,
vol. 14, no. 1, 2006, pp. 47–53.

	23.	 A. Boukerche and R.W.N. Pazzi, “Performance
Evaluation of a Streaming-Based Protocol for
3D Virtual Environment Exploration on Mobile
Devices,” Proc. Int’l Symp. Modeling Analysis and
Simulation of Wireless and Mobile Systems (MSWiM
06), ACM Press, 2006, pp. 20–27.

	24.	 S. Chattopadhyay, S.M. Bhandarkar, and K. Li,
“Human Motion Capture Data Compression by
Model-Based Indexing: A Power Aware Approach,”
IEEE Trans. Visualization and Computer Graphics, vol.
13, no. 1, 2007, pp. 5–14.

	25.	 L. Chittaro, “Visualizing Information on Mobile
Devices,” Computer, vol. 39, no. 3, 2007, pp. 40–45.

	26.	 P. Baudisch and R. Rosenholtz, “Halo: A Technique
for Visualizing Off-Screen Objects,” Proc. SIGCHI
Conf. Human Factors in Computing Systems (CHI 03),
ACM Press, 2003, pp. 481–488.

	27.	 K. Hornbaek and M. Hertzum, “Untangling the
Usability of Fisheye Menus,” ACM Trans. Computer–
Human Interaction, vol. 14, no. 2, 2007, article 6.

	28.	 T. Capin and A. Haro, “Mobile Camera Based
User Interaction,” Handbook of Research on User
Interface Design and Evaluation for Mobile Technology,
Information Science Reference, 2008, pp. 541–555.

	29.	 B. Bederson et al., “Datelens: A Fisheye Calendar
Interface for PDAs,” ACM Trans. Computer–Human
Interaction, vol. 11, no. 1, 2004, pp. 90–119.

	30.	 A.K. Karlson, B.B. Bederson, and J. Sangiovanni,
“AppLens and launchTile: Two Designs for One-
Handed Thumb Use on Small Devices,” Proc. SIGCHI
Conf. Human Factors in Computing Systems (CHI 05),
ACM Press, 2005, pp. 201–210.

	31.	 B. Shneiderman, and C. Plaisant, Designing the User
Interface, 4th ed., Addison-Wesley, 2004.

	32.	 S.J.V. Nichols, “New Interfaces at the Touch of a

84	 July/August	2008

Mobile	Graphics	Survey

Fingertip,” Computer, vol. 40, no. 8, 2007, pp. 12–15.
 33. J. Pascoe, N. Ryan, and D. Morse, “Using While

Moving: HCI Issues in Fieldwork Environments,”
ACM Trans. Computer–Human Interaction, vol. 7, no.
3, 2000, pp. 417–437.

 34. K. Hinckley et al., “Sensing Techniques for Mobile
Interaction,” Proc. 13th Ann. ACM Symp. User
Interface Software and Technology (UIST 00), ACM
Press, 2000, pp. 91–100.

 35. J. Hannuksela, P. Sangi, and J. Heikkilä, “Vision­
Based Motion Estimation for Interaction with Mobile
Devices,” Computer Vision and Image Understanding,
vol. 108, nos. 1–2, 2007, pp. 188–195.

 36. S. Feiner et al., “A Touring Machine: Prototyping 3D
Mobile Augmented Reality Systems for Exploring the
Urban Environment,” Proc. 1st Int’l Symp. Wearable
Computers, IEEE CS Press, 1997, pp. 74–81.

 37. R. Azuma, “A Survey of Augmented Reality,” Presence:
Teleoperators and Virtual Environments, vol. 6, no. 4,
1997, pp. 355–385.

 38. R. Azuma et al., “Recent Advances in Augmented
Reality,” IEEE Computer Graphics and Applications,
vol. 21, no. 6, 2001, pp. 34–47.

 39. J. Rekimoto and K. Nagao, “The World through the
Computer: Computer Augmented Interaction with
Real World Environments,” Proc. 8th Ann. ACM

Symp. User Interface and Software Technology (UIST),
ACM Press, 1995, pp. 29–36.

 40. D. Wagner and D. Schmalstieg, “First Steps towards
Handheld Augmented Reality,” Proc. 7th IEEE Int’l
Symp. Wearable Computers (ISWC 03), IEEE CS Press,
2003, pp. 127–136.

 41. M. Möhring, C. Lessig, and O. Bimber, “Video
See­Through AR on Consumer Cell­Phones,” Proc.
3rd IEEE and ACM Int’l Sym. Mixed and Augmented
Reality (ISMAR 04), IEEE Press, 2004, pp. 252–253.

 42. A. Henrysson, M. Billinghurst, and M. Ollila, “Face
to Face Collaborative AR on Mobile Phones,” Proc.
4th IEEE and ACM Int’l Symp. Mixed and Augmented
Reality (ISMAR 05), IEEE Press, 2005, pp. 80–89.

 43. E. Bruns et al., “Enabling Mobile Phones to Support
Large Scale Museum Guidance,” IEEE MultiMedia,
vol. 14, no. 2, 2007, pp. 16–25.

 44. H. Bay, B. Fasel, and L. Van Gool, “Interactive
Museum Guide: Fast and Robust Recognition of
Museum Objects,” Proc. 1st Int’l Workshop Mobile
Vision, Springer Verlag, 2006.

 45. W.­C. Chen et al., “Effi cient Extraction of Robust
Image Features on Mobile Devices,” Proc. Int’l Symp.
Mixed and Augmented Reality (ISMAR 07), IEEE Press,
2007, pp. 281–282.

Tolga Capin is an assistant professor in Bilkent Uni-
versity’s Department of Computer Engineering. He has
contributed to various mobile graphics standards. His
research interests include mobile graphics platforms,
human–computer interaction, and computer anima-
tion. Capin received his PhD in computer science from
the Ecole Polytechnique Federale de Lausanne. Contact
him at tcapin@cs.bilkent.edu.tr.

Kari Pulli is a research fellow at Nokia Research
Center. He has been an active contributor to several
mobile graphics standards and recently wrote a book
about mobile 3D graphics. Pulli received a PhD in
computer science from the University of Washington
and an MBA from the University of Oulu. Contact
him at kari.pulli@nokia.com.

Tomas Akenine-Möller is a professor in Lund
University’s Department of Computer Science. His
research interests are graphics hardware for mobile
devices and desktops, new computing architectures,
collision detection, and high-quality rapid rendering.
Akenine-Möller received his MSc in computer science
and engineering from Lund University and his PhD in
graphics at the Chalmers University of Technology. He
received the best paper award at Graphics Hardware
2005 with Jacob Ström for the ETC texture compres-
sion scheme, which is now part of the OpenGL ES
API. Contact him at tam@cs.lth.se.

Silver Bullet
Security Podcast

w
w

w
.c

om
pu

te
r.

or
g/

se
cu

ri
ty

/p
od

ca
st

s
w

w
w

.c
om

pu
te

r.
or

g/
se

cu
ri

ty
/p

od
ca

st
s

Check out a free series of interviews
with host Gary McGraw,
featuring in-depth interviews
with security gurus, including

• Jon Swartz of USA Today
• Avi Rubin of Johns Hopkins, and
• Bruce Schneier of BT Counterpane

Sponsored by Cigital and
IEEE Security & Privacy magazine

Stream it online

or download to your iPod...

